

Support for Speculative Update Propagation and Mobility in Deno

 Uğur Çetintemel

Dept. of Computer Science
University of Maryland

ugur@cs.umd.edu

Peter J. Keleher
Dept. of Computer Science

University of Maryland
keleher@cs.umd.edu

Michael J. Franklin
Computer Science Divison, EECS
University of California, Berkeley

franklin@cs.berkeley.edu

Abstract

This paper presents the replication framework of Deno,
an object replication system specifically designed for
mobile and weakly-connected environments. Deno uses
weighted voting for availability and pair-wise, epidemic
information flow for flexibility. This combination allows
the protocols to operate with less than full connectivity,
to easily adapt to changes in group membership, and to
make few assumptions about the underlying network
topology. Deno has been implemented and runs on top of
Linux and Win32 platforms. We use the Deno prototype
to characterize the performance of two versions of
Deno's protocol. The first version enables globally
serializable execution of update transactions. The second
supports a weaker consistency level that still guarantees
transactionally-consistent access to replicated data. We
demonstrate that the incremental cost of providing global
serializability is low, and that speculative dissemination
of updates can significantly improve commit
performance.

1 Introduction
This paper describes the design, implementation, and
performance of Deno, a system that supports object
replication in a transactional framework for mobile and
weakly-connected environments. Deno�s system model is
illustrated in Figure 1. One or more clients connect to
each peer server, which communicates through pair-wise
information exchanges. The servers are not necessarily
ever fully connected.

Deno�s underlying protocols are based on an
asynchronous protocol called bounded weighted voting
[16]. Asynchronous solutions for managing replicated
data [5, 12, 15, 17] have a number of advantages over
traditional synchronous replication protocols in large-
scale, mobile, and weakly-connected environments. They
can operate with less than full connectivity, easily adapt
to frequent changes in group membership, and make few
demands on the underlying network topology. However,
this functionality comes at a price: asynchronous
solutions are generally either slow or require
reconciliation, or have low availability because they rely
on primary-copy schemes [20].

The focus of this paper is a new decentralized,
asynchronous replica management protocol that
addresses these concerns. The protocol retains the
advantages of current asynchronous protocols, but
generally performs better, has fewer connectivity
requirements, and higher availability. No server ever
needs to have complete knowledge of group membership,
and a given server only needs to be in intermittent contact
with at least one other server to take full part in the
voting and commitment process. As such, the protocol is
highly suited for environments with weak connectivity.

The protocol�s strengths result from a combination of
weighted voting and epidemic information flow [9], a
process where information flows pair-wise through the
system like a disease passing from one host to the next.
The protocol is completely decentralized. There is no
primary server that owns an item or serializes the updates
to that item (as in Bayou [21]). Any server can create
new object replicas, and servers need only be able to
communicate with a minimum of one other server at a
time in order to make progress. Instead of synchronously
assembling quorums, which has been extensively
addressed by previous work (e.g., [11, 14, 22]), votes are
cast and disseminated among system servers
asynchronously through pair-wise propagation. Any
server can commit or abort any transaction unilaterally,
and all servers eventually reach the same decisions.

The use of voting allows the system to have higher
availability than primary-copy protocols. The use of
weighted voting allows implementations to improve
performance by adapting currency distributions to site
availabilities, update activity, or other relevant
characteristics [6]. Each server has a specific amount of
currency, and the total currency in the system is fixed at a
known value. The advantage of a static total is that
servers can determine when a plurality or majority of the
votes have been accumulated without complete
knowledge of group membership. This last attribute is
key in dynamic, wide-area environments because it
allows the protocol to operate in a completely
decentralized fashion, eliminating performance
bottlenecks and single points of failure.

The use of epidemic protocols divorces protocol
requirements from communication requirements. First, an

epidemic algorithm only requires protocol information to
move throughout the system eventually. The lack of hard
deadlines and connectivity requirements is ideally suited
to mobile environments, where individual nodes are
routinely disconnected. Second, epidemic protocols
remove reliance on network topology. Synchronization
partners in epidemic protocols can be chosen randomly,
eliminating the single point of failures that occur with
more structured communication patterns such as
spanning trees.

Our performance study is based on the Deno
prototype. The basic Deno architecture has been
implemented and runs on top of Linux and Win32
platforms. The performance data yielded three main
findings. The overriding motivation for Deno�s protocols
was to be able to make progress in weakly-connected
environments. Protocols designed for such environments
must make a number of tradeoffs that achieve availability
at the possible expense of performance. Our first finding
was that this performance impact was less than expected.
On average, Deno servers learn of transaction commits
just as fast as a much less available/reliable primary-copy
protocol.
Our second finding was that support for global
serializability is relatively inexpensive in this
environment. One of our protocols implements a form of
weak consistency [4, 10], where update transactions are
serializable and queries always access transactionally-
consistent database state. While this is sufficient for
many applications, we also have a second variant that
supports globally serializable executions. Under both
protocols, read-only transactions execute entirely at the
local server, and do not require network communication.

Finally, we show that disseminating updates and
protocol-specific information speculatively can
significantly improve the performance of protocols based
on epidemic or similar communication mechanisms.

This paper extends our prior work [6, 16], which
defined consistency for only single replicated objects,
with support for multi-item transactions, serializability,

and speculative information propagation, and with
experimental evaluation on a prototype system.

The rest of this paper is structured as follows. Section
2 describes the Deno architecture and Section 3 describes
Deno�s decentralized replication protocols. Section 4
describes Deno�s support for mobility, and Section 5
presents the results of our performance study. Finally,
Section 6 briefly describes related work, and Section 7
concludes.

2 Deno architecture
We now briefly describe the architecture of the Deno
object replication system. The basic Deno API supports
operations for creating objects, creating and deleting
object replicas, and performing reads and writes on the
shared objects in a transactional framework.

Figure 2 illustrates the basic Deno server architecture.
The Server Manager is in charge of coordinating the
activities of the various components, and handling client
requests by implementing the Deno API. The
Consistency Controller implements the decentralized
voting protocols and maintains a vote pool that
summarizes the votes known to the server. The Synch
Controller implements efficient synchronization sessions
with other Deno servers by maintaining version vectors
that compactly summarize the events of interests. The
Trans Manager handles the local execution of
transactions. It maintains a transaction pool that contains
all active transactions known to the server. The Storage
Manager provides access to the object store that stores
the current committed versions of all locally replicated
objects. The object store is currently implemented as a
simple in-memory database.

The current prototype runs on top of Linux and Win32
platforms. All communication is made on top of UDP/IP.
Deno consists of ~15,000 lines of multi-threaded C++
code, and has a footprint of ~200KB.
3 Decentralized replication protocols
Before delving into the fine detail, we give a quick
overview of the life of a Deno transaction (Figure 3). A

serverserver
APIAPI

pair
-w

ise
 sy

nc.
Transactional
multi-object
read/writes

vote a
nd tra

ns. r
eco

rds

clientclient
serverserver

APIAPI

serverserver
APIAPI

serverserver
APIAPI

serverserver
APIAPI

clientclient clientclientclientclient

Figure 1: Basic Deno system model

Object
Store

(in memory)

Transaction Pool Vote Sets

Network

Deno API

Server Manager

Storage Manager Synch ControllerTrans Manager Consistency Controller

Commit log Version vectors

Figure 2: Basic Deno architecture

transaction is submitted by a client to any server, which
executes it locally. Upon completion, the transaction
either blocks (if the local server has seen a conflicting
transaction) or becomes a candidate � meaning that the
update can become visible to other servers. Candidates
are voted on, and are eventually either committed (if they
corner a plurality of the total system currency), or
aborted.
3.1 Providing weak consistency: base protocol
Transaction model. A transaction consists of a sequence
of read and write operations on replicated data items. A
transaction reads a set of read items, and updates a subset
of the read items called update items. Current values are
tracked by associating a version number with each
database item. The items in the local copy of the database
are modified, and their version numbers incremented,
only when update transactions commit.

We distinguish between queries (i.e., read-only
transactions) and update transactions. Both types of
transactions execute entirely locally. However, queries
are light weight in that a query can commit immediately
after it successfully finishes its execution. Update
transactions, on the other hand, must participate in a
distributed commitment process after finishing execution.

Each server maintains an active transaction list that
contains active transactions; i.e., transactions that are
being executed. While a transaction is executing, it
constructs a transaction record that summarizes the
transaction�s execution state. When an active update
transaction successfully completes its execution, it takes
one of the following two paths: (1) the transaction can
either become a candidate transaction at its local server
and participate in a distributed voting process that
determines whether it commits or aborts; or (2) the
transaction blocks and waits for the termination of other
previous transactions before becoming a candidate. The
blocked transactions are later reconsidered for becoming
candidates.
Voting. We define Vi as the set of all votes seen by server
si. A vote, v∈ Vi, is a 4-tuple (voter, trans, curr, tstamp)
where:
• v.voter denotes the server that casts the vote,
• v.trans denotes the transaction the vote is cast for,

• v.curr denotes the amount of currency v.voter voted
for v.trans,

• v.tstamp is the value of v.voter�s local timestamp,
which is incremented each time the server casts a vote.
Two transactions are said to conflict if (1) their

common read items have the same version numbers, and
(2) at least one of the transaction�s read items overlaps
with the other�s update items.

A server, si, votes for a transaction by creating a vote,
v, assigning a currency value to v, and inserting it into Vi.
The currency value for a vote can be set in two distinct
ways based on the state of the vote set. Server si votes
with its full currency for transaction ti if si has not already
voted for a conflicting candidate transaction. Such a vote
is called a yes vote and is an indication of the support of
the server for the corresponding transaction. Otherwise, si
votes with 0.0 currency, in which case the vote is called a
no vote.

We now describe the voting process from the
perspective of a single server. Each server si maintains
the following major data structures: (1) a set of votes, Vi;
(2) a list of candidate transactions, Ci, consisting of those
update transactions that are known to si, have finished
execution either locally or remotely, but have yet to be
either committed or aborted at si; (3) a list of blocked
transactions, Bi, consisting of locally completed
transactions waiting to become candidates; and (4) a
commit log containing an ordered list of committed
transaction records.

A server may create a vote for a candidate or locally
completed transaction that does not conflict with any
other candidate transaction for which the server has also
voted. If the server votes for a blocked transaction, the
transaction becomes a candidate transaction and is moved
from the blocked list to the candidate list. Once created,
votes may not be retracted. As explained below, a
transaction t commits at si when it is guaranteed that no
conflicting transaction can obtain more votes.
Transactions can be committed even without knowledge
of complete group membership because the total amount
of currency in the system is always 1.0. The protocol
guarantees that all servers eventually reach the same
commit decisions.
Voting rule: Server si considers voting for a transaction in
the following three cases:

r e a d - o n l y ?
c o n f l i c t i n g
c a n d i d a t e ? b l o c k

o b s o l e t e ?c o m m i t

y e s

n o

n o
a b o r t

y e s

n o
y e s

t i s a c t i v et i s a c t i v e

t i s b l o c k e dt i s b l o c k e d

t i s a c a n d i d a t et i s a c a n d i d a t e

b e c o m e
c a n d i d a t ev o t i n gp l u r a l i t y ?

a b o r t

c o m m i t
y e s

n o

o b s o l e t e ?

a b o r t

y e s

 tt e x e c u t e o b s o l e t e ? f i n i s h

a b o r t
y e s

n o

n o

Figure 3: A transaction's life

1. When si learns about a new candidate transaction t
after synchronizing with another server; si votes yes
for t if si has not already voted for a conflicting
transaction; otherwise, si votes no.

2. When si commits or aborts a candidate transaction;
si considers all transactions t in the blocked list (i.e.,
all transactions waiting to become candidates) in
insertion order. For any such transaction that does
not conflict with an existing candidate transaction; si
votes yes.

3. When si completes the execution of a local
transaction t; if there is no candidate transaction that
conflicts with t, si votes yes for t and inserts t into its
candidate list, Ci. Otherwise, si blocks t and inserts t
into its blocked list, Bi.

There are two important implications of the cases
stated above. First, there cannot exist yes votes from the
same server for conflicting transactions. Second, locally
completed transactions are blocked until the termination
of conflicting candidate transactions.
Update commitment: Given a server si, and its vote set Vi,
we compute the sum of votes cast for a transaction t as

() .votes t v curr=∑ ,
where v∈ Vi, and v.trans=t, and the unknown votes of a
transaction t as

() 1.0 .unknown t s curr= −∑ ,
where s is a server that already voted yes or no for t, and
s.curr is the currency held by s.

In other words, unknown(t) is essentially the sum of
the currencies of those servers whose votes for
transaction t are not yet available. We now define the
commit rule that si uses to decide which candidate
transactions to terminate (i.e., commit or abort) on the
basis of local information. The fundamental idea is to
commit a transaction when it is guaranteed that no other
conflicting transaction can gather more votes.
Commit rule. A transaction t∈ Ci commits when, ∀ t′∈ Ci
such that t′ and t conflict:

() () ()votes t votes t unknown t′> +
The commit rule states that candidate transaction t can
commit if it gathers the plurality of votes. The rule
enforces mutual exclusion by ensuring that no other
conflicting transaction, which may or may not be known
to server si, can gather more votes. Note that ties between
transactions having the same amount of votes can be
broken using a simple deterministic comparison between
the indices of the servers that created the transactions.

When a candidate transaction t commits at server si, si
incorporates the effects of t into its database by installing
the new values of the update items of t (available from t�s
transaction record), and incrementing the version
numbers of the local copies of those items. Finally, the
transaction record of t is appended to the commit log.
Note that servers must eventually garbage-collect their
commit logs, as otherwise these logs will grow
indefinitely.

Abort rule. All active and candidate transactions whose
read items are modified are said to become obsolete and
are aborted. Additionally, commitment of a transaction
causes all votes cast for an obsolete transaction to be
discarded.
Synchronization. A pair-wise synchronization session
essentially involves the propagation of (1) committed
updates, (2) candidate transactions, and (3) votes that are
known to one server and unknown to the other.

In Deno, synchronization is controlled via version
vectors [18]. Each server si maintains an n-element
vector, vvi, where n is the number of servers, which
describes the number of events of each other server seen
by si. Element vvi[j] is a scalar count of the number of j�s
events that have been seen at si. There are three types of
events of interest: transaction commits, transaction
promotions, and votes. A commit event is created
whenever the local server commits a transaction. A
promotion event is created whenever a transaction
becomes a candidate on the server where it executed. A
vote event is created whenever a vote is cast.

 In more detail, server si maintains a serial order,
called local ordering, on all local commits, promotions
and votes. We denote the jth such event as j

ie . As
information about events is always propagated in local
order, if si�s version vector is vvi, si has seen all events
1
je � []v v ji

je , for all j = 1�n.
Synchronization is then straightforward. We here

assume a unidirectional pull synchronization, although
other modes are possible [9, 16]. When si pulls
information from sj, the following actions take place:
1. Server si sends vvi to sj.
2. Server sj responds with all events l

ke s.t.
[] and []i jl vv k l vv k> ≤ , for all k = 1�n.

3. Server si incorporates the new events in the same
order that they originally occurred by processing
new commitments, candidates, and votes; applying
the voting rule, the commit rule, and the abort rule
for all relevant transactions; and updating vvi to the
pair-wise maximum of vvi and vvj.

Consistency issues. The base Deno protocol described
above supports a form of weak consistency [3, 4, 10]
where each query serializes with respect to all update
transactions, but possibly not with other queries. More
specifically, the protocol ensures globally serializable
execution of update transactions alone, i.e., no update
transaction cycles in the serialization graph. However,
the protocol allows multiple-query cycles, i.e., cycles
involving multiple queries and multiple update
transactions. In other words, each query observes a serial
order of update transactions, which is not necessarily the
same order observed by other queries. This form of weak
consistency does ensure that queries always observe
transactionally-consistent database states. Furthermore,
as proved in [7], no local or global deadlocks are

possible. A more detailed discussion including
correctness proofs, and illustrative examples can be
found in [7].
3.2 Providing serializability: extended protocol
The base protocol ensures that queries always access
transactionally-consistent data, and that update
transactions are globally serialized with respect to each
other. However, the base protocol does not serialize
update transactions with respect to all queries. We now
describe an extension of the base protocol that provides
strong consistency [3, 4, 10], where each query is
serialized with respect to both other queries and update
transactions, thereby guaranteeing globally-serializable
executions. This form of consistency is characterized by
an acyclic serialization graph [3], prohibiting both update
transaction cycles and multi-query cycles.

The base protocol fails to provide strong consistency
because non-conflicting update transactions are not
necessarily globally serialized with respect to each other.
We address this problem by forcing all update
transactions to commit in the same order at all servers by
providing mutual exclusion among all transactions, rather
than just among conflicting transactions as the base
protocol does. We accomplish this by modifying the
voting process such that each server votes yes for all
candidate transactions (whether or not they conflict), but
specifies a total order on all of its votes (using
timestamps). The commit process is then restricted so
that only the top transactions, which are the candidate
transactions that come first in any server�s ordering, are
considered for commitment. The details of the strong-
consistency protocol and the corresponding correctness
proofs can be found in [7].

4 Support for mobility
For completeness, we briefly discuss some of Deno�s
mobility-related features:
Proxies. Deno allows servers to specify proxies to
represent them during planned disconnections (during an
airplane trip, for example) by voting in their place [6,
16].
Application-specific commutativity information.
Applications running on top of dis- and weakly-
connected environments and systems need be designed to
minimize conflicts among updates in order to avoid high
abort rates [12]. One approach is to have applications
export domain-specific semantic information that can be

used to modify the application�s consistency
requirements [21]. Deno�s extended protocol supports
commutativity procedures to exploit application-specific
commutativity information. A commutativity procedure
is a simple query over the database specifying an
acceptance criterion [12]. If the query is satisfied, the
transaction is considered to be valid with respect to the
current state of the database. Deno executes a
transaction�s commutativity procedure (if it exists) if and
when the transaction becomes obsolete. If the acceptance
criterion is satisfied, the transaction is not aborted. Note
that the use of commutativity procedures does not affect
the consistency guarantees.
Light-weight, dynamic currency management. The
system initially gives all currency to the server that
created the objects. Other servers obtain currency along
with their initial copies of the data. Subsequent peer-to-
peer currency exchanges allow the system to approach to
any global target distribution exponentially fast [6].

5 Performance evaluation
This section describes the performance of the Deno
prototype. Note that the primary advantage gained in
combining voting with epidemic information flow is in
increased availability, which we do not discuss in this
paper.
5.1 Experimental environment
We performed the experiments on a cluster of 15 Linux
machines (each with two 400 MHz Pentium II�s, and 256
MBytes of memory), each running a single copy of the
Deno server. The machines were connected via a
100Mbps Ethernet network and the servers
communicated using UDP packets. We used a small
database consisting of 100 data objects of size 20K each.
Each server periodically initiated a synchronization
session (with a given synchronization period) by sending
a pull request to another randomly selected server.

Each server generated transactions according to a
global transaction rate (specified relative to a
synchronization period). Each transaction accessed and
modified up to five data items. Since our focus is on the
performance of the global update consistency protocols,
we did not model any read-only transactions. All objects
are replicated at all servers and currency is uniformly
distributed across servers in all the experiments. The
results presented in the following graphs are the average
of five independent runs of executing 1000 transactions
in the system. The main parameters and settings used in
the experiments are summarized in Table 1. Our
performance evaluation concentrates on relative
performance by comparing representative protocols.

We evaluate two versions of Deno�s protocol, Deno-
weak (Section 3.1), and Deno-strong (Section 3.2).
Additionally, we investigate two representative epidemic
replication schemes from the literature. The first scheme,
primary, is an epidemic primary-copy scheme that uses
a specialized primary server to serialize the updates,

Parameter Description Setting
Synch Period
 (SP)

Mean synchronization period
(uniform)

0 � 5
(secs)

Transaction Rate
(TR)

Mean transaction generation rate
(uniform)

0 � 25
(trans/SP)

Num Servers Number of Deno servers 3 � 15
Trans Size Number of items updated by a trans.

(uniform)
0 � 5

Commutativity
Ratio

The probability that a trans. is
acceptable on a given db state

0 � 1

Table 1: Primary experimental parameters and
settings

while propagating the updates using epidemic flow. This
protocol is similar to that used in Bayou [21]. Note that
primary-copy protocols trade availability for a presumed
advantage in performance.

The second scheme, write-all, is an epidemic
�Read-One, Write-All� (ROWA) [3] protocol, where
servers can only commit transactions after ensuring that
all other servers are ready to commit. Therefore, a
transaction has to be propagated to all the servers before
it can be committed. Furthermore, when a server
observes conflicting transactions, it has to abort all of
those transactions to ensure global consistency. This
protocol is similar to that proposed by Agrawal et al. [2].
5.2 Commit delays
Unlike traditional synchronous environments where
transactions are committed synchronously at all servers,
commit times typically exhibit wide variability in
asynchronous systems. The time at which the first server
commits a transaction is, thus, not necessarily the
quantity that best predicts application performance with
epidemic information propagation.

Figure 4 presents commit delays by plotting the
number of servers that committed the transaction as time
progresses for primary, write-all, and Deno-
weak, when there is no update contention (for 15
servers). Although the primary server commits the
transaction quickly, this information propagates to other
servers relatively slowly. This is because all other servers
must learn of the commitment, directly or indirectly,
from the primary server. With the Deno protocols, on the
other hand, distinct servers may either learn the
commitment from other servers (as in the case of
primary), or commit the transaction independently. In
the presented example, for instance, about seven servers
(on the average) committed the transaction
independently. The delay between the first and
subsequent commits is thus quite small, as revealed by
the high slope of the Deno-weak curve in Figure 4.

One important implication of this result is that the
performance penalty of using voting rather than a
primary-copy approach is not as large as commonly

assumed in the kinds of environments we address. The
results for Deno-strong (not shown) are virtually
similar to those for Deno-weak, because there is no
contention, and thus no conflicts.
5.3 Contention effects
The previous subsection focused on the speed of
transaction commits when there is no update contention.
Figure 5 presents the performance results of the protocols
under update contention. More specifically, the figure
shows the commit percentage (i.e., the percentage of
initiated transactions that are committed) results for
different levels of transaction generation rate (for 15
servers) for all protocols.

The figure shows that all approaches suffer from the
increased transaction rate due to the global update
consistency requirement that only one out of a set of
conflicting transactions can commit. Under very small
transaction rates (TR in [0.0-1.0]), all protocols perform
fairly well, achieving commit percentages of around
100%. With increasing transaction rates, however,
commit percentages drop for all protocols significantly.
Overall, primary achieves the best commit percentage,
followed closely by the weak and strong versions of
Deno. The difference between the two versions of Deno
as well as the difference between Deno protocols and
primary over the whole range shown is small (within
absolute 5%). The performance of write-all is
significantly lower than the rest of the protocols. In fact,
at (and beyond) a transaction rate of 25 (not shown),
write-all does not commit any transactions. The
main reason for this difference is that write-all has
to abort all conflicting transactions, as it is not equipped
with any mechanism to globally single out a transaction
to commit (out of a set of conflicting transactions). The
other protocols continue to commit transactions
regardless of the transaction rate (not shown).

The most interesting result from this series of
experiments is that the base Deno protocol did not appear
to have any significant performance advantage of the
extended version. The difference between the commit
delays of the two with little contention appears is up to an

1

3

5

7

9

11

13

15

4 6 8 10 12 14 16 18 20 22 24

Time (secs)

N
um

be
r o

f s
er

ve
rs

primary write-all Deno-weak

Figure 4: Number of servers that committed the
transaction as time progresses (15 servers, TR=0.01,

SP=5.0)

0

10

20

30

40

50

60

70

80

90

100

0.01 0.1 1 5 10 15 20

Transaction rate (trans/synch period)

C
om

m
it

pe
rc

en
ta

ge

primary write-all Deno-weak Deno-strong

Figure 5: Commit percentages

(15 servers, SP=5.0)

average of 10% with reasonable contention. The case
with contention was where we expected the most
degradation in performance, as the requirement of a
global ordering effectively increases the number of
conflicts. This increase in conflicts, in turn, forces more
currency to be inspected before a winner of a given
election can be determined. For example, we only need
>50% of the currency in order to determine the winner of
an election if there are no conflicting transactions, but we
may need all of the currency in order to decide between
two or more. However, the increase in required currency
is offset by an increase in concurrency. Therefore, update
contention does not necessarily increase commit delays.
5.4 Speculative voting and update propagation
Recall from Section 3 that a transaction that completes its
execution is blocked until the local server has decided
whether to commit or abort all conflicting candidate
transactions. Blocked transactions can proceed and
participate in the global voting protocol only after the
conflicting transactions are terminated.

We now propose an optimistic alternative that skips
the blocking phase by having the servers immediately
vote for all transactions as soon as they finish their local
execution. These transactions immediately become
candidates to be added to subsequent synchronization
sessions. The advantage of such speculative voting is that
transactions can make progress, in terms of gathering
votes, while the system is still deciding the fate of prior
transactions. Speculative votes are most useful when
previous conflicting transactions are aborted. As shown
below, the advantage conferred by this technique is larger
when there are commuting updates in the system. The
cost of speculation is that some transactions that will
eventually get aborted are propagated through the system
unnecessarily, resulting in a waste of communication
bandwidth.

 Figure 6 examines the benefits of speculative update
propagation and voting for varying degrees of
commutativity by showing the performance of
speculative (Deno-spec) and non-speculative (Deno-
nonspec) versions of Deno-strong (a description
of the modifications required to support speculation can
be found in [7]). Somewhat non-intuitively, larger

commutativity ratios result in larger commit delays for
the non-speculative Deno. The reason is that increasing
commutativity results in fewer aborted transactions,
which in turn increases contention for those transactions
that are yet to be terminated. By contrast, Deno-spec�s
commit delay is largely constant across all commutativity
ratios. Speculative voting confers a performance
advantage of about 15% even with a commutativity ratio
of 0.0 −− the default case where no transactions
commute. The gap increases with commutativity ratio
until Deno-nonspec�s commit delay is more than
twice Deno-spec�s at a ratio of 1.0.

The benefits of speculation come at the expense of
propagating more transactions and votes. To this end, we
investigate the relative bandwidth utilizations of the
protocols in Figure 7, which shows the amount of
information sent across all servers (in KBytes) per
committed transaction for Deno-spec and Deno-
nonspec. For low commutativity ratios (i.e., up to .1),
Deno-spec propagates about 4-6% more information
per committed transaction. Beyond a commutativity ratio
of .2, however, the speculative protocol sends less
information than the non-speculative version, with the
difference increasing as the commutativity increases. At a
commutativity ratio of 1.0, Deno-spec propagates
about 16% less information per committed transaction.
To summarize, the speculative version not only decreases
average commit delays, but it also decreases bandwidth
requirements per committed transaction.

6 Related work
The problem of consistent access to replicated data has
long been studied in many contexts and a wide variety of
solutions have been proposed, e.g., [1, 3, 8, 10, 20, 22].
Due to space limitations, we restrict our attention to
asynchronous update-anywhere approaches that utilize
the epidemic model [2, 9, 15, 19, 21]. Many epidemic
systems take an optimistic approach and use
reconciliation-based protocols that are only viable in non-
transactional single-item domains such as file systems.
These approaches only ensure that all copies of a single
item eventually converge to the same value, and therefore
are not safe for environments requiring transactional
semantics.

0

4

8

12

16

20

24

28

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Commutativity ratio

co
m

m
it

de
la

y
(s

ec
s)

Deno-spec Deno-nonspec

Figure 6: Speculation effects on commit delay

(15 servers, SP=5.0 secs)

40

60

80

100

120

140

160

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Commutativity ratio

ba
nd

w
id

th
 u

sa
ge

 (K
by

te
s/

co
m

m
itt

ed
 tr

an
s)

Deno-spec Deno-nonspec

Figure 7: Speculation effects on bandwidth usage

(15 servers, SP=5.0 secs)

Bayou [21] takes a more pessimistic approach and
ensures that all committed updates are serialized in the
same order at all servers using a primary-copy scheme.
More recently, Agrawal et al. [2] described a pessimistic
ROWA [3] approach that ensures strong consistency and
serializability. Our protocols differ from these protocols
primarily in using a novel combination of weighted-
voting and epidemic information flow to improve
availability and performance.

Independent of our research, Holliday et al.[13]
proposed an epidemic quorum-based approach that
provides serializability as our extended protocol.
Holliday�s work assumes a more traditional replicated
database environment and static currencies, whereas our
emphasis is on making progress under incomplete system
information in dynamic environments. In addition, we
also describe a weak-consistency version of the protocol,
and discuss how to propagate updates speculatively.

7 Conclusions
We have presented the design, implementation, and
evaluation of Deno, a highly-available object-replication
system that supports transactional semantics in mobile
and weakly-connected environments. Deno�s consistency
protocols are based on an asynchronous weighted-voting
approach implemented through epidemic information
flow. Our voting approach achieves higher availability
than primary-copy approaches [21], and higher
availability and performance than ROWA approaches
[2].

Our base protocol ensures weakly-consistent
executions where update transactions are serializable and
queries always access transactionally-consistent database
states. Our extended protocol provides strong consistency
and globally serializable executions by providing a
unique global commit order on all update transactions.
Both protocols allow queries to be executed and
committed entirely locally, and without blocking.
Furthermore, neither protocol suffers from local or global
deadlocks.

Our detailed performance study revealed several
interesting results. First, the presumed performance
advantage of the primary-copy approach over a uniform
voting approach is not as significant with asynchronous
epidemic protocols. The reason is that epidemic voting
protocols allow servers to independently arrive at the
same conclusions, whereas primary-copy schemes
require all commit information to emanate from a single,
distinguished server. Second, our extended protocol
performs nearly as well as the base protocol, while
providing significantly stronger semantics. The result is
increased functionality at essentially little cost in
performance. Finally, speculative update propagation and
voting provides a considerable performance advantage
for protocols that use pair-wise communication, and this
advantage is magnified when application-specific
commutativity information is used to decrease the rate of
transaction aborts.

References
[1] D. Agrawal and A. E. Abbadi. An Efficient and Fault-

Tolerant Solution for Distributed Mutual Exclusion. ACM
Transactions on Computing Systems, 9(1):1-20, 1991.

[2] D. Agrawal, A. E. Abbadi, and R. Steinke. Epidemic
Algorithms in Replicated Databases. In Proc. 16th ACM
Symp. on Principles of Database Systems (PODS), Tucson,
May 1997.

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodman,
Concurrency Control and Recovery in Database Systems:
Addison-Wesley, 1987.

[4] P. Bober and M. Carey. Multiversion Query Locking. In
Proc. 18th Conf. on Very Large Databases (VLDB),
Vancouver, 1992.

[5] Y. Breitbart, R. Komondoor, R. Rastogi, S. Seshadri, and A.
Silbershatz. Update Propagation Protocols for Replicated
Databases. In Proc. ACM Intl. Conf. on Management of
Data (SIGMOD), Philadelphia, 1999.

[6] U. Cetintemel and P. J. Keleher. Light-Weight Currency
Management Mechanisms in Deno. In Proc. 10th IEEE
Workshop on Research Issues in Data Engineering (RIDE),
San Diego, February 2000.

[7] U. Cetintemel, P. J. Keleher, and M. J. Franklin. Support for
Speculative Update Propagation and Mobility in Deno.
University of Maryland, UMIACS-TR-99-70, 1999.

[8] S. Davidson, H. Garcia-Molina, and D. Skeen. Consistency
in a Partitioned Network: A Survey. ACM Computing
Surveys, 17(3):341-370, 1985.

[9] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S.
Shenker, H. Sturgis, D. Swinehart, and D. Terry. Epidemic
Algorithms for Replicated Database Maintenance. In Proc.
6th ACM Symp. on Principles of Distributed Computing
(PODC), Vancouver, 1987.

[10] H. Garcia-Molina and G. Wiederhold. Read-Only
Transactions in a Distributed Database System. ACM
Transactions on Database Systems, 7(2):209-234, June
1982.

[11] D. K. Gifford. Weighted Voting for Replicated Data. In
Proc. 7th ACM Symp. on Operating Systems Principles
(SOSP), Pacific Grove, 1979.

[12] J. Gray, P. Helland, P. O'Neil, and D. Shasha. The Dangers
of Replication and a Solution. In Proc. ACM Intl. Conf. on
Management of Data (SIGMOD), Montreal, June 1996.

[13] J. Holliday, R. Steinke, D. Agrawal, and A. E. Abbadi.
Epidemic Quorums for Managing Replicated Data. In Proc.
19th IEEE Intl. Performance, Computing, and
Communications Conf. (IPCCC), Phoenix, 2000.

[14] S. Jajodia and D. Mutchler. Dynamic Voting Algorithms for
Maintaining the Consistency of a Replicated Database.
ACM Transactions on Database Systems, 15(2):230-280,
1990.

[15] L. Kawell, S. Beckhardt, T. Halvorsen, R. Ozie, and L.
Greif. Replicated Document Management in a Group
Communication System. In Proc. Conf. on Computer
Supported Cooperative Work, 1988.

[16] P. J. Keleher. Decentralized Replicated-Object Protocols. In
Proc. 18th ACM Symp. on Principles of Distributed
Computing (PODC), Atlanta, May 1999.

[17] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing
High Availability Using Lazy Replication. ACM
Transactions on Computing Systems, 10(4):360-391,
November 1992.

[18] F. Mattern. Virtual Time and Global States of Distributed
Systems. In Parallel and Distributed Algorithms,
Amsterdam, 1989.

[19] T. W. Page, R. G. Guy, J. S. Heidemann, D. Ratner, P.
Reiher, A. Goel, G. H. Kuenning, and G. J. Popek.
Perspectives on Optimistically Replicated Peer-to-Peer
Filing. Software--Practice and Experience, 28(2):155-180,
February 1998.

[20] M. Stonebraker. Concurrency control and consistency of
multiple copies of data in distributed INGRES. IEEE
Transactions on Software Engineering, SE-5(3):188-194,
May 1979.

[21] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M.
J. Spreitzer, and C. H. Hauser. Managing Update Conflicts
in a Weakly Connected Replicated Storage System. In Proc.
ACM Symp. on Operating Systems Principles (SOSP), 1995.

[22] R. H. Thomas. A Majority Consensus Approach to
Concurrency Control for Multiple Copy Databases. ACM
Transactions on Database Systems, 4(2):180-209, 1979.

