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Abstract 

This paper discusses the implementation and perform-
ance of bounded voting: a new object replication proto-
col designed for use in mobile and weakly-connected 
environments. We show that the protocol eliminates 
several restrictions of previous work, such as the need 
for (1) strong or complete connectivity, (2) complete 
knowledge of system membership, and (3) low update 
rates. The protocol implements an asynchronous, 
weighted-voting scheme via epidemic information flow, 
and commits updates in an entirely decentralized fash-
ion. A proxy mechanism is used to enable transparent 
handling of planned disconnections. 
We use a detailed simulation study to characterize the 
performance of bounded voting under a variety of loads 
and environment, and to compare it to another decen-
tralized epidemic protocol. We further investigate the 
performance impact of the proxy mechanism. 

 
 

1. Introduction 

Weighted-voting schemes [10, 13, 18] have long 
been used in solving distributed consensus problems. 
Epidemic algorithms [2, 8, 20, 21] have long been used 
in environments with weak connectivity or uncertain 
topology. This paper investigates the use of a combina-
tion of these two techniques in supporting object repli-
cation in mobile and weakly-connected environments.  

Recent advances in hardware technologies have 
made mobile computing feasible and practical. Mobile 
device usage is increasing as the devices become 
smaller, cheaper, and more powerful. Mobile users often 
carry their laptops, PDAs, and other portable devices 
wherever they go. Mobile environments differ from 
typical desktop environments in many ways, including 
power availability, resources such as CPU, memory, 
secondary storage, and, above all, in their communica-
tion behavior. Mobile systems usually lack continuous 
connectivity, and typically possess limited communica-

tion bandwidth even when they are connected. As a 
result, mobile and weakly connected operations rely 
heavily on caching and replication mechanisms in order 
to deliver good performance.  

Replication is widely used to enhance both reliability 
and performance in distributed systems. Traditional 
replication mechanisms, however, are ill-suited for mo-
bile environments [11]. Mobility and weak connectivity 
require a critical reassessment of the assumptions under-
lying traditional replication mechanisms [3]. For in-
stance, one assumption made by master-copy replication 
schemes [22] is that a single server is always available 
and accessible by the rest of the system. Clearly, such 
an assumption may become invalid in mobile environ-
ments. Server machines may be disconnected, and 
therefore inaccessible, at any given time. Furthermore, 
master-copy replication often assumes that the master 
server has complete and up-to-date knowledge of sys-
tem membership, which is difficult to obtain in a mobile 
environment. As another case in point, consider replica-
tion in traditional voting schemes. Such schemes typi-
cally work by requiring a quorum of simultaneously 
connected servers to agree on an operation prior to per-
forming it. If such a quorum cannot be established, the 
operation is aborted. However, mobile replication pro-
tocols should ideally allow progress to be made, and 
updates to be committed, even if a quorum of servers is 
not simultaneously available. Mobile replication proto-
cols should therefore be decentralized and asynchro-
nous wherever possible.  

Mobility not only requires fundamental changes in 
the protocols designed for traditional desktop environ-
ments, but it also introduces its own variants to existing 
issues. One such issue involves planned disconnections. 
A server may declare its intention to disconnect, ena-
bling the protocol to handle the disconnection more 
effectively than in traditional schemes in which the dis-
connections are detected and handled only after they 
occur [3]. The rest of the paper discusses these and 
other relevant issues, together with our approaches to 
handling them, in detail. 
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1.1. System model and features 

This paper describes the implementation and evalua-
tion of bounded voting in Deno, a decentralized object-
replication system. Bounded voting can be used to pro-
vide replicated-object support for applications in 
weakly-connected and mobile environments. Bounded 
voting is designed to support a wide variety of applica-
tions ranging from simple shared-calendars to domain-
specific databases. More specifically, the target applica-
tion domain includes all types of asynchronous collabo-
rative applications, including collaborative groupware 
(e.g., Lotus Notes [14]), mail and bibliographic data-
bases, document editing, CAD, and program develop-
ment environments for disconnected workgroups.  

Bounded voting allows the update anytime-
anywhere-anyhow replication model [11] to be used in 
order to address requirements of disconnected opera-
tion. All servers are treated as peers in their ability to 
generate updates; no server owns any object. Conse-
quently, bounded voting fundamentally differs from 
master-copy schemes like Bayou [24], which can be ill-
suited for mobile and weakly-connected environments 
[11]. 

Bounded voting allows servers to execute updates 
locally and commit them globally using a decentralized 
weighted-voting scheme. Updates and voting informa-
tion are propagated through the system asynchronously 
using an epidemic style of communication (e.g., [2, 8, 
20, 21]) that requires only pair-wise communication. 
Updates gather votes as they pass through servers. An 
update is committed only when it corners the plurality 
of votes. As a result, no other conflicting update can 
commit. Update commitment is decentralized in that 
each server independently and locally commits or aborts 
updates. However, the same updates eventually commit 
at all servers and in the same order. Decentralized 
commitment eliminates the need for synchronous multi-
site commits (e.g., two-phase or three-phase commits), 
which, again, are not well-suited for mobile and weakly-
connected environments [11]. 

Epidemic protocols have been adopted by a number 
of vendors due to increasing replication factors and the 
need for asynchronous management of replicated data in 
their products. For instance, Lotus Notes [14] is a 
widely-used commercial system that uses epidemic 
propagation. In these protocols, updates are executed at 
any single server. Asynchronously, servers communi-
cate at a convenient time to exchange information re-
garding the updates, detecting and bringing the obsolete 
copies up to date. Epidemic communication uses pair-
wise anti-entropy sessions to inform servers of the state 
of other servers. Anti-entropy sessions ensure that all 
replicas of the same object eventually converge to the 
same final state [8]. Most epidemic protocols take an 
optimistic approach for maintaining data consistency. 

These protocols allow an update to be locally committed 
immediately after it is executed. If and when a server 
detects conflicting updates, it typically resolves the con-
flict in one of two ways.  One approach involves priori-
tizing the updates based on timestamp, the server that 
initiated the update, etc. For instance, Lotus Notes em-
ploys a timestamp-based mechanism that favors the 
update having the higher timestamp value. The other 
update is simply discarded as a stale value. This ap-
proach suffers from the infamous lost update problem 
[4] where the effects of a committed update are not re-
flected in the database. The other approach for conflict 
resolution relies upon a process called reconciliation 
that attempts to merge the effects of the conflicting up-
dates. Reconciliation of committed updates is feasible 
only in restricted domains, as, for example, in file sys-
tems [16, 17]. However, reconciliations cannot be easily 
handled in the general application domain that we ad-
dress. In cases where a situation cannot be reconciled 
automatically, the protocols resort to manual reconcilia-
tion, requiring human intervention. Such a manual ap-
proach, clearly, is not scalable. Furthermore, Gray et al. 
argue that reconciliation-based systems suffer from sys-
tem delusion as those systems scale up [11]. As a result, 
these optimistic approaches lead only to a restricted 
notion of correctness, which may be sufficient only for 
some application domains. Specifically, epidemic pro-
tocol are adequate for those applications where it can be 
assumed that most updates are commutative or where 
conflicts are infrequent and can be reconciled manually 
or automatically. 

Bayou [20, 23, 24] takes a more pessimistic (i.e., 
conflict avoidance-based) approach, ensuring that all 
committed updates are eventually serialized in the same 
order at all servers using a primary-copy scheme. More 
recently, Agrawal et al. [2] proposed another pessimis-
tic approach where an update is committed only after 
the update is certified by all servers that participate in 
the protocol. When a server detects a conflict among 
updates, it aborts all the involved updates to ensure cor-
rectness. This protocol provides serializability in a 
transactional framework.  

A number of voting protocols have been proposed to 
improve availability in distributed applications [10, 13, 
18, 25]. The fundamental idea behind voting is to syn-
chronize a quorum of servers to agree on an operation 
prior to performing it. In voting schemes, conflicting 
operations imply overlapping server quorums so that 
conflicts are detected before they are performed. Uni-
form-voting schemes assign a single vote to each replica 
[25]. Weighted-voting schemes generalize uniform-
voting by assigning a non-negative weight to each rep-
lica [10]. In [15], we extended previous weighted-voting 
schemes to allow voting to take place asynchronously, 
and without complete system membership information. 
This bounded weighted-voting scheme propagates in-
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formation asynchronously through epidemic informa-
tion flow. The use of voting allows higher availability 
relative to master-copy or master-commit schemes. The 
use of epidemic information flow allows the system to 
make progress in weakly-connected environments. This 
scheme can also emulate diverse configurations through 
proper currency distribution.  For example, traditional 
dynamic voting schemes are emulated by uniform cur-
rency distributions, while a master-copy scheme is emu-
lated by allocating all currency to a single server.  

In summary, bounded voting provides the following 
features and functionalities that we deem highly desir-
able for our target environment and application domain:  

1. Tolerance for weak connectivity and in-
complete information: Our intended environ-
ment includes areas of weak and non-existent 
connectivity. Additionally, we do not assume 
that servers are fully connected. Even in the 
best of cases, individual nodes and devices 
might have direct contact with only a limited 
set of other devices. We provide support for 
arbitrary communication topologies by using a 
peer-to-peer synchronization model, that is, 
any two replicas can synchronize directly. 
Consequently, co-located or nearby machines 
can synchronize with each other quickly and 
inexpensively, which is a crucial feature in 
mobile environments. Furthermore, no server 
needs to have complete knowledge of the sys-
tem, or even of the set of servers participating 
in the protocol, which allows graceful scalabil-
ity. Updates are committed independently at 
each server through a decentralized voting pro-
tocol. 

2. Reconciliation- and compensation-free 
replica control: Epidemic algorithms com-
monly require all application updates to be 
commutative. Bounded voting can be extended 
to take advantage of commuting updates, but 
the base protocol makes no commutativity as-
sumptions. All updates to the same object are 
guaranteed to be applied in the same order on 
all replicas, thereby eliminating the lost update 
problem. Replicas eventually converge to the 
same final state. Once a server commits an up-
date, that update will never be rolled back, 
which avoids system delusion [11] and is a 
base guarantee needed by many applications. 
Secondarily, the protocol never aborts all com-
peting updates. As we will demonstrate, this al-
lows progress to be made and updates to be 
committed regardless of the update rate. 

3. Transparent handling of planned discon-
nections: Foreseeable disconnections are han-
dled transparently via proxies. Before discon-

necting, a server transfers its voting rights to 
another server. Votes for the disconnected 
server are cast by its proxy, making the discon-
nection transparent to other servers. This facil-
ity is aided by the protocol’s light-weight, dy-
namic replica management. Any replica can be 
created or retired dynamically by communicat-
ing with any other server already holding a rep-
lica.   

1.2. Contributions 

The primary contributions of this paper are threefold. 
First, we describe an asynchronous, decentralized proto-
col specifically designed for mobile and weakly-
connected environments, and show that it eliminates 
several restrictions of previous related work. Second, 
we use a detailed simulator to characterize the perform-
ance of the protocol under a variety of scenarios and 
environments, and to compare its performance to that of 
another decentralized epidemic approach. Third, we 
investigate the performance impact of the extension of 
the base protocol with a proxy mechanism that facili-
tates transparent handling of planned disconnections.  

The rest of the paper is organized as follows. Section 
2 describes the base bounded-voting scheme. Section 3 
discusses implementation issues. In particular, we dis-
cuss how to create and retire replicas, how to allocate 
and redistribute the currency, how to transparently han-
dle planned disconnections using proxies. We describe 
our experimental environment in Section 4, and charac-
terize Deno’s protocol performance in Section 5.  We 
discuss related work in Section 6, and conclude in Sec-
tion 7. 

2. Decentralized weighted voting 

We now briefly describe the bounded voting scheme. 
The details of the base protocol, along with a sketch of 
the correctness proof, appear in [15]. We assume a 
model in which the shared state consists of a set of ob-
jects replicated across multiple servers. Objects do not 
need to be replicated at all servers (i.e., selective repli-
cation) and multiple objects can be replicated at the 
same server. For simplicity of exposition, however, we 
limit our discussion to single objects that are cached at 
all servers. Our discussion is easily extended to include 
the more general case.  

Objects are modified by updates, which are issued by 
servers. Updates can be transmitted to other servers and 
are assumed to execute atomically at remote servers. 
Updates do not commit globally in one atomic phase, as 
we use pair-wise synchronization and assume poor con-
nectivity. Instead, each server independently commits 
updates on the basis of local information. However, we 
show below that if an update commits at one server, it 
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eventually commits everywhere, and in the same order 
with respect to other committed updates. 

2.1. Elections 

A clean way of thinking about update commitment is 
as a series of elections. A server is analogous to a voter, 
creating an update is analogous to a voter deciding to 
run for office, and a committed update is analogous to a 
candidate winning the election. Voters (and hence can-
didates) have indexes 0 through n-1, where n is the total 
number of voters. We use vi to refer to the voter with 
index i, and ci to refer to the candidate with index i. 
Candidates win elections by cornering a plurality of the 
votes. Each election begins with an underlying agree-
ment of the winners of all previous elections. Once an 
election is over, a new election commences. Any given 
election may have multiple candidates (logically con-
current tentative updates), and candidates from different 
elections might be alive in the system at the same time. 
In the latter case, however, uncommitted candidates for 
any but the most recent election have already lost, but 
this information has not yet made it to all voters.  

Because of the style of information flow, there is no 
centralized vote counting. Instead, each voter independ-
ently collects votes from other voters and deduces out-
comes. This method creates situations in which the cur-
rent election of distinct servers is temporarily out of 
sync. Voter vi’s current election is the election for which 
vi is collecting votes. In order to implement this proto-
col, each voter maintains three pieces of state:  

1. vi.completed: The number of elections com-
pleted locally. 

2. vi.[j]: Either the index of the candidate voted 
for by vj in vi’s current election, or ⊥ , which 
means that vi has not yet seen a vote from vj. 

The size of the array is bounded by the total 
number of voters.  

3. vi.curr [j]: The amount of currency voted by 
vj in vi’s current election or ⊥ , which means 
that vi has not yet seen a vote from vj.  

Note that although total amount of currency in any 
election is 1.0, the allocation of this currency may 
change with each election. 

 Figure 1 presents some important definitions used in 
this section. Definition 3 essentially says that a candi-
date wins with a voter if it has a majority or plurality of 
the vote. Ties are broken with a simple deterministic 
comparison between the indexes of the servers that cre-
ated the competing updates. The winner of the jth vote at 
vi is denoted vi.commit(j). When an election is won at vi, 
all votes vi[j] are reset to ⊥ . 

It follows naturally from the above definitions that 
candidates can win without all the votes being known. 
Similarly, updates can be committed by a server without 
complete knowledge of which servers have seen the 
update, or even complete knowledge of which servers 
replicate the object.  

2.2. Illustration 

Newly created updates are tentative, and may be dis-
carded without ever being committed. Tentative updates 
may or may not be visible to the application, depending 
on the type of session guarantees needed by the applica-
tion [23]. Updates are committed when servers holding a 
plurality of the object’s currency agree that they are 
acceptable. We now illustrate how the protocol works 
by two examples:  

Example 1: Figure 2(a). Objects x and y are repli-
cated at servers v1 through v4. Each server has currency 
of 0.25 for both objects. Server v1 creates a tentative 
update to x at time t0. At time t1, v1 sends information to 
v2, and at time t2, v2 sends to v3. At this point, three of 
the four replicas know of the tentative update and have 
ordered it before any other tentative updates to x. These 
replicas can commit u1,1 because they control 75% of 
the object x’s currency. However, only v3 knows this. 
Not knowing of the first election’s outcome, v4 naively 
creates a new update, u4,1 at time t3. This update will be 
aborted at t4 when v4 learns that a majority has already 
determined that u1,1 should be committed. 

Example 2: Figure 2(b) shows an example of two 
competing updates being started at time t5. Each syn-
chronizes with one other replica at t6, leading to a poten-
tial stalemate in which each competing update has 50% 
of the currency. While currency allocation schemes 
could be rigged to prevent this from occurring in the 
case of two competing updates, three or more compet-
ing updates could still lead to the same problem. The 
lexicographic tie-breaker will favor u1,2 over u4,2.                                    

 
Definition 1: Define uncommitted(vi) as: 

 
1
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v curr j
=

, s.t. vi[j] is equal to ⊥ . 

Definition 2: Define votes(vi, k) as:  
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. [ ]
n

i
j

v curr j
=

 s.t. vi[j] is equal to k. 

Definition 3: A candidate cj wins vi’s current election 
when: 
1. votes(vi, j) > 0.5, or      
2. ∀  k ≠ j, 
   (a) votes(vi, k) + uncommitted(vi) < votes(vi, j)   or    
   (b) (votes(vi, k) + uncommitted(vi)) = votes(vi, j) and (j < k)   
 

Figure 1: Definitions 
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3. Protocol implementation 

This section describes implementation issues and an 
extension to the basic protocol.  Objects are initially 
created with a total currency of 1.0, which is held by the 
creating server. A new replica can simply be created by 
sending a request to a server that already has a replica. 
The response to such requests contains both the object's 
data and some amount of currency. This amount is sub-
tracted from the currency held by the existing replica. 
The total amount of currency in the system remains 
constant during failure-free operation. A replica can be 
retired using a similar pair-wise communication in 
which the currency held by the retired replica is trans-
ferred to another replica. These mechanisms enable 
light-weight replica creation and retirement as currency 
transfers need to involve no more than two servers. 

It is also worth noting that the master-copy and vot-
ing approaches to update commitment are not necessar-
ily mutually exclusive. Currencies can be allocated in 
ways that prefer majorities containing specific replicas, 
or more than half of the currency can be retained by a 
given replica. The latter situation reduces to a master-
copy scheme. 

3.1. Currency Management 

Timely update commitment depends on being able to 
assemble a majority to vote on updates. The cost of as-
sembling a majority is highly dependent on the avail-
ability and currency distribution of the object replicas. 

We divide currency management into three parts. First, 
a target currency distribution has to be identified. Sec-
ond, an allocation strategy, which specifies how cur-
rency is handed out when replicas are first created, must 
be defined. Finally, there must be a policy specifying 
what currency exchanges are allowed at runtime, if any.  

In general, the best currency distribution depends on 
application semantics, expected availability of individ-
ual servers, and network topology. Initial allocation is 
non-trivial not only because no server can have accurate 
knowledge about the size of the anticipated set of serv-
ers, but also there is generally not a specific server that 
receives all the allocation requests. The respondent can 
be any server, therefore we cannot guarantee to reach a 
target currency distribution merely by allocation. Deno 
uses light-weight peer-to-peer currency exchanges [6] 
to incrementally change existing currency distributions 
into arbitrary target distributions. An important feature 
of peer-to-peer exchanges is that servers can reach arbi-
trary global currency distributions exponentially fast and 
using only local information, without the need for 
global synchronization. A detailed discussion of cur-
rency management in Deno appears in [6].  

3.2. Fault tolerance 

This section presents an overview of failure detection 
and handling. Deno achieves fault-tolerance through a 
proxy mechanism. Proxies represent failed servers in the 
system and are selected either by the failed server itself 
(in case of expected disconnections) or through proxy 
elections. We first introduce the notion of currency 
proxies and how they enable transparent handling of 
planned disconnections. We then discuss how the same 
mechanism can be used to tolerate real failures.  

Planned disconnections and currency proxies: 
Predictable, planned disconnections constitute a benign 
failure mode unique to mobile environments. Unlike 
real failures that are detected only after they occur, 
planned disconnections enable special actions to be 
taken before the failure (i.e., disconnection) occurs. 
Deno uses a proxy mechanism to transparently handle 
planned disconnections. The basic idea is to have a pri-
mary engage a proxy to vote in its place while the pri-
mary is disconnected. The use of proxies in this fashion 
can prevent degradation in the overall commit rate when 
devices have expected, planned-for disconnections. An 
example where proxies would be useful is when a lap-
top is taken on a trip where no other servers will be 
available. The laptop’s currency can be transferred to a 
desktop machine for the trip’s duration.  

Deno’s approach is to have the proxy server vote the 
primary’s currency as its own while the proxy server is 
engaged. A proxy vote is then indistinguishable to other 
servers from the situation where a server votes and then 
disconnects. When a primary reconnects, it updates its 

v1 v2 v3 v4

u1,1(x)t0

t1

u1,2(y) u4,2(y)

t2

??

t3

t4

t5

(a)

(b) t6

x=0.25, y=0.25 x=0.25, y=0.25 x=0.25, y=0.25 x=0.25, y=0.25

u4,1(x)

t7

 
 

Figure 2: Protocol illustration - Four replicas each of 
objects x and y. ui,j is the update created by vi in election j. 
Currency is divided evenly for both replicas. (a) shows the 
progress of update u1,1 from v1. The update is committed 
because a majority of the object’s currency observes it before 
any competing update. (b) shows two competing updates to 
y. At time t6, both u1,2 and u4,2 have been seen by replicas 
with a combined currency of 0.50. 
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own information to match that of the proxy, including 
votes on prior and current tentative updates. The pri-
mary treats any votes cast in its behalf as if they had 
been cast directly by the primary. In particular, any 
votes cast for tentative updates remain cast. The result is 
that there are no race conditions, and the entire proxy 
engagement is transparent to the rest of the system. 

Proxies whose primaries fail can permanently vote 
the primary’s currency. The advantage of this approach 
is that even the failure is transparent to the other servers, 
although the failure eventually has to be made explicit 
and addressed. Proxies can be transferred when proxies 
plan a disconnection. Reconnecting primaries can locate 
their proxy by checking auxiliary data appended to any 
proxy vote. This data specifies which server voted for 
the primary. The returning primary can retrieve its cur-
rency directly from this server. A proxy that fails unex-
pectedly prevents the primary from participating in elec-
tions until either the proxy re-connects, or is judged 
failed. 

Failures and proxy elections: Failure detection in 
the domain of mobile applications is difficult because 
servers may be out of contact either temporarily or per-
manently. No action should be taken in the former case, 
but action must be taken in the latter because the cur-
rency held by the server can prevent updates from 
committing.   

Detecting permanent disconnections is the first prob-
lem. Simple timeouts are not workable because discon-
nection is the rule rather than the exception. Disconnec-
tions are not only potentially frequent, but might be 
quite lengthy. A second approach is to count the updates 
that commit without a vote from the server in question. 
The advantage of this approach is that servers planning 
disconnections will designate proxies to vote their cur-
rency. Hence, votes are only not cast by servers that are 
unexpectedly out of touch with the rest of the system.  

Once a permanent disconnection is detected, action 
must be taken to recoup the currency held by the dis-
connected server. Loss of this currency can either slow 
or completely prevent updates from being committed. 
The protocol can compensate for failed replicas via 
proxy elections. 

The main idea is to collectively elect a server to act 
as a proxy to the failed server. Proxy elections are per-
formed similarly to coordinator election protocols 
widely used by many distributed protocols [4]. After 
detecting a failure, a server initiates a proxy election 
update. As with other changes to objects, a proxy elec-
tion update is a special type of update operation on an 
object. The election update, therefore, must be commit-
ted before it can take effect. Deno treats all updates, 
including proxy election updates, uniformly and uses its 
weighted-voting scheme to commit them. One implica-
tion is that a proxy election can only occur if a majority 
of the current currency is available. This is necessary to 

prevent parallel proxy elections in multiple partitions 
after a network failure. When a failed server rejoins the 
computation and learns about the proxy election, it re-
sets its current currency to zero. The server may then 
request its currency back from its proxy or obtain cur-
rency from other servers through peer-to-peer ex-
changes (Section 3.1). 

4. Experimental environment 

Deno’s bounded voting protocol removes reliance on 
any single master server, and allows progress to be 
made without synchronous global consensus. Clearly, 
however, these advantages are not without cost. Before 
quantifying the performance of bounded voting, we first 
describe our simulation environment.  

4.1. Simulation model and assumptions 

We implemented a detailed simulator using the 
CSIM simulation package [1]. Although the simulator is 
quite detailed and provides high accuracy, we give only 
a high-level description of it due to space limitations. 

Table 1 summarizes the main simulation parameters 
and settings used in the experiments. The simulator 
models a number of distributed servers that replicate 
objects and perform updates on their copies using 
bounded voting. Servers periodically initiate anti-
entropy sessions, with a rate denoted by EPS, and up-
date their states. Updates are generated according to a 
global update rate given by UPS. After an update is 
generated, it is injected to a server selected at random. 
Servers have two modes of operation: (1) connected, 
and (2) disconnected. Server connection and disconnec-
tion periods are determined independently at distinct 
servers, and are derived using an exponential function. 
When a server is disconnected, it cannot send or receive 
messages, but it can still create tentative updates. The 
default model employs a fully-connected communica-
tion topology with uniform communication delays given 
by MsgLatency (set to model a wide-area network). 
Unless otherwise stated, we assume uniformly distrib-
uted currencies, and no disconnections. 

4.2. Performance metrics 

One metric we focus on is the commit rate that de-
notes the number of committed updates per second. 
Whenever appropriate, we also present commit percent-

Parameter Description Setting 
UPS Mean global update rate 

(uniform) 
0.0-10.0 
(updates/s) 

EPS Mean anti-entropy rate  
(uniform) 

0.1, 1.0, 10.0 
(entropies/s) 

MsgLatency Mean message latency (exp.) 75 (msec) 
NumSites Number of object replicas 10-1000 

Table 1: Primary simulation parameters  
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age results that denote the percentage of updates that are 
committed. As the protocols we investigate are asyn-
chronous and servers typically learn of committed up-
dates at different times, we report two different commit 
delays. First commit delay (FCD) represents the differ-
ence between the time an update is initiated and the time 
it is first committed at some server. Last commit delay 
(LCD) is the time until all servers commit the update. In 
an environment where updates are propagated asyn-
chronously, LCD is also a significant metric because all 
replicas have the same probability of being read and a 
committed update is not useful until it is available to a 
server. 

4.3. Protocols studied 

In addition to the Deno protocol, we also investigate 
the performance of a “Read-One, Write-All” (ROWA) 
[4] type pessimistic epidemic protocol. For the sake of 
brevity, we only give a high-level description of the 
protocol. This asynchronous protocol, which we refer to 
as Write-All (WA), works by disseminating log records 
that corresponds to updates using an epidemic model. 
Similar to Deno, updates are executed locally and then 
committed globally. When a server learns about an up-
date, it checks whether there exist any conflicting up-
dates. If a server detects a conflict, it aborts the conflict-
ing updates. The abort records are also propagated to 
other servers to ensure that an update, if aborted, is 
aborted at all servers. An update is committed if it is 
certified at all servers. Agrawal et al. proposed a 
ROWA-type epidemic protocol similar to what we have 
described above, that, however, also supports transac-
tional semantics and serializability [2]. 

5. Experimental results 

We are now in a position to present the results of 
performance experiments that illustrate the performance 
of Deno. We first present results that demonstrate the 

performance of the base bounded-voting protocol, com-
paring it to the WA protocol, and exploring its perform-
ance under a variety of connectivities. We then charac-
terize the performance impact of extending the base 
protocol via a proxy mechanism. 

5.1.  Basic performance 

Figure 3 and Figure 4 show the rate at which Deno 
commits updates versus the number of servers for sev-
eral different anti-entropy and update rates, where the 
currency is uniformly distributed and servers perform 
randomly-directed anti-entropy sessions. The leveling-
off of commit rates results from conflicting updates. 
Recall that updates compete to win elections, with los-
ing updates being aborted by default. As the average 
election has increasing numbers of participants, a lower 
percentage is committed, and those that do commit are 
committed more slowly because winning an election in 
the face of competition requires a higher percentage of 
servers to participate before the winning update is de-
termined.  

Figure 5 shows the commit percentage results for 
Deno and the WA approach for different levels of up-
date contention (notice the exponential scale on y-axis).  
As expected both approaches suffer from increased up-
date contention. However, we observe that Deno sig-
nificantly outperforms WA over the entire range of up-
date rates, committing orders of magnitude more up-
dates than WA under high contention rates with rela-
tively large number of servers. Even with 10 servers, 
Deno commits about twice as many updates as WA un-
der high update rates. Another important point to ob-
serve is that although WA cannot commit any updates 
beyond some update rate (recall from Section 4.3 that 
WA aborts all conflicting updates to ensure consis-
tency), Deno continues to make progress and commit 
updates regardless of the update rate.  

Figure 6 compares Deno and the WA approach in 
terms of how fast they commit updates without update 
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contention; i.e., commit percentage is 100%. This is 
achieved by initiating and committing individual up-
dates in isolation. We observe that Deno consistently 
commits an update about 30-40% faster than WA. This 
is basically due to the fact that while WA requires an 
update to be certified by all servers before committing 
it, it is sufficient for an update to be certified by a plu-
rality of servers in Deno (in case of no contention, plu-
rality is practically majority). We observe that the 
propagation delay of a committed update is also signifi-
cantly smaller for Deno. This is due to the decentralized 
commitment enabled by Deno: In WA, an update is 
committed only at a single server and the commit deci-
sion is then propagated to other servers. In Deno, how-
ever, the same update can be committed independently 
at different servers (typically by using different quo-
rums), significantly reducing the time for all the servers 
to learn about the commitment of the update. 

Our approach differs from typical primary-server ar-
chitectures both in that we use a voting scheme, and in 
that we use background anti-entropy messages to decide 
elections. The use of anti-entropy adds a clear perform-
ance penalty versus systems where a primary copy can 
be contacted directly. Set against this are the advantages 
of being able to make progress in cases of low connec-
tivity and less than fully-connected topologies. 

The primary reason for using a voting scheme is to 
increase availability. Assuming independent failure 
modes, voting is provably optimal when all servers have 
a failure probability of less than 1/2 [19]. With failure 
probabilities at least 1/2, fewer than half of the servers 
will be connected at any one time on average, and a 
simple weighted-voting scheme will be unable to com-
mit any updates most of the times. A monarchy or mas-
ter-copy approach would clearly be preferable. 

The above argument assumes that a majority of the 
servers need to be simultaneously connected in order to 
make progress. However, Deno uses anti-entropy to 
move information, arriving at decisions to commit up-
dates asynchronously. Hence, Deno’s weighted-voting 
protocol can commit updates even when no more than 

two servers are ever simultaneously connected. This is 
one of the clear advantages of using an asynchronous 
approach.  

Figure 7 shows commit rates versus the percentage 
of servers that are available (i.e., connected) simultane-
ously. For the purposes of this experiment, the percent-
age of connected servers is made constant by having 
one server connecting while another is disconnecting. 
The figure clearly demonstrates the ability of Deno to 
make progress and commit updates at all availability 
levels. Note that while commit rates increase almost 
linearly with connect probability, there is no knee in the 
curve at 50%, the point at which a conventional voting 
protocol would cease to commit any updates. The rea-
son that commitments can continue is that the asynchro-
nous anti-entropy sessions allow servers to communi-
cate indirectly with other servers that are not simultane-
ously connected. 

5.2. Impact of the proxy mechanism 

In Section 3.2 we introduced our proxy mechanism 
and how it can be used for fault-tolerance. Here, we 
show that proxies are also useful in improving system 
performance. Figure 8 shows commit rates both with 
and without proxies, where each server has a probability 
0.5 of being up at any given time. Either one or ten per-
cent of the servers (i.e. proxy group ratio 0.01 or 0.1) 
serve as proxy servers. For purposes of this experiment, 
proxy servers are assumed to be reliable, while other 
servers connect and disconnect with mean intervals of 
one second. Not only do proxies reduce performance 
degradation when availability decreases, but they can 
even improve commit latency versus the case with com-
pletely available servers. This is because proxies cause 
currency to be concentrated in fewer servers, and fewer 
rounds of communication are required to establish a 
majority and commit an update. 
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6. Related work 

We discuss related previous work below. Further re-
lated work on voting, epidemic protocols, and transac-
tion semantics is referenced in the text where appropri-
ate. 

Coda [16] and Ficus [17] share many of the goals of 
our work in the more limited domain of distributed file 
systems. This choice in domain allows the use of strong 
assumptions on the relative scarcity of contention. Addi-
tionally, reconciliation can be automated for many types 
of files. Hence, these systems both use replication that is 
optimistic in the sense of allowing conflicting transac-
tions to commit. Bayou [24] uses epidemic information 
flow via anti-entropy sessions. However, Bayou differs 
from Deno in that objects are committed through a mas-
ter-copy rather than a voting scheme.  

Rabinovich et al. [21] addressed the issue of reduc-
ing the amount of data transferred during anti-entropy 
sessions. Agrawal et al. proposed a ROWA class of 
epidemic algorithms for transactional multi-item up-
dates [2]. The protocol described in this paper is in-
tended for atomic single-item updates suitable for non-
transactional environments and applications (e.g., file 
systems), and does not provide transactional semantics. 
Deno, however, differs from the ROWA-type epidemic 
approaches in at least two fundamental ways. First, our 
protocol is designed to make progress and eventually 
commit updates even if there are conflicting, logically 
concurrent updates, whereas a ROWA approach has to 
abort all logically concurrent updates, losing all the pro-
gress made that far. Second, our protocol is highly de-
centralized which, in addition to making it well-suited 
for mobile-environments, yields major performance 
benefits. An epidemic ROWA approach requires the 
participation of all servers before an update can commit, 
whereas our approach eliminates such a severe restric-
tion. 

We introduced our bounded weighted-voting scheme 
in [15], and discussed its theoretical aspects and cor-
rectness. We also presented a high-level, preliminary 
description of the Deno weakly-consistent storage sys-

tem. We described the light-weight currency manage-
ment mechanisms used in Deno in [6]. 

More recently, we implemented a Deno prototype on 
top of Win32 and Linux platforms and extended the 
basic single-item Deno protocol to handle multi-item 
transactional updates [7]. The extended transactional 
protocols we proposed provide two levels of consis-
tency; strong serializability [4] and update serializability 
[5, 9]. Independent of our research on transactional vot-
ing protocols, Holliday et al. also proposed a quorum-
based epidemic approach that provides strong serializa-
bility and transactional semantics [12]. Holliday’s work 
assumes a more traditional replicated database environ-
ment, and static, globally-known currencies, whereas 
our work is geared more towards environments with 
weak-connectivity and incomplete system information. 

7. Conclusions and future work 

We described an asynchronous, decentralized repli-
cated-object protocol for mobile and weakly-connected 
environments, and demonstrated that this protocol 
eliminates several significant restrictions inherent to 
previous work. The protocol implements a new decen-
tralized weighted-voting scheme using epidemic infor-
mation flow. The protocol is pessimistic, and therefore 
requires neither compensation nor reconciliation for 
consistency. The voting scheme guarantees to commit 
an update out of each group of competing updates, and 
makes progress in a variety of situations in which previ-
ous protocols would abort all conflicting updates to en-
sure correctness. The protocol transparently handles 
planned disconnections, a frequent activity in mobile 
environments. 

 We investigated the performance of our protocol 
under different workloads and configurations using a 
detailed simulation model. Comparison with a ROWA-
type decentralized epidemic protocol showed that the 
voting protocol performs better for all update rates. In 
addition to characterizing the performance of our base 
protocol, we also investigated the performance impact 
of the proxy mechanism, and demonstrated that cur-
rency proxies cannot only handle planned disconnec-
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tions transparently, but also increase system perform-
ance.  

We have recently implemented a Deno prototype that 
runs on top of Win32 and Linux platforms [7]. We plan 
to investigate dynamic synchronization policies (i.e., 
when, what, and with whom to synchronize?) using our 
prototype. A synchronization policy needs to consider a 
variety of environmental factors such as the available 
bandwidth, communication costs, server availability, 
and currency information as well as application-
dependent factors such as update generation rate. Fur-
thermore, since many of the mentioned factors typically 
demonstrate dynamic behavior, adaptive policies are 
required. Adaptive synchronization policies will form 
the basis of our future work. 
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