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Abstract—We propose resource discovery and load balancing
techniques to accommodate computing nodes with many types
of computing elements, such as multi-core CPUs and GPUs,
in a peer-to-peer desktop grid architecture. Heterogeneous
nodes can have multiple types of computing elements, and the
performance and characteristics of each computing element
can be very different. Our scheme takes into account these
diverse aspects of heterogeneous nodes to maximize overall
system throughput.

However, straightforward methods of handling diverse com-
puting elements that differ on many axes can result in high
overheads, both in local state and in communication volume.
We describe approaches that minimize messaging costs without
sacrificing the failure resilience provided by an underlying
peer-to-peer overlay network. Simulation results show that our
scheme’s load balancing performance is comparable to that of
a centralized approach, that communication costs are reduced
significantly compared to the existing system, and that failure
resilience is not compromised.

I. INTRODUCTION

Modern desktop machines now rely on multi-core CPUs

to provide high performance, though exploiting these cores

effectively is still difficult even on a single machine, and

even when the cores are homogeneous. The situation is

growing more complicated as diverse heterogeneous hard-

ware platforms (e.g., GPGPU (General Purpose computation

on Graphics Processing Units) technology) have emerged

and begun to impact desktop computing. For example,

Nvidia’s CUDA solution can achieve tremendous computing

performance for iterative scientific computation with rela-

tively low costs [1].

Grid computing must support these trends toward het-

erogeneity and diversity. In addition, resource management

should be decentralized for a reliable and scalable system,

because a centralized approach is vulnerable to a single

point of failure and may create performance bottleneck. We

have previously developed peer-to-peer (P2P) grid solutions

for single-core and homogeneous multi-core machines [2].

However, ours and other grid research on multi-core envi-

ronments does not efficiently exploit machines with hetero-

geneous computing elements.

The main focus of this paper is to accommodate heteroge-

neous nodes in a P2P grid, and we first address the target het-

erogeneous environment and system model. A node in a grid

can have multiple computing elements (CEs), and the node

can run multiple, independent multi-threaded applications (a

job, in grid terminology) concurrently. A CE is a physically

separated unit within a grid node, and contains a set of cores

which are mainly used for computation, such as a CPU,

a GPGPU, or other types of special-purpose computing

processors. In addition, the CEs can be of different types, so

that their performance characteristics can vary greatly. Each

CE can have independent resource capabilities, so expressing

the various resource capabilities in a compact way can be

challenging.

Our main contributions in this paper are two-fold. First,

we describe a decentralized P2P system that makes good

scheduling decisions in scenarios where both job require-

ments and nodes can contain multiple, possibly heteroge-

neous, computing elements. These scheduling decisions are

made in the context of a distributed, decentralized desktop

grid system. We are aware of no prior grid work that

accommodates heterogeneous CE’s to the extent described

here.

Second, we show how to make these decentralized

scheduling decisions efficiently. Directly extending prior

work to handle diverse CEs can add greatly to the com-

munication costs incurred by the underlying P2P system

(a distributed hash table, or DHT). We describe a set of

mechanisms that limit communication cost growth without

sacrificing failure resilience, one of the key advantages of

P2P systems.

The rest of the paper is organized as follows. Section II

describes the basic architecture of our P2P desktop grid

system. Section III discusses our decentralized resource

management technique for heterogeneous environments. We

present our approach to enable a scalable heterogeneous

system in Section IV and show experimental results in

Section V. We describe related work in Section VI. Finally

we conclude in Section VII.

II. BACKGROUND

A. Overall System Architecture

In prior work, we have developed a completely decen-

tralized P2P desktop grid system that is both resilient to

single-point failures and provides good scalability [3], [4],

[2]. A desktop grid system may contain nodes with different



resource types and capabilities, e.g., CPU speed, memory

size, disk space, number of cores. Jobs submitted to the grid

can also have multiple resource requirements, limiting the set

of nodes on which they can be run (called a job’s run node).

We assume that every job is independent, meaning that there

is no communication between jobs. To build the P2P grid

system, we employ a variant of a Content-Addressable Net-

work (CAN) [5] DHT, which represents a node’s resource

capabilities and a job’s resource requirements as coordinates

in a d-dimensional space. Each dimension of the CAN

represents the amount of that resource, so that nodes can

be sorted according to the values for each resource. A node

occupies a hyper-rectangular zone that does not overlap with

any other node’s zone, and the entire multi-dimensional

space is covered by the zones for all nodes currently in

the system. The zone for a node always contains the node’s

coordinates within the d-dimensional space. Nodes exchange

load and other information in periodic heartbeat messages

with nodes whose zones abut its own, called neighbors, to

maintain the DHT structure. More details about the basic

system architecture can be found in Kim et al. [4].

B. Matchmaking Procedure

Matchmaking is the initial assignment of a job to a node

that satisfies all the resource requirements of the job, and

also does load balancing to find a lightly loaded node. Basic

matchmaking can be solved as a routing problem in our

CAN, because every node in the CAN is sorted according

to its resource capability along each dimension. Therefore,

once the job is routed to its coordinate, all nodes with zones

further from the origin than that point in the CAN will satisfy

the job’s requirements.

However, this basic matchmaking method can have load

balancing issues. Our efforts to enhance load balancing are

two-fold, employing a virtual dimension and using proba-

bilistic pushing of jobs. The virtual dimension is a separate

dimension in addition to the real resource dimensions that

has a random value assigned to differentiate multiple nodes

with the same capabilities. The random value in the virtual

dimension also helps distribute jobs across nodes, so im-

proves load balance. However, using the virtual dimension

does not always achieve good load balance.

We have improved the basic matchmaking algorithm to

improve load balance by pushing jobs into less loaded

regions in the CAN in a probabilistic way. We aggregate

global load information along each CAN dimension by

piggybacking load data onto the heartbeat messages used

to maintain connectivity in the CAN. After a job is routed

to the node that minimally meets its resource requirements,

that node chooses a dimension and a target node among

its neighbors to find a path to a more lightly loaded region

in the CAN. The decision process to push the job employs

the periodically updated aggregate load information along

each dimension. However, before pushing the job, the node
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Figure 1. Job Pushing in the CAN

computes a stopping probability based on known load infor-

mation in outer regions of the CAN to determine whether

the job is to be pushed or not. If a job stops at a node,

the node will pick the least loaded node among itself and

its neighbors to run the job. Otherwise, the job continues to

be pushed to a node with higher resource capability farther

out in some dimension in the CAN. Once the run node is

determined by job pushing, the job is inserted in the FIFO

queue in the run node and waits for its execution to begin.

Figure 1 shows a simple example of job pushing in a 2-

dimensional CAN. A node’s coordinate is represented by

a circle, and the zones for the nodes are partitioned by

the dotted lines. Suppose that job J is inserted via node

C with the coordinate (CJ , MJ ). First, job J is routed

to its coordinate (in node F ’s zone) via CAN routing. In

this example, nodes D through I can be the run node for

job J , because they all satisfy the requirements for job J .

For better load balancing, the job can be pushed towards

upper regions in the CAN, and that is done using aggregated

load information. For example, node F has aggregated load

information along both dimensions, and the job is pushed

from node F to node E if the aggregated load along the

memory dimension is less than in the CPU dimension.

Similarly, the job can be pushed to node D from node E.

But job pushing may stop at node D or E probabilistically

(based on the likelihood of finding a node that can run

the job immediately), though this example does not show

probabilistic stopping. During the job pushing process at

node D, suppose that node G is a free-node, meaning the

node has no running or waiting jobs in its queue, so can

run the job immediately. Then job pushing stops and job J
is inserted in node G’s waiting queue. More details on this

probabilistic approach for initial job placement can be found

in Kim et al.[3].

III. RESOURCE MANAGEMENT FOR HETEROGENEITY

In this section we present our new resource management

framework, and the techniques that allow us to exploit

multiple CEs with different performance characteristics. We



first describe how our CAN can be extended to express

various types of heterogeneous resources, and then discuss

additional mechanisms to deal with multiple resource types

and asymmetric performance of CEs.

A. Accommodating Heterogeneous Nodes

For symmetric multi-core nodes, we use a 5-dimensional

CAN to represent node’s resource capabilities; the 5 di-

mensions are CPU clock speed, memory size, available

disk space and the number of cores, plus a random virtual

dimension to distinguish nodes that are identical in resource

capabilities. To advertise heterogeneous nodes in the CAN,

we need additional dimensions to specify different CEs and

other resources that are dedicated to those CEs. For example,

if a machine has two GPUs (different CEs) in addition to a

CPU, the additional required dimensions are 2 (for the two

new CEs) × 3 (Clock Speed, GPU Memory, number of GPU

cores) = 6, so the total number of CAN dimensions required

is 11. If a grid system has more heterogeneous types of

nodes, the CAN will need even more dimensions to manage

heterogeneity effectively. However, adding more dimensions

to the CAN can incur significant system costs, which may

be a potential bottleneck to system scalability. We will

discuss those costs vs. the number of dimensions in the next

section. However, even after we add more dimensions to the

CAN, several other issues must be considered because of the

multiplicity of CEs in the heterogeneous nodes, as described

in the following sections.

B. Job Pushing for a Heterogeneous System

As we described in Section II, job pushing is a mechanism

to improve load balance by pushing jobs to less loaded

regions in the CAN. To balance load across nodes, at each

step in the matchmaking process the pushing algorithm first

looks for a free-node among the neighbors of the current

node. If the algorithm finds a free-node, this free-node will

be the node to run the job. Otherwise the job will be

pushed to the least-loaded region in the CAN until a free-

node is found or the job stops probabilistically. We now

discuss all steps involved in pushing jobs in heterogeneous

environments.

Acceptable node An acceptable node is a node that can start

a job’s execution without waiting. A heterogeneous node

can have multiple CEs, so even if one or more CEs are

busy running jobs, other CEs may be idle so may be able

to begin another job’s execution without delay. Therefore,

we can use an acceptable node instead of a free-node to

run a job. A node can be regarded as an acceptable node

or not depending on the node’s resource availability and a

job’s requirements, while a free-node is always a free-node

regardless of a job’s requirements. Therefore, the first part

of the job pushing process for heterogeneous environments

should be changed to look for an acceptable node instead of

a free-node.

Dedicated vs. Non-dedicated CE A multi-core CPU can

run multiple jobs on separate cores simultaneously; in this

case, running multiple jobs can cause contention effects,

which may degrade each core’s performance significantly.

We will call this type of CE a non-dedicated CE since it

can run multiple jobs at the same time and multiple jobs

may contend for shared resources in the CE. We previously

described a performance prediction model for contention

effects on non-dedicated CEs by interpolating experimental

results in Lee et. al. [2]. However, current GPUs (e.g., Nvidia

Tesla) can run only a single job at a time (the next version

of Nvidia GPUs will run multiple simultaneous jobs, but it

is not yet available). We call this type of CE a dedicated

CE. Note that a dedicated CE cannot run multiple jobs

simultaneously, but can run a single multi-threaded job.

We have conducted extensive experiments on contention

effects between different CEs, such as CPUs and GPUs,

and have found that there were no significant contention

effects between separate CEs (those results are not shown

because of space limitations). Our matchmaking algorithm

takes those contention effects into account for heterogeneous

systems.

Dominant CE If a job needs multiple CEs for its execu-

tion, the job may require multiple resource types for each

different CE. However, most applications target a specific

CE as their main computational resource, and use other

CEs as secondary resources. We call this main CE the

dominant CE of the job. For example, a job using the

CUDA library may require a CPU and a GPU, but the

CPU is used to control multiple threads in the GPU and

the majority of the computation is done on the GPU. In

this example, the GPU is the dominant CE for the job.

Therefore, matchmaking for such jobs taking into account

the dominant CE’s requirements first may be the best way

to maximize performance and balance loads evenly because

the job’s execution time is determined by the performance

of its dominant CE. We determine the dominant CE for a

job based on the job resource requirements. If a job has

requirements for multiple CEs, we pick the CE requiring

the most of these other resources (e.g. memory, number of

cores, etc.) as the job’s dominant CE because the job needs

more overall computational resources for that CE.

Job Assignment Policy If there are multiple nodes capable

of running a job, we must select the best candidate as the

node to run the job. The first choice is to choose a free-node.

An acceptable node (but not a free-node) is ranked lower

for selection than a free-node because such an assignment

can incur contention effects, increasing job turnaround time.

If we cannot find an acceptable node, we choose the node

that minimizes a score function we now describe, that is

based on the job’s dominant CE. Let C denote the type of

the job’s dominant CE, and CE(N,C) denote the C type

of CE in node N . The score function for CE(N,C) is



defined as the core utilization divided by the clock speed

of CE(N,C). If CE(N,C) is a dedicated CE, then the

core utilization of CE(N,C) is the number of running and

queued jobs (Equation 1). If CE(N,C) is a non-dedicated

CE, the core utilization of CE(N,C) is the required cores

for running and waiting jobs divided by the number of cores

in CE(N,C) (Equation 2). These score functions prefer the

least utilized node for the dominant CE type, relative to its

CE clock speed.

F (N,C) =
CE(N,C).JobQueueSize

CE(N,C).ClockSpeed
(1)

F (N,C) =

CE(N,C).RequiredCores
CE(N,C).NumberOfCores

CE(N,C).ClockSpeed
(2)

The complete algorithm for matchmaking and job pushing

for heterogeneous environments is described in Algorithm 1.

The equations in Algorithm 1 are as follows.

FD(N,C) =
AID(N,C).SumOfRequiredCores

(AID(N,C).NumberOfCores)2
(3)

P (N) = 1/(1 +AITD(N).NumberOfNodes)SF (4)

In Equation 3, FD(N,C) is the objective function for the

neighbor node N along dimension D in terms of type of CE

C, and AID(N,C) is aggregated load information for node

N ’s CE C. In Equation 4, P (N) is the probability to stop at

node N , and SF is the stopping factor, which is a parameter

used to adjust the stopping probability [3]. AITD(N) is the

aggregated load information at node N along the chosen

dimension TD.

Now we can perform matchmaking for heterogeneous

nodes and jobs using the job pushing algorithm, which we

will show balances load well. A remaining issue is the cost

of the algorithm; we discuss cost and scalability in the next

section.

IV. SCALABLE SYSTEM FOR HETEROGENEITY

Increasing the number of dimensions in the CAN to

represent additional resource requirements gives an effective

method to match jobs to resources and balance load across

heterogeneous nodes. However, additional dimensions can

result in higher communication costs in the CAN, mainly

from heartbeat messages between neighboring CAN nodes

to maintain connectivity, making the CAN less scalable. In

this section, we begin with a cost analysis for the existing

system with the original CAN, and suggest two approaches

to reduce costs and improve scalability for heterogeneous

nodes.

A. Maintenance Cost Analysis

As we discussed in Section III-A, the CAN must be ex-

tended to accommodate more heterogeneous environments.

However, adding more dimensions can result in more over-

head. We have two major metrics to measure costs over

Algorithm 1 Job Pushing for Heterogeneous jobs

1: Route the job in the CAN to the node containing the

job’s coordinate.

2: while run-node not found do

3: Find an acceptable node(s) among neighbors.

4: if Found an acceptable node(s) then

5: if Found a free-node(s) among acceptable nodes

then

6: Pick the free-node with the fastest clock speed

for the job’s dominant CE.

7: else

8: Pick the acceptable node with the fastest clock

speed for the job’s dominant CE.

9: end if

10: else

11: Choose a target node and dimension to minimize

the objective function (Equation 3).

12: Determine stopping based on the probability (Equa-

tion 4) for the target dimension.

13: if Stop then

14: Select the node with minimum score (Equa-

tion 1, 2) among neighbors.

15: else

16: Push the job to the target node.

17: end if

18: end if

19: end while

a fixed time period; the number of messages per node

and the volume of messages per node. Therefore, we need

to evaluate the relationship between the number of CAN

dimensions and those costs, across all nodes in the system.

Suppose that the existing CAN, called the vanilla CAN

to distinguish it from the enhanced CAN that is the subject

of this paper, contains d dimensions to express resource

capabilities. The average number of neighbors per node

in the CAN is proportional to the number of dimensions,

since each node must keep information about at least two

neighbors (one in each direction) along each dimension.

Also, the number of heartbeat messages for a node is

proportional to its number of neighbors, because heartbeat

messages are sent periodically by a node. Therefore, the

number of messages per node per minute is proportional to

the number of dimensions (O(d)).
However, the volume of messages is proportional to the

square of the number of dimensions (O(d2)). In the vanilla

CAN, each heartbeat message must contain all the neigh-

bor information from the sender, since complete neighbor

information is needed to take over a CAN zone that is

vacated when a node leaves the system voluntarily or fails,

to continue to be able to route in the CAN DHT. Therefore,

each heartbeat message size is proportional to the average

number of neighbors of a node, so is proportional to the
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number of dimensions, O(d). Thus, the average message

volume per node per minute is O(d)×O(d) = O(d2). This

cost analysis can also be applied to the algorithm in the

original CAN [5] because the original CAN also exchanges

heartbeat messages with complete neighbor information.

On the other hand, the neighbor information can be used

not only for recovering from nodes leaving the system, but

also can be used to recover a node’s broken links, as shown

in Figure 2. A broken link means that a node has missing

neighbor information along an edge of its zone, even though

some node already owns the zone on the other side of that

edge. For example, node A in Figure 2 can receive node

B’s information from node C’s heartbeat message (since C
is also a neighbor of B), so node A can fix the broken link

using node C’s heartbeat message.

B. Compact Heartbeat

As was discussed in Section II, each dimension in the

CAN represents a node resource capability. Therefore, the

coordinates for a node can never be changed, except along

the virtual dimension. A node’s zone in the CAN must

include the node’s coordinate, so we cannot always split

a zone into equal sized zones along a dimension when

it is partitioned for a node join operation, as is done for

example in a quad-tree spatial data structure. The CAN

partitioning algorithm is similar to that of a distributed KD-

tree in a d-dimensional space, so a node should maintain

its own zone split history, to enable proper zone take-over

operations when a neighbor leaves the system voluntarily

or fails, to maintain the CAN tree-like structure. Therefore,

the take-over node for a given node is predetermined by the

leaving/failing node’s split history. For example, as seen in

Figure 3, suppose that the split is done vertically first, and

later splits are done horizontally. In this situation, node A
and node C are take-over nodes for each other, and nodes

B and D take over each other’s zone if one of the nodes

leaves the system or fails.

Since take-over node information is predetermined, that

provides a way to reduce heartbeat message size, because

the neighbor information in a heartbeat update is mainly

used for take-over operations. We propose a heartbeat mes-

saging scheme with smaller messages, called compact

heartbeat, that sends full neighbor information in a heartbeat

message only to the take-over nodes for the node send-

ing the heartbeat (there can be more than one for some

CAN configurations), while other neighbors receive only

aggregated load information from the sender node. Compact

heartbeats reduce message size in most situations, since the

number of take-over nodes is usually small, so that average

message volume per node reduces to O(d). However, in

the worst case, the size of the compact heartbeat message

is still O(d2), as shown in Figure 4. Node A has many

neighbors and all its neighbors are take-over nodes, so

node A has to send O(n) messages to all its neighbors

(where n is the number of neighbors), and a message has

to include all neighbor information, so is of size O(n),
because all receiving nodes are take-over nodes. Therefore

the messaging cost for the worst case can be O(n2), but it is

very unlikely that this situation will happen to many nodes

in the CAN, so the expected heartbeat message volume is

O(d).
Using compact heartbeat can reduce overhead costs, while

still providing the same resilience to failure as the vanilla

CAN, as long as there are no simultaneous events in the

system. Such events include node joins, node leaves (volun-

tarily) and node failures. We have used this assumption (no

simultaneous events in a heartbeat period) in our previous

work to argue for the completeness of our CAN algorithm.

In fact, the original CAN algorithms also assumed no

simultaneous events locally to ensure correctness. Therefore,

our compact heartbeat scheme achieves the same level of

failure resilience as the vanilla CAN, but can greatly reduce

message costs, making compact heartbeats a more scalable

solution.

C. Adaptive Heartbeat

While we can assume that there will be no simultaneous

events in the CAN in theory, in practice we get no such

guarantee. Therefore, we must evaluate the failure resilience

of our system under more general assumptions, namely that

there may be multiple events in a heartbeat interval among

neighbors in the CAN. If simultaneous events happen in

adjacent CAN nodes, those events can create broken links

for a node. As we discussed earlier, the redundant neighbor

information in the vanilla CAN can fix the broken links.

However, compact heartbeat messaging cannot recover from



the broken link unless the broken link happens to be to

a take-over node. In that case, the vanilla CAN is more

resilient to failure than with compact heartbeats.

We propose an adaptive heartbeat scheme to improve

failure resilience with compact heartbeat. Adaptive heartbeat

is an on-demand update mechanism that is added to compact

heartbeat. In the adaptive heartbeat scheme, nodes exchange

heartbeats using the compact heartbeat scheme under normal

circumstances. However, when a node detects a broken

link on one of its edges, the node broadcasts a full-update

request to all neighbors. A node that receives a full-update

request responds to the requesting node with full neighbor

information, to help the requesting node recover from the

broken link. For example, in Figure 2, if node A finds a

broken link towards B, then node A sends a full-update

request to node C and node D. Node C responds to

node A with information about node B so that node A
can reconstruct node B’s information. Therefore, adaptive

heartbeat is as failure resilient as vanilla CAN in many cases,

but the cost for adaptive heartbeat is nearly as low as for

compact heartbeat.

V. EXPERIMENTAL RESULTS

We present two sets of experimental results. The first

shows the performance of our matchmaking and load balanc-

ing scheme for heterogeneous environments. We have com-

pared job wait times with an online centralized matchmaker

to confirm that our decentralized solution is comparable in

performance to a centralized approach. The other experiment

shows the scalability and failure resilience of our heteroge-

neous solution. We describe a set of experiments that varies

the number of nodes and the number of CAN dimensions to

measure overall system costs and compare the costs of our

two approaches with the vanilla CAN.

A. Load Balancing Performance

Setup We used an event driven simulator that simulates

the CAN construction, as well as matchmaking algorithms.

We used a synthetic workload to model a typical grid

resource configuration and a heterogeneous set of jobs. Our

simulation scenario contains 1000 heterogeneous nodes, and

20,000 jobs are submitted to those nodes. The simulations

are executed on an 11-dimension CAN like the example in

Section III-A. Each node potentially has a single-/multi-core

CPU (1, 2, 4 or 8 cores), and may include up to two different

types of GPU.

The resource characteristics for a CPU are CPU clock rate,

memory size, disk space, and number of cores. Each GPU

has three characteristics: GPU clock rate, GPU memory, and

number of GPU cores. Therefore nodes in our experiments

can have up to 10 resource characteristics, although more di-

mensions could be added to specify other types of resources,

such as memory bandwidth [6], if users desired to match on

those resources.

Although a job may specify requirements for all 10 dis-

tinct resource types, any of them may be omitted (meaning

any amount of that resource is acceptable). We define the job

constraint ratio as the probability that each resource type for

a job is specified for a given input stream of jobs. A higher

job constraint ratio makes matchmaking more difficult, as

highly-specified jobs are more difficult to match to nodes

since fewer nodes will meet the specification. In addition, a

high percentage of the nodes and jobs have relatively low

resource capabilities and requirements, and a low percentage

of the nodes and jobs have high resource capabilities and re-

quirements, respectively, which is a common node capability

distribution in grid environments.

The interval between individual job submissions follows

a Poisson distribution, and we vary the average inter-job

arrival times in the experiments. Each job has an expected

running time with an average value of 1 hour, uniformly dis-

tributed between 0.5 and 1.5 hours. However, the simulated

job execution time is scaled up or down by the corresponding

dominant CE’s clock speed, which is specified relative to a

nominal clock speed.

For comparison purposes, we implemented a greedy on-

line centralized scheduler (denoted as central in the graphs),

which assigns jobs based on complete load information

across all nodes. Such a scheme would be very expensive

in a real system, but can give some indication of the best

possible performance for our decentralized system. Note that

the implementation of central does not necessarily represent

the most globally efficient assignment, to provide a fair

comparison to our online decentralized algorithms. Though

it assumes perfect information, central greedily assigns a job

to the most capable node, possibly assigning jobs to nodes

that are over-provisioned.

We also compare our new approach against our previ-

ous work, which is oblivious to heterogeneous resources

(denoted as can-hom). Because can-hom ignores various

considerations described in Section II-B, job push decisions

in can-hom can lead to a poor choice for a run-node, since

it is based on inaccurate aggregated information.

To avoid startup and cleanup anomalies, we run the sim-

ulations in a steady-state environment. Steady-state means

that the job arrival and departure rates are similar, so that the

system achieves a dynamic equilibrium state during the sim-

ulation period, with the system neither highly overloaded,

nor very underloaded. Therefore, the inter-job arrival rate

effectively determines average total system load.

Load Balancing Performance Figure 5 shows matchmak-

ing and load balancing performance in the heterogeneous

grid system compared to central and can-hom, where we

vary average job inter-arrival times from 2 seconds to 4

seconds. Lower job inter-arrival time means a heavily loaded

system, and higher job inter-arrival time results in a lightly

loaded system. The figure shows cumulative distributions for
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Figure 6. CDF of Job wait time varying Job Constraint Ratio

job wait times, where wait time is measured from when a job

is placed on a run-node after matchmaking to when the job

starts executing. Note that the Y axis starts at 80% to better

see the difference among the three matchmaking schemes.

Overall, the performance of the decentralized scheme is not

much different from the centralized solution, as measured

by job waiting time, regardless of job inter-arrival time.

However, when the system becomes more loaded, the per-

formance gap between our heterogeneous scheme (denoted

by can-het) and can-hom becomes larger. This means that

can-hom cannot balance load very well when the system

gets heavily loaded.

Figure 6 shows load balancing performance versus job

constraint ratio, i.e., load balance versus difficulty in match-

ing jobs to nodes. The job constraint ratio can also affect

load balancing performance because a higher job constraint

ratio makes the matchmaking problem more difficult. Similar

to the results for varying job inter-arrival time, when the

job constraint ratio is low (i.e. 40%), the three schemes

show similar performance, while higher job constraint ratios

can lead can-hom to misdirect jobs to heavily-loaded nodes.

However, the heterogeneous scheme shows performance

competitive to the centralized matchmaker for all job con-

straint ratios.

From these simulations, we confirm that our matchmaking

and load balancing performance is competitive to the online

centralized matchmaker, and better than the approach for

homogeneous environments.

B. Scalability and Heterogeneous Resources

Setup To test the scalability and failure resilience of our

algorithms for heterogeneous environments, we have ex-

perimented with 5, 8, 11 and 14 dimensional CANs with

500, 1000 and 2000 nodes, respectively. In the initial stage

of each experiment, n nodes join the system sequentially.

After that, node join and node leave events occur with

equal probability, so that the number of nodes in the system

converges to a dynamic equilibrium. The time gap between

events (join or leave) in the second stage of the experiment is

either longer than a heartbeat period (to ensure no multiple

simultaneous events), or shorter than a heartbeat period (to

see the effects of multiple simultaneous events). We ran

simulations for the vanilla CAN, with compact heartbeats,

and with adaptive heartbeats for each configuration.

Failure Resilience First, none of the approaches suffers

from broken links when there are no simultaneous events

(failures). We ran another set of experiments with multiple

events within a heartbeat period. This scenario implies high

churn, meaning that nodes are joining and leaving frequently,

to the extent that failures (broken links) may not be repaired

even by the end of an experiment.

Figure 7 shows the change in the number of broken links

over time for the 11-dimensional CAN. Note that the X axis

begins at 10000 seconds, because there are no broken links

in the initial part of the experiment. We see that the number

of broken links increases as time elapses, and then mostly

levels out, because irreparable links accumulate and these

accumulated errors may cause additional failures. However,
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Figure 8. Scalability, measured per node per minute
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all three schemes appear to have reached steady-state behav-

ior (the experiment continued past 30,000 seconds without

qualitative changes).

The figure shows that: 1) vanilla CAN shows the most

failure-resilience (meaning the fewest broken links), 2) com-

pact heartbeat is the least failure-resilient, achieving its per-

formance gains at the expense of approximately 70% more

link failures in this experiment, and 3) adaptive heartbeat

is better at recovering from failures than compact heartbeat,

and performs very close to vanilla CAN. We have conducted

a number of experiments varying the parameters for this

experiment with qualitatively similar results.

We conclude that adaptive heartbeat is comparable in

resilience to failure to vanilla CAN even under high churn.

Scalability As discussed in Section IV, we claim that our

compact and adaptive heartbeat schemes are more scalable

than vanilla CAN, as measured by messaging costs. To

confirm this claim, we have conducted experiments with

various numbers of nodes and dimensions, and measured

the costs for heartbeat messages. Figure 8 shows the cost for

varying numbers of nodes and CAN dimensions. Each sub-

figure shows how the number of messages or the volume

of messages increases as the number of CAN dimensions

increases. Note that the number of messages and the volume

of messages in Figure 8 are average values (i.e., per node per

minute). Each line shows the result of a set of configurations

for each mechanism (vanilla CAN, compact heartbeat, and

adaptive heartbeat) and the number of nodes, denoted by the

number after the dash in the legend. For example, Vanilla-

1000 denotes the result for the vanilla CAN mechanism with

1000 nodes.

The number of messages per node per minute (Fig-

ure 8(a)) is proportional to the number of dimensions

because compact heartbeat reduces message length, not the

number of messages. Moreover, we can see that the adaptive

heartbeat does not incur additional overhead compared to

compact heartbeat; in fact, it is difficult to tell the differences

among the results from the three algorithms. The results also

are mostly insensitive to the number of nodes in the system,

since all messaging is only to a node’s neighbors in the

CAN.

In Figure 8(b), the message sizes for the vanilla CAN

increase with O(d2), but for compact and adaptive heartbeats

show close to a linear increase, as expected. The decreased

message volume would become more important for even

larger numbers of CAN dimensions, from additional node

resource types, thus our compact and adaptive heartbeat

algorithms are more scalable than the vanilla CAN. In

addition, note that the message volume does not increase

regardless of the number of nodes in the system, which

means that the message cost is perfectly scalable with system

size.

VI. RELATED WORK

There has been a great deal of work on robust and scalable

structured peer-to-peer systems. For example, Gummadi

et al. described the relationship between failure resilience

and the geometric shape of various DHTs [7]. While they



conclude that ring geometry is the most robust, the ring

shape cannot support our required semantics for resource

representation. Chun et al. showed that smart selection of

neighbors can improve the performance and robustness of

a DHT containing heterogeneous nodes [8]. They used a

cost function that takes into account network proximity and

node capacity to choose the best neighbors. However, they

did not consider scalability in heterogeneous environments.

Awerbuch and Scheideler provided a theoretical foundation

for robustness and scalability of DHTs [9]. They developed

a generalized model, analyzed its theoretical properties and

evaluated the model in a high-churn environment. Their

proposed scheme is robust so can deal with large numbers of

join-leave events in a short period of time, but they did not

describe the detailed protocols that are needed for a practical

system.

There have been some efforts to exploit heterogeneous

machines, especially GPGPUs, in desktop grid computing

environments. For example, the BOINC system has begun

to support GPGPU computing so that users can run scientific

applications on a GPU platform [10]. One practical project

to exploit desktop GPUs is GPUGRID.net [11]. This project

intends to solve molecular simulations on top of BOINC.

However, the project mainly targets specific GPU machines,

not more heterogeneous resources, and its scheduling and

load balancing algorithms are centralized, which is different

from our purely decentralized approach. Perhaps the closest

work to ours on scheduling and resource management for

heterogeneous environment was done by Kotani et al. [12].

They focused on how to detect and exploit idle cycles

in GPU machines and proposed a simple matchmaking

framework. However, the framework depends on a central

resource broker, which is very different from our completely

decentralized approach.

VII. CONCLUSION

In this paper, we have proposed a decentralized re-

source management scheme that exploits diverse computing

elements in heterogeneous computing environments. By

considering features of heterogeneous nodes, i.e., differing

numbers of computing elements as well as diversity of com-

puting element types, our matchmaking and load balancing

solution is better optimized to accommodate various CEs

across nodes with different performance characteristics and

capabilities. We have confirmed via extensive simulations

that our proposed scheme shows load balancing performance

competitive to an online centralized approach, and better

than our previous scheme that ignored heterogeneity.

However, supporting heterogeneous jobs and nodes in a

system where resources are mapped to dimensionality can

cause the overall system to scale poorly. We have analyzed

the system costs required to maintain the underlying CAN

DHT with respect to the complexity of the job resource

requirements, and found that the messaging cost is O(d2)

in the number of dimensions for the prior system. We have

described more scalable solutions to reduce the costs to O(d)
without sacrificing system resilience to node failures, and

have confirmed these properties via extensive simulations.

We are currently implementing our decentralized match-

making framework in a real testbed experiment to char-

acterize its behavior and performance in cooperation with

researchers from the Maryland Astronomy department.
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