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This paper presents simulated results comparing representatives
of two approaches to software DSM: an object-based protocol
and a page-based protocol. We explore the performance impli-
cations of each approach, including the object approach’s ad-
vantages in bandwidth consumption and lack of false sharing.

Somewhat surprisingly, the locality and data aggregation ad-
vantages of page-based systems prove to be the dominant fac-
tors with typical operating system overheads. We show that
large page sizes actually improve the performance of multi-
writer protocols, primarily because validating a single object
validates all other objects on the same page as well. Since our
applications have significant spatial locality, these additional
validations reduce the number of remote misses, without signifi-
cantly increasing bandwidth requirements. For three out of the
four applications we tested, our page-based protocol matched or
outperformed our object-based protocol under typical operating
systems costs.

We quantify this effect, and conclude with a discussion of tech-
niques that could allow each approach to benefit from the best
features of the other.

1. Introduction
One of the most contentious debates in the software distrib-

uted shared memory (DSM) community has been between the
proponents of object-based systems [1-3] and page-based sys-
tems [4-6]. The former advocate using program objects as a
natural consistency granularity. The advantages are clear: speci-
fying objects by name limits the scope of the consistency action
to the object’s extent. This limitation reduces the amount of data
that needs to be transferred, allows the data to be sent as an up-
date at the same time synchronization is acquired, and prevents
the consistency action from affecting other objects on the same
page (false sharing).

Advocates of the page-based approach usually contend that
the object-based synchronization model is more complicated and
unintuitive. Page-based systems require only synchronization to
be specified; the scope of each synchronization is the entire
shared address space. By requiring synchronization accesses to
specify the data object, the object model essentially requires the
same amount of application information as message-passing
systems, albeit in a less cumbersome form. Secondarily, the
page-based approach (even with relaxed consistency models) is
closer to that seen by programmers on hardware shared memory
machines.

Lost in this debate is the question of performance. This is
largely because conventional wisdom holds that fine-grained
performance and false sharing doom page-based approaches.
However, multi-writer systems [5, 7] can largely hide the effects
of false sharing, and also offer additional locality and data ag-
gregation advantages.

The locality advantages arise from the fact that validating a
single object on a shared page implies that all other objects on
that page are validated as well. In effect, the rest of the objects
are prefetched automatically. Applications that have significant
spatial locality therefore have fewer page faults, and lower con-
sistency and communication requirements. Another way of

looking at this is to say that page-based systems automatically
aggregate data better than current object-based systems.

The central tradeoff to be explored, then, is the performance
effects of the elimination of false sharing and the (potentially)
lower communication requirements in object-based systems ver-
sus the message-aggregating and locality effects in page-based
systems.

Rather than perform a single-point comparison between the
different approaches, we use simulation to explore this tradeoff
for a variety of simulated environments. These environments
differ in the cost of operating system primitives, such as commu-
nication and page protection system calls. We use two represen-
tative protocols, one based on CRL’s (C Region Library) [3]
protocol, and another based on the lazy multi-writer protocol [5]
used by CVM (Coherent Virtual Machine) and TreadMarks [16].
We implemented both protocols in CVM (which provides a
framework for implementing software DSM protocols), and then
ported them to the simulator. This latter step was relatively sim-
ple because the simulator is basically a variant of CVM that uses
a thread library to context-switch between virtual processes, and
the ATOM [8] binary rewriter to instrument shared reads and
writes. We validated the simulator by comparing simulated re-
sults with output from actual performance times on an IBM SP-2
for our applications, and message and event counts from the CRL
publication. Our application suite consists of Water, Barnes, and
LU from the SPLASH2 benchmark suite [9], and SOR, a com-
mon red-black Jacobi program.

The simulator allows us to vary message costs (the importance
of data aggregation goes down with message costs), page sizes
(larger page sizes increase gains from spatial locality, but also
increase false sharing), and the cost of page-handling operating
system primitives. The latter is especially important because
page-based systems rely heavily on virtual memory primitives to
control and detect accesses to shared pages, while object-based
systems use other techniques to detect modifications to shared
data.

The focus of this paper is an investigation into how these two
protocol types perform under a variety of simulated conditions.
We focus primarily on communication, the dominant form of
overhead on distributed computing platforms. As expected, we
found that the page-based approach uses fewer messages, as our
applications all have significant locality. Surprisingly, however,
we also found that the object-based approach has no intrinsic
bandwidth advantage. We investigate the impact of the object-
based approach's advantage due to the absence of false sharing,
and the page-based approach's advantages in data aggregation and
in exploiting spatial locality.

The rest of the paper is as follows. Section 2 describes the
simulator and the two protocols, and Section 3 describes our ex-
periments. Section 4 summarizes our results and suggests ways in
which the object-based approach can be modified to exploit spa-
tial locality as well.

2. The Simulator
The simulator used in this study is based on the CVM (Coher-

ent Virtual Machine) [7] software DSM. CVM is a user-level
library that features a set of base classes that provide a framework
for implementing specific DSM protocols. These classes include



a generic protocol class, a class that allows a protocol to hook
into the virtual memory system to set page permissions and han-
dle page faults, and efficient, reliable message-passing facilities
based on UDP. New protocols are added by deriving classes
from these base classes. The fact that all protocols implemented
under CVM use the same underlying support for functions such
as handling virtual memory and message passing allows them to
be fairly compared.

The simulator is made up of a modified version of the CVM
library and a set of instrumentation code that is added to an ap-
plication using the ATOM [8] binary-rewriting tool. It runs on a
single processor, using threads to provide multiple virtual proc-
essors. The instrumentation code maintains a processor cycle
count for each virtual processor, and handles switching between
threads. The cycle counts are based on the types of instructions
being executed, and are meant to be typical of RISC processors
in general, not to model any specific processor. We do not
simulate the effects of caches, pipelining, or multiple instruction
issue.

Operations such as signal handlers (used to trap write faults
and to inform the system of incoming requests) and communi-
cation primitives are assigned costs, expressed in cycle times,
that can be varied by parameters passed to the simulator when
an application is run. A message leaving a virtual processor is
tagged with an arrival time based on the cycle count of the
sender and the assigned message costs, and the message passing
facility in the modified CVM library delivers the message to the
destination virtual processor when it reaches the message’s arri-
val time.

The simulator also uses instrumentation to catch shared reads
and writes, allowing it to simulate page faults and to record
which words have been changed by which processors. This in-
formation is used to allow us to know when a processor has not
yet propagated a change to another processor through the DSM
protocol, even though in our simulator the “processors” are
threads that actually share the same address space.

2.1 The Region-Based Protocol
The region-based protocol is based on the consistency model

used by CRL [3], and it presents an identical interface to the
programmer. It allows a program to create regions of shared
memory, and provides synchronization calls that affect a single
region at a time. Since the system knows which region the
programmer intends to protect with a given synchronization call,
it can limit the data exchanged to only the data that is necessary
to make that region consistent. This data is piggy-backed onto
the messages that are used to implement synchronization.  If the
programmer allocates data in regions at a fine enough grain,
then there is no false sharing.

 As in CRL, a shared region is created using the
rgn_create call. This sets aside memory for the region on
the machine issuing the call, and returns a value of type rid_t,
which uniquely identifies the region. This identifier can be
passed to the rgn_map call to obtain a memory address at
which the region can be read or written. The identifier is valid
on all CVM nodes; the memory address is not. Memory is set
aside for regions allocated on other nodes the first time they are
mapped locally.

A node is allowed to read or write a region only when a read
operation or write operation is in progress. A read operation,
during which a node may only read data from the region, is
started with the call rgn_start_read and ended with the
call rgn_end_read. A write operation, during which the node
may read or write the region, is delimited by the calls

rgn_start_write and rgn_end_write. At any given
time, multiple read operations or a single write operation on each
region may be in progress.

If a node has a valid copy of the region when it makes a
rgn_start_read call, then a flag is set to indicate that an
operation is in progress and the call returns immediately. If the
node does not hold a copy of the region, then it must request a
copy of the region from the manager. The manager for each
region is assigned when the region is created and never changes.
When the manager receives the request, it forwards it to the
current owner (unless it is itself is the owner) and makes the
requesting node the new owner. If no operation or a read
operation is in progress on the owner, then the owner
immediately responds with an up-to-date copy of the region. If a
write operation is in progress, then the owner places the message
on a queue, to be responded to when its operation has completed.

A write operation works similarly. If the node on which
rgn_start_write was called holds the only valid copy of the
region, then a flag is set and the operation is allowed to proceed
immediately, without any communication having taken place. If
this is not the case, and the node is not the owner of the region,
then it must become the owner by sending a message to the
manager, which is forwarded to the current owner. If no operation
is in progress on the owner, it responds immediately; otherwise, it
queues the message and responds when the operation has
completed. An up-to-date copy of the region’s data is included in
the response if necessary. After acquiring owenership of the
region, the requesting node then sends invalidate messages to any
other nodes with valid copies of the region. When a node receives
an invalidate, it waits until any operation it has in progress on the
region has completed, then marks its copy invalid and sends a
response to the node that sent the invalidate. After all other copies
of the page have been invalidated, the node initiating the write
operation has the only valid copy of the region and can proceed.

2.2 The LRC Protocol
The page-based protocol used in our comparison is a multi-

writer Lazy Release Consistency [10] protocol. Release Consis-
tency [11] is a model that provides the same behavior as Sequen-
tial Consistency [12] for a large class of programs, while relaxing
the guarantees that the shared memory system must provide. Re-
lease Consistency separates shared memory accesses into ordi-
nary accesses and synchronization accesses. Synchronization
accesses are further divided into acquires and releases. As origi-
nally described, Release Consistency requires that ordinary ac-
cesses be performed with respect to other processors only when
the processor making the accesses performs a release. We refer to
this as Eager Release Consistency.

Lazy Release Consistency further delays the time when ordi-
nary accesses must be performed, to the point at which a proces-
sor other than the releasing processor performs an acquire on the
same synchronization object. Furthermore, it guarantees only that
the accesses will be performed with respect to the acquiring proc-
essor, not all processors in the system. If all of a program’s com-
peting accesses to shared memory are separated by synchroniza-
tion, then the results under Eager or Lazy Release Consistency
will be the same as they would have been under Sequential Con-
sistency. By delaying consistency actions, Lazy Release Consis-
tency is able to eliminate many message exchanges that would be
necessary with a stronger consistency model. It also allows such
optimizations as piggy-backing data movement onto synchroni-
zation messages.

Our Lazy Release Consistency protocol uses the virtual mem-
ory system to detect which memory pages are changed, and uses



diffs, which describe the changes that a processor has made to a
page, to allow multiple concurrent writers to a single page. Diffs
are generated by comparing the current contents of a page with a
copy that was saved before the processor made any changes.

The protocol divides the execution of a parallel program into
intervals on each node. New intervals begin each time a node
performs a release or acquire synchronization operation. At the
time of an acquire, the acquiring node sends a vector timestamp
to the node that last released the same synchronization object.
The vector timestamp describes which intervals the acquirer is
aware of on each node. The releaser returns write notices for all
intervals on all nodes of which it is aware but the acquirer is not.
Write notices describe which pages were changed during the
intervals in question. The acquirer invalidates these pages, and
the next time one of them is accessed, it requests the diffs
needed to bring the page up to date. The vector timestamp and
write notices are piggy-backed on the messages that implement
the release-acquire pair, so their use does not increase the num-
ber of message exchanges that are necessary.

3. Experiments
This section compares simulated performance of the CRL re-

gion-based protocol (hereafter referred to as “REGION”) versus
the multi-writer LRC protocol (“LRC”). While the protocols
differ in many ways, we believe they are representative of the
best object- and page-based protocols in general, and both are
implemented in the same environment for these experiments.

3.1 Simulation Environment
The overall simulator design is discussed in Section 2. The

simulator models processor detail only down to cycle counts
based on instruction type; we do not simulate pipelines or multi-
ple-issue. Therefore, it is not fair to say that our simulator re-
flects any single processor. However, we have roughly based
our processor cycle counts and instruction costs on a 100-MHz
POWER2  processor.

As a starting point for our experiments, we chose the fol-
lowing overheads: mprotect calls (used to change page pro-
tections by LRC) take 10 usecs, message sends require 80 usecs
to start, plus 2 usecs for each byte of the message, and the cost
of delivering a signal (such as SEGV, used to trap access-
protection violations, or SIGIO, used to ensure timely handling
of incoming messages) is 100 usecs. We then systematically
varied these values to determine the sensitivity of overall per-
formance to each variable.

All simulations were run on eight simulated processors.

3.2 Application Suite
We tested the two protocols against Barnes, Water-Nsquared,

and LU from the SPLASH-2 [9] suite, and SOR, a simple red-
black Jacobi application. The three SPLASH applications were
taken from the CRL [3] distribution. These contained conditional
compilation directives so that they could be used with CRL or
with a sequentially consistent shared memory. To run them using
the CVM region-based protocol, the applications were compiled
using the (unchanged) conditional code for CRL. For lazy release
consistency, they were compiled using the conditional code for a
sequentially consistent shared memory, with slight changes.

All of the applications synchronize primarily through barriers,
though Barnes and Water also use locks, and Barnes, Water, and
LU all use small numbers of reductions. Although CVM's page-
based protocols support global reductions, we disabled them in
our simulator in order to have a purely page-based protocol. The
first application, Barnes, uses the Barnes-Hut hierarchical N-body
method to simulate the interactions of a number of bodies as
determined by gravitational forces. The main data structure is an
octree, the internal nodes of which represent space cells, and the
leaves of which contain information about the bodies being
simulated. The majority of the program’s time is spent in a phase
in which it repeatedly traverses this octree while computing the
forces on each body [9]. This results in a fair amount of spatial
locality, and a pattern of data accesses in which data is migratory
rather than always accessed by a statically determined set of
nodes.  The statistics for Barnes were collected beginning at the
end of the second time step, in order to eliminate one-time costs
such as those associated with mapping a region for the first time
in the region-based protocol (which requires a remote procedure
call). Barnes was run using a problem size of 4096 molecules.

LU performs blocked LU factorization of dense matrices. The
results in the paper are for a 512 x 512 matrix with 32 x 32
blocks.

SOR is a simple red-black Jacobi. Our grid was 1024 rows by
1024 columns, except for the runs in which we varied the page
size, in which we used a 1024 by 512 grid because of memory
constraints on our simulator. We collected statistics beginning
with the second iteration.

Water computes the forces and potentials among a group of
water molecules over a number of time steps. It maintains an
array of structures that hold information about each molecule.
The majority of the program’s time is spent in a phase in which
each processor computes the interactions of each of n/p molecules
with the n/2 molecules following them in the array [9]. This
results in a high degree of spatial locality, and a pattern of data
accesses in which the data for each molecule is accessed by a
statically determined set of nodes. The data for Water was
collected starting at the second time step. It was run for three time
steps, using a problem size of 512 molecules.

3.3 Experiments

3.3.1 Overall Performance
Figure 1 shows the performance of our applications for each of

the two protocols. This is measured in terms of speedup over
running the same algorithm on a single processor (with no over-
head for the synchronization calls that would be necessary on
multiple processors).

Each bar is broken down into time spent executing application
code (“app”); time spent validating data by requesting diffs under
LRC or requesting copies of objects from other nodes in
REGION (“page”); time spent in other protocol code (“prot”);
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time spent handling incoming requests (“sigio”); and time spent
waiting on lock, reduction, or barrier replies (“idle”). “Page”
overhead includes the latency of remote diff, region, and page
requests. “Prot” overhead includes all time for lock, reduction,
and barrier acquisitions, other than the idle time spent waiting
for replies. The “-l” and “-r” suffixes indicate whether the bar
pertains to the LRC or REGION protocol.

LRC outperforms REGION on two of the four applications,
and closely matches REGION’s performance on the other two.
The two applications that LRC performs particularly well on
relative to REGION are Barnes and Water, the two applications
with the highest communication volume and most fine-grained
synchronization.

The dominant cost portion for both protocols, and all appli-
cations other than SOR, is idle time, which includes all delays
on synchronization events. This is primarily lock delay for
Barnes and Water, but barrier delay is significant in all cases
because of load imbalance induced by uneven fault servicing.

The second largest source of overhead is consistency proto-
col code, which includes synchronization acquisitions. Neither
protocol is preferred for consistency overhead. Although LRC’s
protocol code is more complex, REGION’s protocol code is
called more frequently due to the fact that all accesses to shared
regions must be bracketed with calls to open and close read or
write operations, regardless of whether or not those calls are also
necessary for synchronization. For instance, between two barri-
ers different processors may read and write prearranged disjoint
sets of objects, in which case no calls to consistency code are
needed under LRC. Under REGION, however, separate calls
would be necessary to open and close read or write operations
for each object.

SIGIO overhead runs a close third to consistency overhead.
The dominant cost in this overhead is the operating system cost
of calling the signal handler. The aggregate of this overhead is
higher for REGION because region-based applications require
many more remote data fetches than page-based applications
(see Section 3.3.4). SIGIOs can be replaced with polling if
communication is frequent enough [13], or if fine-grained poll-
ing can be inserted into application code by binary instrumenta-
tion [14]. “Sigio” also includes diff creation and copying for
LRC and the overhead of dealing with requests concerning
many small regions for REGION.

3.3.2 Varying Message Costs
Figure 2 shows protocol performance as the cost of messages

(and the cost of SIGIO delivery) scales from zero communica-
tion overheads up to our default, in increments of 10%. LRC
generally performs better relative to REGION with high mes-
sage passing overhead costs, whereas REGION performs better
with low overhead. This is unsurprising, as REGION's perform-
ance is determined largely by communication costs. Even with
free messages, LRC must pay operating system overheads on
each page modification that is trapped by SEGV handlers, and
data is transferred only though diff creation and application.
These costs are not dependent on communication performance.
Note, however, that diffing is not intrinsic to the page-based
approach. Shasta [14], for example, uses rewriting of binaries to
catch all shared accesses.

LRC significantly outperforms REGION at high message
costs for Barnes and Water. This is because REGION exchanges
many more messages than LRC for these applications. We will
examine why this is the case in section 3.3.4. For Water,
REGION does not outperform LRC even when message passing
is assigned zero overhead. The reason is that, even with zero
cost messages, our simulation assumes that sending or receiving

a message will involve the overhead of copying the data into or
out of a buffer. The average size of the regions allocated by the
REGION version of Water is 668 bytes, but only a very small
number of these bytes are changed by the program during each
write operation. Because of this, LRC’s use of diffs allows it to
send much less data than REGION; LRC sends 6,809,704 bytes,
whereas REGION sends 11,303,152 bytes. Of course, LRC must
examine the unchanged bytes when creating diffs. Once created,
however, a diff can be used to update multiple processors.

Message costs had little effect on the total runtime of LU and
SOR. For SOR, performance for both protocols was roughly the
same, but for LU, REGION performed somewhat better than
LRC over the entire range of message costs. This is explained by
the fact that the regions identified to the REGION protocol are
relatively large and exactly match the areas of memory that need
to be communicated. This means that REGION does exactly the
minimum necessary work, whereas LRC must spend time han-
dling page faults and creating and applying diffs in order to ob-
tain the information that is given to REGION by the programmer.

3.3.3 Varying Page Protection Costs
Figure 3 shows the performance of the LRC protocol as page

protections costs are scaled from no cost to eight times our de-
fault cost. Runs of the applications under the REGION protocol
are also included for comparison. For the runs described by this
figure, message costs were fixed at one tenth of our default. In
this environment, page protection costs take on greater impor-
tance to the performance of LRC.

As was seen earlier in Figure 2, with these message costs and
the default page protection costs REGION outperforms LRC on
all applications but Water, although for SOR there is little differ-
ence in running time between the two protocols. The running time
of Water under LRC rises fairly slowly with page protection
costs, only going above the running time using REGION at more
than five times our default cost. Part of the reason for this is that
(as mentioned in section 3.2) Water exhibits a high degree of
spatial locality [9]. The rest of the explanation  is that reads
greatly outnumber writes of shared data, meaning that few page
faults occur. This version of Water accumulates intermediate
results in local memory, only updating global data at the end of a
program phase. This leads to few page faults, because reading
does not invalidate other processors’ copies of a page. Addition-
ally, writing is often done to objects on the same page in succes-
sion, so that the page may stay writable while many objects are
written (it is marked unwritable when it is invalidated or when a
diff request comes in). The rate of page faults in LU and SOR is
also low, resulting again in the run time growing slowly with
page protection costs.
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Of the four applications, Barnes is most severely affected by
a change in page protection costs under LRC. Barnes uses finer
grained sharing than the other applications, and does not have as
much spatial locality, and therefore has a higher rate of page
faults.

3.3.4 Varying Page Sizes
Table 3.1 compares per-process statistics for the two proto-

cols as page size is varied from 512 up to 16k bytes. The rows
for each application are time (in millions of cycles), remote
misses, and kilobytes communicated. Conventional wisdom has
long held that one of the main problems with page-based DSMs
is that the large consistency granularity, i.e. the size of virtual
memory pages, limits performance. This limitation is seemingly
exacerbated by the current trend towards larger page sizes (us u-
ally to 8192 bytes), which clearly increase false sharing, and
therefore consistency overhead as well. This is true for single-
writer protocols, as increasing false sharing leads to increasing
spurious contention for shared memory pages. However, multi-
writer protocols such as LRC handle such situations without
network communication. Hence, they do not suffer from the so-
called ping-pong effect [15]. The remaining disadvantage of
large page sizes in the context of multi-writer protocols is the
extra overhead during the creation of small diffs.

Set against this disadvantage are several advantages. First,
shared data adjacent to requested data arrives without explicit
requests. If this data is later needed (i.e. the application has good
spatial locality), the extra fetch is avoided. In addition to avoi d-
ing subsequent faults, this data aggregation avoids the high me s-
sage startup costs that are common in the environments in which
software DSMs are implemented.

Second, fewer diffs are created and less overhead is wasted
in dealing with them. LRC implements a
lazy diffing protocol, meaning that diffs
are not actually created until they are
requested by remote processors. Given
sufficient spatial locality, processors often
modify multiple objects on the same
page, especially as page sizes increase. If
these modifications are made prior to the
arrival of requests for the earlier modif i-
cations, all of the modifications can be
combined into a single diff.

Finally, larger page sizes usually r e-
duce OS overhead. Changing page pro-
tections and calling signal handlers are
relatively expensive operating system
primitives. Larger page sizes mean that
fewer of each occur.

Table 3.1 reveals the rather unintuitive fact that not only can
increasing page size increase performance, but that this can ha p-
pen even at page sizes beyond the 4k that is currently typical. The
best performance for all four applications is seen with 8k pages.
Information about performance at page sizes larger than 4k is
particularly important, because software DSMs can easily use
page sizes larger than the system page size merely by passing
appropriate arguments to operating system calls. We have since
confirmed this result by adding a command-line page size p a-
rameter to CVM, and other researchers have observed the same
phenomenon [16]. Performance improves by an average of 25%
between the 512 byte page size that is more typical of object size
and 8k. Over the same span, 83% of remote misses are elim i-
nated, while bandwidth requirements remain roughly the same.

Table 3.3 shows the results of an experiment that can be used
to measure the efficiency of the prefetching effect more precisely.
Rather than changing page sizes, we modified page fault behavior
so that adjacent pages are validated at the same time as the page
that caused the fault. This entails fetching diffs for adjacent pages
at the same time as the target page, effectively achieving the same
savings in messages and remote latency as increasing page sizes.
The two methods differ in that the adjacent-page method allows
the prefetched pages to be re-invalidated individ ually.

For example, if we have set a prefetch_factor of 4, and
a read access to page 41 causes a segmentation violation, we also
fetch diffs for the invalid pages among page 40, 42, and 43. If all
three of these pages are initially invalid, then we say we have
prefetched three pages. More importantly, we then track what
happens to those pages next. A prefetch is useless if the page is
re-invalidated before the next local access, or never used at all.
The prefetch is considered useful if the page is accessed at least
once before being inval idated.

The columns of Table 3.3 show remote misses and prefetches
for three prefetching factors: 1 (control case), 2, and 4. The pre-
fetches are divided into useless and useful categories as above.
Our base page size is 4k bytes, so a prefetch factor of four corre-
sponds to a prefetch of a 16k page.

Remote misses are divided into normal misses and false
misses. A false miss is one that is induced by a larger page size.
For example, if the system uses 4k pages and pages 40 through 43
are valid, an invalidation to page 43 will not affect subsequent
accesses to some object X that resides on page 40. However, if we
instead use 16k pages, the corresponding invalidation will also
invalidate the portion of the shared space that contains object X.
These false misses are one measure of the negative consistency
implications of increasing page sizes. However, Table 3.3 shows
that false misses occur only infrequently for our applications as
effective page size moves from 4k to 16k bytes.

LRC - Page Size Region
512 1024 2048 4096 8192 16384 Acquires

time 580 517 477 457 439 457 849
Barnes misses 2,446 1,718 1,244 915 655 482 2,699

kbytes 1,131 1,161 1,160 1,170 1,178 1,201 786
time 817 685 622 603 594 600 569

LU misses 1,067 534 267 167 100 66 68
kbytes 1,173 1,097 1,059 1,216 1,421 1,805 551
time 205 192 186 182 182 190 188

SOR misses 252 126 63 32 24 28 32
kbytes 160 147 140 136 135 190 258
time 413 353 320 298 291 304 481

Water misses 1,627 953 494 268 154 114 1,528
kbytes 990 902 800 832 732 848 1,290

Table 3.1: Varying Page Size
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Overall, we find that the prefetching effect is extremely us e-
ful. With a prefetch factor of four, nearly 42% of remote misses
in Barnes, LU, and Water are eliminated. Even at a prefetch
factor of four, 46% of all prefetched pages are useful. Prefetch-
ing is a complete loss for SOR, however, because only edge
rows are communicated, and each row in our current array takes
exactly one page. Prefetching would be a win for SOR if the
rows overlapped more than a single page.

3.3.5 Message Traffic
Figure 1 shows that communication cost is the most signif i-

cant source of overhead for REGION. Table 3.2 shows that the
probable source of this overhead is that REGION uses far more
messages than LRC. Since the cost of messages in our enviro n-
ment is dominated by the startup cost, the number of messages is
usually more important than the total bandwidth co nsumed.

In addition to showing the total messages and kilobytes sent
for each application and protocol, Table 3.2 breaks messages
down by type. For REGION, the types are barrier messages
(“bar”), reduction messages (“reduc”), messages requesting read
(“read”) or write (“write”) access to a region, and invalidate
messages (“inval”). For LRC, the types are barrier messages
(“bar”), lock messages (“lock”), and diff request messages
(“diff”).

One of the primary issues that we wished to investigate was
the bandwidth advantage of object-based protocols. In fact,
Table 3.2 shows that this bandwidth advantage is not one-sided.
While REGION benefits from sending only the data in the r e-
quested object, LRC benefits by only sending the modified po r-
tions of the objects that are sent. Barnes’ regions average only
102 bytes, and it appears efficient in this case to send entire
objects, since REGION sends less data than LRC. In contrast,
the average region size in Water is 668 bytes, and REGION
sends 75% more data than LRC. This can be explained by noting
that each Water phase modifies only a portion of each molecule,
sometimes as little as 12 bytes. Sending the rest of the 600+ byte
object is pure overhead.

 However, sending the entire object is not intrinsic to the o b-
ject approach. Systems such as Midway [2] and Shasta [14] use
software dirty bits to create essentially the same diffs used by
LRC. Such systems will send strictly less application data than
LRC, although consistency overhead in messages may be larger.

Since synchronization messages dominate for LRC, it is u n-
likely that the total number of messages consumed by LRC can
be reduced significantly without changing the programming
model, or using optimistic techniques.

3.3.6 Aggregating Regions
We ran a series of experiments using a modified version of

REGION in which regions are aggregated into groups. Our tent
was to investigate a way in which we might give REGION some
of the benefits that large page sizes give to LRC , These groups
are treated as units for the purposes of synchronization and con-
sistency. Requests for individual regions are transformed into
requests for all regions in the same group.

This approach is not general; it may introduce deadlocks into
applications that were previously free of them. This is because
synchronization acquires to different regions, which wouldn’t
have conflicted in the original protocol, will conflict in the mod i-
fied version if they are to regions in the same group. For this re a-
son, two of our four applications, LU and Barnes, could not be
run under the modified protocol.

SOR slowed down when regions were aggregated. This is to
be expected, since as mentioned in section 3.3.4, only edge rows
are communicated, and a region is exactly one row. Water
showed a significant improvement when small numbers of r e-
gions were aggregated: with groups of ten regions, performance
improved almost 36%. Performance began to degrade when more
regions than this were grouped, but remained better than perfor m-
ance with no aggregation until group size was increased to b e-
tween 40 and 50 regions.

The regions allocated by Water average 668 bytes in length, so
the group size of ten that showed the best performance gives a
granularity of approximately 6k. At least two factors contribute to
the fact that this is lower than the page size that performed best
with LRC, which was 8k (with performance only slightly worse
at 16k). First, REGION sends entire regions even when Water
changes only a few bytes, and second, that there cannot be mult i-
ple concurrent writers to different regions in a group whereas
LRC allows multiple writers to a page. These factors also co n-
tribute to the fact that the best performance of REIGON with
aggregation was still 6% worse than the best performance seen
with LRC.

4. Conclusions
This paper has investigated performance tradeoffs between

object-based and page-based approaches to software distributed
shared memory under a variety of simulated conditions. The r e-
sults of our experiments are somewhat surprising: on average, the
page-based approach out-performs the object-based approach
unless message passing is very inexpensive. This is despite the
fact that the object approach provides the underlying system with

Region Messages Kilo- LRC Messages Kilo-
bar reduc write inval read total Bytes bar lock diff total Bytes

Barnes 10 14 2,196 1,202 4,483 7,904 786 24 165 1,159 1,347 1,178
LU 44 2 0 0 103 148 551 46 0 106 152 1,421
SOR 34 0 54 0 54 142 258 34 0 24 58 135
Water 12 4 1,055 598 1,903 3,573 1,290 16 1,136 171 1,323 732

Table 3.2: Message Traffic

1 Factor = 2 Factor = 4
Remote Remote Misses Prefetches Remote Misses Prefetches
Misses Normal False Useful Useless Normal False Useful Useless

Barnes 915 646 14 256 228 497 35 411 490
LU 167 160 0 67 6 157 0 98 34
SOR 32 32 16 0 11 32 24 0 28
Water 268 156 0 107 2 109 2 156 13

Table 3.3: Prefetch Factors (base page 4k bytes)



more application-specific information and is able to use an u p-
date protocol to combine data movement and synchronization.

The primary reason for this performance advantage is that the
page-based approach has lower communication requirements,
which are the dominant form of overhead on distributed co m-
puting platforms. As expected, we found that the page-based
approach uses far fewer messages, as our applications all have
significant locality. On the other hand, we found that the object-
based approach (at least when sending whole objects, as in our
implementation) did not have the expected bandwidth adva n-
tage. While REGION sends significantly less data than LRC for
Barnes and LU, the converse is true for Water and SOR.
REGION would have a bandwidth advantage over most page-
based protocols because object validation entails sending only
the requested object, rather than an entire page. However, LRC
uses diffs to send only the modified portions of objects. These
modifications may come from a superset of the objects sent by
REGION, but some of the objects in the superset are later us e-
ful. In cases where the prefetching effect is small, the bandwidth
advantage would unequivocally go to an object protocol that
employed some form of diffing, such as Midway. As expected,
the object protocol sent far more discrete messages than the
page-based protocol.

Spatial locality has a large impact on both communication
requirements and overall performance. Average performance
improves by 25% as page size increases from 512 to 8k bytes.
Remote misses decrease by 83%, while total data transferred
remains roughly the same. Table 3.3 shows that the reason for
the lack of increase in data traffic is that a large percentage of
prefetched data is useful, and hence would have would be
faulted across later anyway.

Beyond a simple comparison of two protocols, this paper has
identified the major performance advantages of each style of
protocol. For the object approach, the major advantages are the
combination of data and synchronization into single messages,
and the potential bandwidth advantages if complete objects are
not sent. For the page-based approach, the clear win is reduced
message traffic because of data that is effectively prefetched by
the large page sizes.

However, these advantages can be combined. Various studies
have shown that page-based algorithms can use heuristics to
mimic the update characteristics of the object approach by pr e-
dicting future accesses. The difference is that the heuristics do
not always predict correctly, leading to lost opportunities to
combine messages, and wasted bandwidth when unneeded data
is sent.

The prefetch effect is not necessarily limited to data. Opt i-
mistic synchronization acquisition could potentially improve
performance in page-based systems as well.

As discussed in Section 3.3.6, region aggregation could be
performed for object-based protocols. This is demonstrated by
our simple experiment in aggregating regions, in which we i m-
proved performance by 36% on one application by making our
unit of consistency a group of ten regions. Region-based proto-
cols require explicit associations to be made between data and
synchronization. Hence, the underlying DSM can not blithely
change region sizes without potentially violating assumptions
made by the programmer. Any such violation could potentially
cause deadlocks. However, the underlying system could make
tentative acquisitions of “nearby” data. Correct region applic a-
tions should not deadlock under this discipline as long as tent a-
tively acquired regions are immediately released upon request.
We will be exploring these ideas in future work.
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