

1

Performance of Mobile, Single-Object, Replication Protocols

Uğur Çetintemel Peter Keleher
Department of Computer Science

University of Maryland
ugur@cs.umd.edu

Department of Computer Science
University of Maryland

keleher@cs.umd.edu

Abstract

This paper discusses the implementation and perform-
ance of bounded voting: a new object replication proto-
col designed for use in mobile and weakly-connected
environments. We show that the protocol eliminates
several restrictions of previous work, such as the need
for (1) strong or complete connectivity, (2) complete
knowledge of system membership, and (3) low update
rates. The protocol implements an asynchronous,
weighted-voting scheme via epidemic information flow,
and commits updates in an entirely decentralized fash-
ion. A proxy mechanism is used to enable transparent
handling of planned disconnections.
We use a detailed simulation study to characterize the
performance of bounded voting under a variety of loads
and environment, and to compare it to another decen-
tralized epidemic protocol. We further investigate the
performance impact of the proxy mechanism.

1. Introduction

Weighted-voting schemes [10, 13, 18] have long
been used in solving distributed consensus problems.
Epidemic algorithms [2, 8, 20, 21] have long been used
in environments with weak connectivity or uncertain
topology. This paper investigates the use of a combina-
tion of these two techniques in supporting object repli-
cation in mobile and weakly-connected environments.

Recent advances in hardware technologies have
made mobile computing feasible and practical. Mobile
device usage is increasing as the devices become
smaller, cheaper, and more powerful. Mobile users often
carry their laptops, PDAs, and other portable devices
wherever they go. Mobile environments differ from
typical desktop environments in many ways, including
power availability, resources such as CPU, memory,
secondary storage, and, above all, in their communica-
tion behavior. Mobile systems usually lack continuous
connectivity, and typically possess limited communica-

tion bandwidth even when they are connected. As a
result, mobile and weakly connected operations rely
heavily on caching and replication mechanisms in order
to deliver good performance.

Replication is widely used to enhance both reliability
and performance in distributed systems. Traditional
replication mechanisms, however, are ill-suited for mo-
bile environments [11]. Mobility and weak connectivity
require a critical reassessment of the assumptions under-
lying traditional replication mechanisms [3]. For in-
stance, one assumption made by master-copy replication
schemes [22] is that a single server is always available
and accessible by the rest of the system. Clearly, such
an assumption may become invalid in mobile environ-
ments. Server machines may be disconnected, and
therefore inaccessible, at any given time. Furthermore,
master-copy replication often assumes that the master
server has complete and up-to-date knowledge of sys-
tem membership, which is difficult to obtain in a mobile
environment. As another case in point, consider replica-
tion in traditional voting schemes. Such schemes typi-
cally work by requiring a quorum of simultaneously
connected servers to agree on an operation prior to per-
forming it. If such a quorum cannot be established, the
operation is aborted. However, mobile replication pro-
tocols should ideally allow progress to be made, and
updates to be committed, even if a quorum of servers is
not simultaneously available. Mobile replication proto-
cols should therefore be decentralized and asynchro-
nous wherever possible.

Mobility not only requires fundamental changes in
the protocols designed for traditional desktop environ-
ments, but it also introduces its own variants to existing
issues. One such issue involves planned disconnections.
A server may declare its intention to disconnect, ena-
bling the protocol to handle the disconnection more
effectively than in traditional schemes in which the dis-
connections are detected and handled only after they
occur [3]. The rest of the paper discusses these and
other relevant issues, together with our approaches to
handling them, in detail.

2

1.1. System model and features

This paper describes the implementation and evalua-
tion of bounded voting in Deno, a decentralized object-
replication system. Bounded voting can be used to pro-
vide replicated-object support for applications in
weakly-connected and mobile environments. Bounded
voting is designed to support a wide variety of applica-
tions ranging from simple shared-calendars to domain-
specific databases. More specifically, the target applica-
tion domain includes all types of asynchronous collabo-
rative applications, including collaborative groupware
(e.g., Lotus Notes [14]), mail and bibliographic data-
bases, document editing, CAD, and program develop-
ment environments for disconnected workgroups.

Bounded voting allows the update anytime-
anywhere-anyhow replication model [11] to be used in
order to address requirements of disconnected opera-
tion. All servers are treated as peers in their ability to
generate updates; no server owns any object. Conse-
quently, bounded voting fundamentally differs from
master-copy schemes like Bayou [24], which can be ill-
suited for mobile and weakly-connected environments
[11].

Bounded voting allows servers to execute updates
locally and commit them globally using a decentralized
weighted-voting scheme. Updates and voting informa-
tion are propagated through the system asynchronously
using an epidemic style of communication (e.g., [2, 8,
20, 21]) that requires only pair-wise communication.
Updates gather votes as they pass through servers. An
update is committed only when it corners the plurality
of votes. As a result, no other conflicting update can
commit. Update commitment is decentralized in that
each server independently and locally commits or aborts
updates. However, the same updates eventually commit
at all servers and in the same order. Decentralized
commitment eliminates the need for synchronous multi-
site commits (e.g., two-phase or three-phase commits),
which, again, are not well-suited for mobile and weakly-
connected environments [11].

Epidemic protocols have been adopted by a number
of vendors due to increasing replication factors and the
need for asynchronous management of replicated data in
their products. For instance, Lotus Notes [14] is a
widely-used commercial system that uses epidemic
propagation. In these protocols, updates are executed at
any single server. Asynchronously, servers communi-
cate at a convenient time to exchange information re-
garding the updates, detecting and bringing the obsolete
copies up to date. Epidemic communication uses pair-
wise anti-entropy sessions to inform servers of the state
of other servers. Anti-entropy sessions ensure that all
replicas of the same object eventually converge to the
same final state [8]. Most epidemic protocols take an
optimistic approach for maintaining data consistency.

These protocols allow an update to be locally committed
immediately after it is executed. If and when a server
detects conflicting updates, it typically resolves the con-
flict in one of two ways. One approach involves priori-
tizing the updates based on timestamp, the server that
initiated the update, etc. For instance, Lotus Notes em-
ploys a timestamp-based mechanism that favors the
update having the higher timestamp value. The other
update is simply discarded as a stale value. This ap-
proach suffers from the infamous lost update problem
[4] where the effects of a committed update are not re-
flected in the database. The other approach for conflict
resolution relies upon a process called reconciliation
that attempts to merge the effects of the conflicting up-
dates. Reconciliation of committed updates is feasible
only in restricted domains, as, for example, in file sys-
tems [16, 17]. However, reconciliations cannot be easily
handled in the general application domain that we ad-
dress. In cases where a situation cannot be reconciled
automatically, the protocols resort to manual reconcilia-
tion, requiring human intervention. Such a manual ap-
proach, clearly, is not scalable. Furthermore, Gray et al.
argue that reconciliation-based systems suffer from sys-
tem delusion as those systems scale up [11]. As a result,
these optimistic approaches lead only to a restricted
notion of correctness, which may be sufficient only for
some application domains. Specifically, epidemic pro-
tocol are adequate for those applications where it can be
assumed that most updates are commutative or where
conflicts are infrequent and can be reconciled manually
or automatically.

Bayou [20, 23, 24] takes a more pessimistic (i.e.,
conflict avoidance-based) approach, ensuring that all
committed updates are eventually serialized in the same
order at all servers using a primary-copy scheme. More
recently, Agrawal et al. [2] proposed another pessimis-
tic approach where an update is committed only after
the update is certified by all servers that participate in
the protocol. When a server detects a conflict among
updates, it aborts all the involved updates to ensure cor-
rectness. This protocol provides serializability in a
transactional framework.

A number of voting protocols have been proposed to
improve availability in distributed applications [10, 13,
18, 25]. The fundamental idea behind voting is to syn-
chronize a quorum of servers to agree on an operation
prior to performing it. In voting schemes, conflicting
operations imply overlapping server quorums so that
conflicts are detected before they are performed. Uni-
form-voting schemes assign a single vote to each replica
[25]. Weighted-voting schemes generalize uniform-
voting by assigning a non-negative weight to each rep-
lica [10]. In [15], we extended previous weighted-voting
schemes to allow voting to take place asynchronously,
and without complete system membership information.
This bounded weighted-voting scheme propagates in-

3

formation asynchronously through epidemic informa-
tion flow. The use of voting allows higher availability
relative to master-copy or master-commit schemes. The
use of epidemic information flow allows the system to
make progress in weakly-connected environments. This
scheme can also emulate diverse configurations through
proper currency distribution. For example, traditional
dynamic voting schemes are emulated by uniform cur-
rency distributions, while a master-copy scheme is emu-
lated by allocating all currency to a single server.

In summary, bounded voting provides the following
features and functionalities that we deem highly desir-
able for our target environment and application domain:

1. Tolerance for weak connectivity and in-
complete information: Our intended environ-
ment includes areas of weak and non-existent
connectivity. Additionally, we do not assume
that servers are fully connected. Even in the
best of cases, individual nodes and devices
might have direct contact with only a limited
set of other devices. We provide support for
arbitrary communication topologies by using a
peer-to-peer synchronization model, that is,
any two replicas can synchronize directly.
Consequently, co-located or nearby machines
can synchronize with each other quickly and
inexpensively, which is a crucial feature in
mobile environments. Furthermore, no server
needs to have complete knowledge of the sys-
tem, or even of the set of servers participating
in the protocol, which allows graceful scalabil-
ity. Updates are committed independently at
each server through a decentralized voting pro-
tocol.

2. Reconciliation- and compensation-free
replica control: Epidemic algorithms com-
monly require all application updates to be
commutative. Bounded voting can be extended
to take advantage of commuting updates, but
the base protocol makes no commutativity as-
sumptions. All updates to the same object are
guaranteed to be applied in the same order on
all replicas, thereby eliminating the lost update
problem. Replicas eventually converge to the
same final state. Once a server commits an up-
date, that update will never be rolled back,
which avoids system delusion [11] and is a
base guarantee needed by many applications.
Secondarily, the protocol never aborts all com-
peting updates. As we will demonstrate, this al-
lows progress to be made and updates to be
committed regardless of the update rate.

3. Transparent handling of planned discon-
nections: Foreseeable disconnections are han-
dled transparently via proxies. Before discon-

necting, a server transfers its voting rights to
another server. Votes for the disconnected
server are cast by its proxy, making the discon-
nection transparent to other servers. This facil-
ity is aided by the protocol’s light-weight, dy-
namic replica management. Any replica can be
created or retired dynamically by communicat-
ing with any other server already holding a rep-
lica.

1.2. Contributions

The primary contributions of this paper are threefold.
First, we describe an asynchronous, decentralized proto-
col specifically designed for mobile and weakly-
connected environments, and show that it eliminates
several restrictions of previous related work. Second,
we use a detailed simulator to characterize the perform-
ance of the protocol under a variety of scenarios and
environments, and to compare its performance to that of
another decentralized epidemic approach. Third, we
investigate the performance impact of the extension of
the base protocol with a proxy mechanism that facili-
tates transparent handling of planned disconnections.

The rest of the paper is organized as follows. Section
2 describes the base bounded-voting scheme. Section 3
discusses implementation issues. In particular, we dis-
cuss how to create and retire replicas, how to allocate
and redistribute the currency, how to transparently han-
dle planned disconnections using proxies. We describe
our experimental environment in Section 4, and charac-
terize Deno’s protocol performance in Section 5. We
discuss related work in Section 6, and conclude in Sec-
tion 7.

2. Decentralized weighted voting

We now briefly describe the bounded voting scheme.
The details of the base protocol, along with a sketch of
the correctness proof, appear in [15]. We assume a
model in which the shared state consists of a set of ob-
jects replicated across multiple servers. Objects do not
need to be replicated at all servers (i.e., selective repli-
cation) and multiple objects can be replicated at the
same server. For simplicity of exposition, however, we
limit our discussion to single objects that are cached at
all servers. Our discussion is easily extended to include
the more general case.

Objects are modified by updates, which are issued by
servers. Updates can be transmitted to other servers and
are assumed to execute atomically at remote servers.
Updates do not commit globally in one atomic phase, as
we use pair-wise synchronization and assume poor con-
nectivity. Instead, each server independently commits
updates on the basis of local information. However, we
show below that if an update commits at one server, it

4

eventually commits everywhere, and in the same order
with respect to other committed updates.

2.1. Elections

A clean way of thinking about update commitment is
as a series of elections. A server is analogous to a voter,
creating an update is analogous to a voter deciding to
run for office, and a committed update is analogous to a
candidate winning the election. Voters (and hence can-
didates) have indexes 0 through n-1, where n is the total
number of voters. We use vi to refer to the voter with
index i, and ci to refer to the candidate with index i.
Candidates win elections by cornering a plurality of the
votes. Each election begins with an underlying agree-
ment of the winners of all previous elections. Once an
election is over, a new election commences. Any given
election may have multiple candidates (logically con-
current tentative updates), and candidates from different
elections might be alive in the system at the same time.
In the latter case, however, uncommitted candidates for
any but the most recent election have already lost, but
this information has not yet made it to all voters.

Because of the style of information flow, there is no
centralized vote counting. Instead, each voter independ-
ently collects votes from other voters and deduces out-
comes. This method creates situations in which the cur-
rent election of distinct servers is temporarily out of
sync. Voter vi’s current election is the election for which
vi is collecting votes. In order to implement this proto-
col, each voter maintains three pieces of state:

1. vi.completed: The number of elections com-
pleted locally.

2. vi.[j]: Either the index of the candidate voted
for by vj in vi’s current election, or ⊥ , which
means that vi has not yet seen a vote from vj.

The size of the array is bounded by the total
number of voters.

3. vi.curr [j]: The amount of currency voted by
vj in vi’s current election or ⊥ , which means
that vi has not yet seen a vote from vj.

Note that although total amount of currency in any
election is 1.0, the allocation of this currency may
change with each election.

 Figure 1 presents some important definitions used in
this section. Definition 3 essentially says that a candi-
date wins with a voter if it has a majority or plurality of
the vote. Ties are broken with a simple deterministic
comparison between the indexes of the servers that cre-
ated the competing updates. The winner of the jth vote at
vi is denoted vi.commit(j). When an election is won at vi,
all votes vi[j] are reset to ⊥ .

It follows naturally from the above definitions that
candidates can win without all the votes being known.
Similarly, updates can be committed by a server without
complete knowledge of which servers have seen the
update, or even complete knowledge of which servers
replicate the object.

2.2. Illustration

Newly created updates are tentative, and may be dis-
carded without ever being committed. Tentative updates
may or may not be visible to the application, depending
on the type of session guarantees needed by the applica-
tion [23]. Updates are committed when servers holding a
plurality of the object’s currency agree that they are
acceptable. We now illustrate how the protocol works
by two examples:

Example 1: Figure 2(a). Objects x and y are repli-
cated at servers v1 through v4. Each server has currency
of 0.25 for both objects. Server v1 creates a tentative
update to x at time t0. At time t1, v1 sends information to
v2, and at time t2, v2 sends to v3. At this point, three of
the four replicas know of the tentative update and have
ordered it before any other tentative updates to x. These
replicas can commit u1,1 because they control 75% of
the object x’s currency. However, only v3 knows this.
Not knowing of the first election’s outcome, v4 naively
creates a new update, u4,1 at time t3. This update will be
aborted at t4 when v4 learns that a majority has already
determined that u1,1 should be committed.

Example 2: Figure 2(b) shows an example of two
competing updates being started at time t5. Each syn-
chronizes with one other replica at t6, leading to a poten-
tial stalemate in which each competing update has 50%
of the currency. While currency allocation schemes
could be rigged to prevent this from occurring in the
case of two competing updates, three or more compet-
ing updates could still lead to the same problem. The
lexicographic tie-breaker will favor u1,2 over u4,2.

Definition 1: Define uncommitted(vi) as:

1

. []
n

i
j

v curr j
=

, s.t. vi[j] is equal to ⊥ .

Definition 2: Define votes(vi, k) as:

1

. []
n

i
j

v curr j
=

 s.t. vi[j] is equal to k.

Definition 3: A candidate cj wins vi’s current election
when:
1. votes(vi, j) > 0.5, or
2. ∀ k ≠ j,
 (a) votes(vi, k) + uncommitted(vi) < votes(vi, j) or
 (b) (votes(vi, k) + uncommitted(vi)) = votes(vi, j) and (j < k)

Figure 1: Definitions

5

3. Protocol implementation

This section describes implementation issues and an
extension to the basic protocol. Objects are initially
created with a total currency of 1.0, which is held by the
creating server. A new replica can simply be created by
sending a request to a server that already has a replica.
The response to such requests contains both the object's
data and some amount of currency. This amount is sub-
tracted from the currency held by the existing replica.
The total amount of currency in the system remains
constant during failure-free operation. A replica can be
retired using a similar pair-wise communication in
which the currency held by the retired replica is trans-
ferred to another replica. These mechanisms enable
light-weight replica creation and retirement as currency
transfers need to involve no more than two servers.

It is also worth noting that the master-copy and vot-
ing approaches to update commitment are not necessar-
ily mutually exclusive. Currencies can be allocated in
ways that prefer majorities containing specific replicas,
or more than half of the currency can be retained by a
given replica. The latter situation reduces to a master-
copy scheme.

3.1. Currency Management

Timely update commitment depends on being able to
assemble a majority to vote on updates. The cost of as-
sembling a majority is highly dependent on the avail-
ability and currency distribution of the object replicas.

We divide currency management into three parts. First,
a target currency distribution has to be identified. Sec-
ond, an allocation strategy, which specifies how cur-
rency is handed out when replicas are first created, must
be defined. Finally, there must be a policy specifying
what currency exchanges are allowed at runtime, if any.

In general, the best currency distribution depends on
application semantics, expected availability of individ-
ual servers, and network topology. Initial allocation is
non-trivial not only because no server can have accurate
knowledge about the size of the anticipated set of serv-
ers, but also there is generally not a specific server that
receives all the allocation requests. The respondent can
be any server, therefore we cannot guarantee to reach a
target currency distribution merely by allocation. Deno
uses light-weight peer-to-peer currency exchanges [6]
to incrementally change existing currency distributions
into arbitrary target distributions. An important feature
of peer-to-peer exchanges is that servers can reach arbi-
trary global currency distributions exponentially fast and
using only local information, without the need for
global synchronization. A detailed discussion of cur-
rency management in Deno appears in [6].

3.2. Fault tolerance

This section presents an overview of failure detection
and handling. Deno achieves fault-tolerance through a
proxy mechanism. Proxies represent failed servers in the
system and are selected either by the failed server itself
(in case of expected disconnections) or through proxy
elections. We first introduce the notion of currency
proxies and how they enable transparent handling of
planned disconnections. We then discuss how the same
mechanism can be used to tolerate real failures.

Planned disconnections and currency proxies:
Predictable, planned disconnections constitute a benign
failure mode unique to mobile environments. Unlike
real failures that are detected only after they occur,
planned disconnections enable special actions to be
taken before the failure (i.e., disconnection) occurs.
Deno uses a proxy mechanism to transparently handle
planned disconnections. The basic idea is to have a pri-
mary engage a proxy to vote in its place while the pri-
mary is disconnected. The use of proxies in this fashion
can prevent degradation in the overall commit rate when
devices have expected, planned-for disconnections. An
example where proxies would be useful is when a lap-
top is taken on a trip where no other servers will be
available. The laptop’s currency can be transferred to a
desktop machine for the trip’s duration.

Deno’s approach is to have the proxy server vote the
primary’s currency as its own while the proxy server is
engaged. A proxy vote is then indistinguishable to other
servers from the situation where a server votes and then
disconnects. When a primary reconnects, it updates its

v1 v2 v3 v4

u1,1(x)t0

t1

u1,2(y) u4,2(y)

t2

??

t3

t4

t5

(a)

(b) t6

x=0.25, y=0.25 x=0.25, y=0.25 x=0.25, y=0.25 x=0.25, y=0.25

u4,1(x)

t7

Figure 2: Protocol illustration - Four replicas each of
objects x and y. ui,j is the update created by vi in election j.
Currency is divided evenly for both replicas. (a) shows the
progress of update u1,1 from v1. The update is committed
because a majority of the object’s currency observes it before
any competing update. (b) shows two competing updates to
y. At time t6, both u1,2 and u4,2 have been seen by replicas
with a combined currency of 0.50.

6

own information to match that of the proxy, including
votes on prior and current tentative updates. The pri-
mary treats any votes cast in its behalf as if they had
been cast directly by the primary. In particular, any
votes cast for tentative updates remain cast. The result is
that there are no race conditions, and the entire proxy
engagement is transparent to the rest of the system.

Proxies whose primaries fail can permanently vote
the primary’s currency. The advantage of this approach
is that even the failure is transparent to the other servers,
although the failure eventually has to be made explicit
and addressed. Proxies can be transferred when proxies
plan a disconnection. Reconnecting primaries can locate
their proxy by checking auxiliary data appended to any
proxy vote. This data specifies which server voted for
the primary. The returning primary can retrieve its cur-
rency directly from this server. A proxy that fails unex-
pectedly prevents the primary from participating in elec-
tions until either the proxy re-connects, or is judged
failed.

Failures and proxy elections: Failure detection in
the domain of mobile applications is difficult because
servers may be out of contact either temporarily or per-
manently. No action should be taken in the former case,
but action must be taken in the latter because the cur-
rency held by the server can prevent updates from
committing.

Detecting permanent disconnections is the first prob-
lem. Simple timeouts are not workable because discon-
nection is the rule rather than the exception. Disconnec-
tions are not only potentially frequent, but might be
quite lengthy. A second approach is to count the updates
that commit without a vote from the server in question.
The advantage of this approach is that servers planning
disconnections will designate proxies to vote their cur-
rency. Hence, votes are only not cast by servers that are
unexpectedly out of touch with the rest of the system.

Once a permanent disconnection is detected, action
must be taken to recoup the currency held by the dis-
connected server. Loss of this currency can either slow
or completely prevent updates from being committed.
The protocol can compensate for failed replicas via
proxy elections.

The main idea is to collectively elect a server to act
as a proxy to the failed server. Proxy elections are per-
formed similarly to coordinator election protocols
widely used by many distributed protocols [4]. After
detecting a failure, a server initiates a proxy election
update. As with other changes to objects, a proxy elec-
tion update is a special type of update operation on an
object. The election update, therefore, must be commit-
ted before it can take effect. Deno treats all updates,
including proxy election updates, uniformly and uses its
weighted-voting scheme to commit them. One implica-
tion is that a proxy election can only occur if a majority
of the current currency is available. This is necessary to

prevent parallel proxy elections in multiple partitions
after a network failure. When a failed server rejoins the
computation and learns about the proxy election, it re-
sets its current currency to zero. The server may then
request its currency back from its proxy or obtain cur-
rency from other servers through peer-to-peer ex-
changes (Section 3.1).

4. Experimental environment

Deno’s bounded voting protocol removes reliance on
any single master server, and allows progress to be
made without synchronous global consensus. Clearly,
however, these advantages are not without cost. Before
quantifying the performance of bounded voting, we first
describe our simulation environment.

4.1. Simulation model and assumptions

We implemented a detailed simulator using the
CSIM simulation package [1]. Although the simulator is
quite detailed and provides high accuracy, we give only
a high-level description of it due to space limitations.

Table 1 summarizes the main simulation parameters
and settings used in the experiments. The simulator
models a number of distributed servers that replicate
objects and perform updates on their copies using
bounded voting. Servers periodically initiate anti-
entropy sessions, with a rate denoted by EPS, and up-
date their states. Updates are generated according to a
global update rate given by UPS. After an update is
generated, it is injected to a server selected at random.
Servers have two modes of operation: (1) connected,
and (2) disconnected. Server connection and disconnec-
tion periods are determined independently at distinct
servers, and are derived using an exponential function.
When a server is disconnected, it cannot send or receive
messages, but it can still create tentative updates. The
default model employs a fully-connected communica-
tion topology with uniform communication delays given
by MsgLatency (set to model a wide-area network).
Unless otherwise stated, we assume uniformly distrib-
uted currencies, and no disconnections.

4.2. Performance metrics

One metric we focus on is the commit rate that de-
notes the number of committed updates per second.
Whenever appropriate, we also present commit percent-

Parameter Description Setting
UPS Mean global update rate

(uniform)
0.0-10.0
(updates/s)

EPS Mean anti-entropy rate
(uniform)

0.1, 1.0, 10.0
(entropies/s)

MsgLatency Mean message latency (exp.) 75 (msec)
NumSites Number of object replicas 10-1000

Table 1: Primary simulation parameters

7

age results that denote the percentage of updates that are
committed. As the protocols we investigate are asyn-
chronous and servers typically learn of committed up-
dates at different times, we report two different commit
delays. First commit delay (FCD) represents the differ-
ence between the time an update is initiated and the time
it is first committed at some server. Last commit delay
(LCD) is the time until all servers commit the update. In
an environment where updates are propagated asyn-
chronously, LCD is also a significant metric because all
replicas have the same probability of being read and a
committed update is not useful until it is available to a
server.

4.3. Protocols studied

In addition to the Deno protocol, we also investigate
the performance of a “Read-One, Write-All” (ROWA)
[4] type pessimistic epidemic protocol. For the sake of
brevity, we only give a high-level description of the
protocol. This asynchronous protocol, which we refer to
as Write-All (WA), works by disseminating log records
that corresponds to updates using an epidemic model.
Similar to Deno, updates are executed locally and then
committed globally. When a server learns about an up-
date, it checks whether there exist any conflicting up-
dates. If a server detects a conflict, it aborts the conflict-
ing updates. The abort records are also propagated to
other servers to ensure that an update, if aborted, is
aborted at all servers. An update is committed if it is
certified at all servers. Agrawal et al. proposed a
ROWA-type epidemic protocol similar to what we have
described above, that, however, also supports transac-
tional semantics and serializability [2].

5. Experimental results

We are now in a position to present the results of
performance experiments that illustrate the performance
of Deno. We first present results that demonstrate the

performance of the base bounded-voting protocol, com-
paring it to the WA protocol, and exploring its perform-
ance under a variety of connectivities. We then charac-
terize the performance impact of extending the base
protocol via a proxy mechanism.

5.1. Basic performance

Figure 3 and Figure 4 show the rate at which Deno
commits updates versus the number of servers for sev-
eral different anti-entropy and update rates, where the
currency is uniformly distributed and servers perform
randomly-directed anti-entropy sessions. The leveling-
off of commit rates results from conflicting updates.
Recall that updates compete to win elections, with los-
ing updates being aborted by default. As the average
election has increasing numbers of participants, a lower
percentage is committed, and those that do commit are
committed more slowly because winning an election in
the face of competition requires a higher percentage of
servers to participate before the winning update is de-
termined.

Figure 5 shows the commit percentage results for
Deno and the WA approach for different levels of up-
date contention (notice the exponential scale on y-axis).
As expected both approaches suffer from increased up-
date contention. However, we observe that Deno sig-
nificantly outperforms WA over the entire range of up-
date rates, committing orders of magnitude more up-
dates than WA under high contention rates with rela-
tively large number of servers. Even with 10 servers,
Deno commits about twice as many updates as WA un-
der high update rates. Another important point to ob-
serve is that although WA cannot commit any updates
beyond some update rate (recall from Section 4.3 that
WA aborts all conflicting updates to ensure consis-
tency), Deno continues to make progress and commit
updates regardless of the update rate.

Figure 6 compares Deno and the WA approach in
terms of how fast they commit updates without update

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

NumSites

co
m

m
it

ra
te

 (1
/s

)
EPS=0.1
EPS=1.0
EPS=10.0

Figure 3: Base commit rates with fixed update rate

(UPS=1.0)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 200 400 600 800 1000

NumSites

co
m

m
it

ra
te

 (1
/s

)

UPS=0.1
UPS=1.0
UPS=10.0

Figure 4: Base commit rates with fixed anti-entropy

rate (EPS=1.0)

8

contention; i.e., commit percentage is 100%. This is
achieved by initiating and committing individual up-
dates in isolation. We observe that Deno consistently
commits an update about 30-40% faster than WA. This
is basically due to the fact that while WA requires an
update to be certified by all servers before committing
it, it is sufficient for an update to be certified by a plu-
rality of servers in Deno (in case of no contention, plu-
rality is practically majority). We observe that the
propagation delay of a committed update is also signifi-
cantly smaller for Deno. This is due to the decentralized
commitment enabled by Deno: In WA, an update is
committed only at a single server and the commit deci-
sion is then propagated to other servers. In Deno, how-
ever, the same update can be committed independently
at different servers (typically by using different quo-
rums), significantly reducing the time for all the servers
to learn about the commitment of the update.

Our approach differs from typical primary-server ar-
chitectures both in that we use a voting scheme, and in
that we use background anti-entropy messages to decide
elections. The use of anti-entropy adds a clear perform-
ance penalty versus systems where a primary copy can
be contacted directly. Set against this are the advantages
of being able to make progress in cases of low connec-
tivity and less than fully-connected topologies.

The primary reason for using a voting scheme is to
increase availability. Assuming independent failure
modes, voting is provably optimal when all servers have
a failure probability of less than 1/2 [19]. With failure
probabilities at least 1/2, fewer than half of the servers
will be connected at any one time on average, and a
simple weighted-voting scheme will be unable to com-
mit any updates most of the times. A monarchy or mas-
ter-copy approach would clearly be preferable.

The above argument assumes that a majority of the
servers need to be simultaneously connected in order to
make progress. However, Deno uses anti-entropy to
move information, arriving at decisions to commit up-
dates asynchronously. Hence, Deno’s weighted-voting
protocol can commit updates even when no more than

two servers are ever simultaneously connected. This is
one of the clear advantages of using an asynchronous
approach.

Figure 7 shows commit rates versus the percentage
of servers that are available (i.e., connected) simultane-
ously. For the purposes of this experiment, the percent-
age of connected servers is made constant by having
one server connecting while another is disconnecting.
The figure clearly demonstrates the ability of Deno to
make progress and commit updates at all availability
levels. Note that while commit rates increase almost
linearly with connect probability, there is no knee in the
curve at 50%, the point at which a conventional voting
protocol would cease to commit any updates. The rea-
son that commitments can continue is that the asynchro-
nous anti-entropy sessions allow servers to communi-
cate indirectly with other servers that are not simultane-
ously connected.

5.2. Impact of the proxy mechanism

In Section 3.2 we introduced our proxy mechanism
and how it can be used for fault-tolerance. Here, we
show that proxies are also useful in improving system
performance. Figure 8 shows commit rates both with
and without proxies, where each server has a probability
0.5 of being up at any given time. Either one or ten per-
cent of the servers (i.e. proxy group ratio 0.01 or 0.1)
serve as proxy servers. For purposes of this experiment,
proxy servers are assumed to be reliable, while other
servers connect and disconnect with mean intervals of
one second. Not only do proxies reduce performance
degradation when availability decreases, but they can
even improve commit latency versus the case with com-
pletely available servers. This is because proxies cause
currency to be concentrated in fewer servers, and fewer
rounds of communication are required to establish a
majority and commit an update.

0.1

1

10

100

0 1 2 3 4 5 6 7 8 9 10

UPS (updates/s)

co
m

m
it

pe
rc

en
ta

ge
WA (10 sites)
Deno (10 sites)
WA (100 sites)
Deno (100 sites)

Figure 5: Percentage of committed updates for Deno

and WA (EPS=1.0)

0
2
4
6
8

10
12
14
16
18

10 Sites 50 Sites 100 Sites

C
om

m
it

D
el

ay
s

(s
)

WA (FCD) Deno (FCD) WA (LCD) Deno (LCD)

Figure 6: Commit delays for Deno and WA w/o update
contention

9

6. Related work

We discuss related previous work below. Further re-
lated work on voting, epidemic protocols, and transac-
tion semantics is referenced in the text where appropri-
ate.

Coda [16] and Ficus [17] share many of the goals of
our work in the more limited domain of distributed file
systems. This choice in domain allows the use of strong
assumptions on the relative scarcity of contention. Addi-
tionally, reconciliation can be automated for many types
of files. Hence, these systems both use replication that is
optimistic in the sense of allowing conflicting transac-
tions to commit. Bayou [24] uses epidemic information
flow via anti-entropy sessions. However, Bayou differs
from Deno in that objects are committed through a mas-
ter-copy rather than a voting scheme.

Rabinovich et al. [21] addressed the issue of reduc-
ing the amount of data transferred during anti-entropy
sessions. Agrawal et al. proposed a ROWA class of
epidemic algorithms for transactional multi-item up-
dates [2]. The protocol described in this paper is in-
tended for atomic single-item updates suitable for non-
transactional environments and applications (e.g., file
systems), and does not provide transactional semantics.
Deno, however, differs from the ROWA-type epidemic
approaches in at least two fundamental ways. First, our
protocol is designed to make progress and eventually
commit updates even if there are conflicting, logically
concurrent updates, whereas a ROWA approach has to
abort all logically concurrent updates, losing all the pro-
gress made that far. Second, our protocol is highly de-
centralized which, in addition to making it well-suited
for mobile-environments, yields major performance
benefits. An epidemic ROWA approach requires the
participation of all servers before an update can commit,
whereas our approach eliminates such a severe restric-
tion.

We introduced our bounded weighted-voting scheme
in [15], and discussed its theoretical aspects and cor-
rectness. We also presented a high-level, preliminary
description of the Deno weakly-consistent storage sys-

tem. We described the light-weight currency manage-
ment mechanisms used in Deno in [6].

More recently, we implemented a Deno prototype on
top of Win32 and Linux platforms and extended the
basic single-item Deno protocol to handle multi-item
transactional updates [7]. The extended transactional
protocols we proposed provide two levels of consis-
tency; strong serializability [4] and update serializability
[5, 9]. Independent of our research on transactional vot-
ing protocols, Holliday et al. also proposed a quorum-
based epidemic approach that provides strong serializa-
bility and transactional semantics [12]. Holliday’s work
assumes a more traditional replicated database environ-
ment, and static, globally-known currencies, whereas
our work is geared more towards environments with
weak-connectivity and incomplete system information.

7. Conclusions and future work

We described an asynchronous, decentralized repli-
cated-object protocol for mobile and weakly-connected
environments, and demonstrated that this protocol
eliminates several significant restrictions inherent to
previous work. The protocol implements a new decen-
tralized weighted-voting scheme using epidemic infor-
mation flow. The protocol is pessimistic, and therefore
requires neither compensation nor reconciliation for
consistency. The voting scheme guarantees to commit
an update out of each group of competing updates, and
makes progress in a variety of situations in which previ-
ous protocols would abort all conflicting updates to en-
sure correctness. The protocol transparently handles
planned disconnections, a frequent activity in mobile
environments.

 We investigated the performance of our protocol
under different workloads and configurations using a
detailed simulation model. Comparison with a ROWA-
type decentralized epidemic protocol showed that the
voting protocol performs better for all update rates. In
addition to characterizing the performance of our base
protocol, we also investigated the performance impact
of the proxy mechanism, and demonstrated that cur-
rency proxies cannot only handle planned disconnec-

0.00

0.05

0.10

0.15

0.20

0.25

0% 20% 40% 60% 80% 100%

Percentage of Simultaneously Connected Sites

co
m

m
it

ra
te

 (1
/s

)
NumSites = 10
NumSites = 200
NumSites = 500
NumSites = 1000

Figure 7: Commit rates as the percentage of simultane-
ously connected servers are varied, EPS=1.0, UPS=1.0

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 200 400 600 800 1000

NumSites

co
m

m
it

ra
te

 (1
/s

)

No Proxy (ProxyGroupRatio=0.01)

No Proxy (ProxyGroupRatio=.1)

ProxyGroupRatio=0.01

ProxyGroupRatio=0.1

Figure 8: Commit rates with and without proxies,
EPS=1.0, UPS=1.0

10

tions transparently, but also increase system perform-
ance.

We have recently implemented a Deno prototype that
runs on top of Win32 and Linux platforms [7]. We plan
to investigate dynamic synchronization policies (i.e.,
when, what, and with whom to synchronize?) using our
prototype. A synchronization policy needs to consider a
variety of environmental factors such as the available
bandwidth, communication costs, server availability,
and currency information as well as application-
dependent factors such as update generation rate. Fur-
thermore, since many of the mentioned factors typically
demonstrate dynamic behavior, adaptive policies are
required. Adaptive synchronization policies will form
the basis of our future work.

8. References

[1] “CSIM 18 Simulation Engine Manual (C++ version),”
Mesquite Software, Inc.

[2] D. Agrawal, A. E. Abbadi, and R. Steinke, “Epidemic
Algorithms in Replicated Databases,” in Proceedings
of the Sixteenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, May
1997.

[3] R. Alonso and H. F. Korth, “Database System Issues in
Nomadic Computing,” in Proc. of the ACM SIGMOD
Int. Conf. on Management of Data, Washington, DC,
May 1993.

[4] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Con-
currency Control and Recovery in Database Systems.
Reading, Massachusetts: Addison-Wesley, 1987.

[5] P. Bober and M. Carey, “Multiversion Query Locking,”
in Proc. of the VLDB Conference, British Colombia,
Canada, 1992.

[6] U. Cetintemel and P. J. Keleher, “Light-Weight Cur-
rency Management Mechanisms in Deno,” in The 10th
IEEE Workshop on Research Issues in Data Engineer-
ing (RIDE’2000), February 2000.

[7] U. Cetintemel, P. J. Keleher, and M. J. Franklin, “Sup-
port for Speculative Update Propagation and Mobility
in Deno,” UMIACS, UMIACS-TR-99-70, Oct. 29,
1999.

[8] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry,
“Epidemic algorithms for replicated database mainte-
nance,” in Proc. of the Symposium on Principles of
Distributed Computing, 1987.

[9] H. Garcia-Molina and G. Wiederhold, “Read-Only
Transactions in a Distributed Database System,” ACM
Transactions on Database Systems, vol. 7, pp. 209-234,
June 1982.

[10] D. K. Gifford, “Weighted Voting for Replicated Data,”
in Proc. of the ACM Symposium on Operating Systems
Principles, 1979.

[11] J. Gray, P. Helland, P. O’Neil, and D. Shasha, “The
Dangers of Replication and a Solution,” in Proceedings
of the 1996 ACM SIGMOD international conference on
Management of data, June 1996.

[12] J. Holliday, R. Steinke, D. Agrawal, and A. E. Abbadi,
“Epidemic Quorums for Managing Replicated Data,” in
IPCCC’2000, Phoenix, Arizona, 2000.

[13] S. Jajodia and D. Mutchler, “Dynamic Voting Algo-
rithms for Maintaining the Consistency of a Replicated
Database,” ACM Transactions on Database Systems,
vol. 15, pp. 230-280, 1990.

[14] L. Kawell, S. Beckhardt, T. Halvorsen, R. Ozie, and L.
Greif, “Replicated Document Management in a Group
Communication System,” in Proc. of the Conf. on
Computer Supported Cooperative Work, 1988.

[15] P. J. Keleher, “Decentralized Replicated-Object Proto-
cols,” in The 18th Annual Symposium on Principles of
Distributed Computing (PODC ‘99), May 1999.

[16] J. J. Kistler and M. Satyanarayanan, “Disconnected
Operation in the Coda File System,” in Proceedings of
the 13th ACM Symposium on Operating Systems Prin-
ciples, October 1991.

[17] T. W. Page, R. G. Guy, J. S. Heidemann, D. Ratner, P.
Reiher, A. Goel, G. H. Kuenning, and G. J. Popek,
“Perspectives on Optimistically Replicated Peer-to-
Peer Filing,” Software—Practice and Experience, vol.
28, pp. 155-180, February 1998.

[18] J.-F. Pâris and D. D. E. Long, “Efficient Dynamic Vot-
ing Algorithms,” in Proceedings of the Fourth Interna-
tional Conference on Data Engineering, February
1988.

[19] D. Peleg and A. Wool, “The availability of quorum
systems,” Information and Computation, vol. 123, pp.
210-223, 1995.

[20] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M.
Theimer, and A. J. Demers, “Flexible Update Propaga-
tion for Weakly Consistent Replication,” in 16th ACM
Symposium on Operating System Principles, Saint-Milo
France, October 1997.

[21] M. Rabinovich, N. H. Gehani, and A. Kononov, “Scal-
able Update Propagation in Epidemic Replicated Data-
bases,” in International Conference on Extending Da-
tabase Technology (EDBT), 1996.

[22] M. Stonebraker, “Concurrency control and consistency
of multiple copies of data in distributed INGRESS,”
IEEE Transactions on Software Engineering, vol. SE-
5, pp. 188-194, May 1979.

[23] D. B. Terry, A. J. Demers, K. Petersen, M. Spreitzer,
M. Theimer, and B. W. Welch, “Session Guarantees for
Weakly Consistent Replicated Data,” in 3rd Interna-
tional Conference on Parallel and Distributed Informa-
tion Systems (PDIS 94), September 1994.

[24] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers,
M. J. Spreitzer, and C. H. Hauser, “Managing Update
Conflicts in a Weakly Connected Replicated Storage
System,” in Proc. of the ACM Symposium on Operating
Systems Principles, 1995.

[25] R. H. Thomas, “A Majority Consensus Approach to
Concurrency Control for Multiple Copy Databases,”
ACM Transactions on Database Systems, vol. 4, pp.
180-209, 1979.

