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Abstract

Desktop grids can achieve tremendous computing power at low cost through opportunistic sharing of resources. However, traditional
client–server Grid architectures do not deal with all types of failures, and do not always cope well with very dynamic environments. This paper
describes the design of a desktop grid implemented over a modified Peer-to-Peer (P2P) architecture. The underlying P2P system is decentralized
and inherently adaptable, giving the Grid robustness, scalability, and the ability to cope with dynamic environments, while still efficiently mapping
application instances to available resources throughout the system.

We use simulation to compare three different types of matching algorithms under differing workloads. Overall, the P2P approach produces
significantly lower wait times than prior approaches, while adapting efficiently to the dynamic environment.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The recent growth of both the Internet and the hardware
capabilities of personal computers and workstations enables
distributed computing to achieve tremendous computing power
by harnessing tens of thousands to millions of machines.
These systems are often called desktop grid computing systems
and leverage unused capacity on high-performance desktop
PCs [1–3]. Desktop grid computing systems mainly target
complex scientific applications requiring massive computing
power and resources that might exceed those available in a
single supercomputing platform. However, existing platforms
for desktop grid computing typically employ a client–server
architecture, which has inherent shortcomings with respect to
robustness, reliability and scalability since the server can be a
single point of contention and failure.

Our goal is to design and build a massively scalable
infrastructure for executing Grid applications on a widely
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distributed set of resources. Such infrastructure must be
decentralized, robust, highly available and scalable, while
effectively mapping application instances to available resources
(called matchmaking) throughout the system. Fortunately, these
are precisely the characteristics promised by new techniques
and approaches in Peer-to-Peer (P2P) systems. Using P2P
services can provide a robust, reliable, and scalable job
submission and execution system that is able to efficiently
utilize widely distributed available computational resources. By
employing P2P services, our system allows users to submit
jobs to be run in the system and to run jobs submitted by
other users on any resources available in the system, essentially
allowing a group of users to form an ad hoc set of shared
resources. Such a confluence of P2P and distributed computing
is a natural step in the progression of Grid computing, and has
indeed been described as inevitable [4,5]. However, as such
a system scales to large configurations and heavy workloads
it becomes a challenging problem to efficiently match jobs
with different resource requirements to available heterogeneous
computational resources, to provide good load balancing, and to
obtain high system throughput and low job turnaround times.

In this paper, we extend our previous work [6] and
analyze quantitatively the trade-offs between performing
efficient matchmaking and achieving good load balance. Via
a simulation study, we perform a comparative analysis of three
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different matchmaking algorithms for several different types of
workloads. This study is intended to give insight into the design
and implementation of resource discovery algorithms in a
distributed and heterogeneous Grid environment. The rest of the
paper is structured as follows. Section 2 discusses our assumed
context and overall goals. Section 3 describes the algorithms
and optimization criteria for matching jobs to resources, while
Section 4 contains our evaluation. Finally, Section 5 presents
related work and Section 6 concludes the paper.

2. Workload assumptions and overall goals

A general-purpose desktop grid system must accommodate
heterogeneous clusters of nodes running heterogeneous batches
of jobs. The implication is that a matchmaking algorithm must
incorporate both node and job information into the process that
eventually maps a job onto a specific node.

Our expected environment and usage make this problem
easier in some ways and more difficult in others. A large
fraction of nodes in the system might belong to one of a
small number of equivalence classes in terms of their resource
capabilities. For example, many organizations buy clusters
of identical machines all at once, to create compute farms
or just to replace an entire department’s machines. Node
clusters make the problem more difficult by removing the
notion of a single best match for a given job, since the
overall system can be composed of sets of homogeneous
clusters of nodes. The underlying matchmaking algorithm
must be able to cope with many similar nodes and perform
some intelligent load balancing across them. However, node
clustering can also simplify the problem by reducing the set
of possible choices for the matchmaking algorithm. Similarly,
job profiles might show clustering in terms of their minimum
resource requirements. Sets of similar jobs can result from
running the same application code with slightly different
parameters or input datasets. For example, researchers often
perform parameter sweeps to optimize algorithmic settings or
explore the behavior of physical systems. Similarly, the same
computation may be performed on different input regions, such
as n-body or weather calculations that differ only in spatial
coordinates.

Therefore, the overall problem space for Grid computing
environments can be divided along two axes, measuring the
degree to which the nodes and jobs are either clustered or
mixed (heterogeneous). Systems such as Condor [7,8] mainly
target mixed jobs (in terms of minimum resource requirements)
in clustered nodes (in terms of resource capabilities), while
systems like BOINC [3] or SETI@Home [2] mainly deal with
clustered jobs (where a cluster is essentially equivalent to a
BOINC project) in mixed nodes. Our intent is to effectively
support all the four scenarios. To summarize, the goals of any
matchmaking algorithm must include the following:

(1) Capability—The matchmaking framework should be able
to allow users to specify minimum requirements for any
type of resource (CPU speed, minimum memory size, etc.).

(2) Load balance—Load (jobs) must be distributed across the
nodes capable of executing them.

(3) Precision—Resources should not be wasted. All other
issues being equivalent, a job should not be assigned to a
node that is over-provisioned with respect to that job.

(4) Completeness—A valid assignment of a job to a node must
be found if such an assignment exists.

(5) Low overhead—The matchmaking must not add significant
overhead to the cost of executing a job. This may be
challenging, given that the matchmaking is done in a
completely decentralized fashion.

There are additional issues that are outside the scope of
this paper. For example, in some situations (e.g., conditions
of low load), the system might prefer to optimize throughput
by executing jobs on the most capable available node. This
raises the question of what we wish to optimize for: throughput
or response time. We are explicitly avoiding this issue by
designing infrastructure that can accommodate either objective.
There are also various security issues related to who can
contribute nodes or submit jobs within a single grid system that
are not discussed in this paper.

3. Matchmaking algorithms

We begin by defining the terminology and the basic
framework of our approach to matchmaking, and then describe
the two approaches that we evaluate in this paper: a Content-
Addressable Network and a Rendezvous Node Tree-based
mechanism.

3.1. Basic framework

All aspects of the system design assume an underlying
Distributed Hash Table (DHT) infrastructure [9,10]. DHTs use
computationally secure hashes to map arbitrary identifiers to
random nodes in a system. This randomized mapping allows
DHTs to present a simple insertion and lookup API that is
highly robust, scalable, and efficient. We insert both nodes and
jobs into a single DHT, performing matchmaking by mapping
a job to a node via the insertion process, and then relying on
that node to find candidates that are able and willing to execute
the job. By leveraging such an architecture, we are effectively
reformulating the problem of matchmaking to one of routing in
the P2P network.

A job in our system is the data and associated profile that
describes a computation to be performed. A job profile contains
all characteristics of the job, including the client that submitted
it, its minimum resource requirements, the location of its input
data, etc. The resources modeled include continuous variables,
such as the speed of the CPU, the amount of memory available,
and the amount of disk space available, and discrete variables
such as operating system type and version. All jobs in the
system are independent, which implies that no communication
is needed between them. This is a typical scenario in a desktop
grid environment, enabling many independent users to submit
their jobs to a collection of node resources in the system.

Clients insert jobs into the system by submitting them to
any system node. Nodes receiving submitted jobs assign them
Globally Unique IDentifiers (GUIDs) by using the underlying



Author's personal copy

J.-S. Kim et al. / Future Generation Computer Systems 24 (2008) 415–424 417

hash function, and initiate the process of assigning them to
owner nodes. An owner node is responsible for monitoring the
execution of the job and ensuring that its results are returned to
the client. The owner node attempts to find an appropriate run
node through a matchmaking mechanism. Matchmaking is the
process of matching jobs with physical resources, and consists
of finding an appropriate node for running a job based on the
constraints in the job profile and the current (distributed) state
of the nodes in the system. Once an appropriate run node is
identified, the new job is inserted into the incoming job queue
of the run node, where jobs are executed in FIFO order.

Run nodes periodically send heartbeat messages to the
owner nodes of all jobs either running or queued locally.
Heartbeats are communicated directly between run nodes and
owner nodes, rather than through DHT routing. This soft-state
message plays an important role in failure recovery during the
processing of jobs in our system, as job profiles are replicated
on both the owner and run nodes. If either the owner node or
the run node fails, the other will detect the failure and initiate a
recovery protocol so that the job can continue to make progress.
If both fail before the recovery protocol completes, the client
must resubmit the job. After a job completes, the run node
returns the results to the owner node, which forwards them
to the client. More details about our basic framework for job
submission and execution in the P2P network can be found in
Kim et al. [11].

3.2. Content-Addressable Network

A Content-Addressable Network (CAN) is a DHT that maps
GUIDs to points in a d-dimensional space [9] so that the nodes
divide up the CAN space into rectangular zones and each node
maintains neighbor information. The conventional use of CAN
is to map a GUID into the space by applying d different hashes,
one for each dimension. However, positions in the CAN space
need not be created through randomized hashes. For example,
Tang et al. [12] map documents and queries into a CAN space
where each dimension measures the relevance of a particular
index term, executing queries via a blind local search centered
on a query’s mapping.

Similarly, we can formulate the matchmaking problem as a
routing problem in a CAN space. By treating each resource
type as a distinct dimension, nodes and jobs can be mapped
into the CAN space by using their capabilities or constraints on
each resource type to determine their coordinates. As a simple
example, if our resource types consist of CPU speed, memory
size, and disk space, we might map a 3.6 GHz workstation,
with 2 GB of memory and 500 GB of disk space, to the
point {360, 2000, 500}. A job requiring at least a 1 GHz
machine, 100 MB of memory, and 200 MB of disk space
would map to {100, 100, 0.2}, clearly some distance from the
node discussed above. With this approach, mapping a job to
a node might seem to consist merely of mapping the job into
the CAN space and finding the nearest node. However, the
semantics of matching jobs to nodes are different than that of
merely finding the closest match node. Most importantly, job
constraints represent minimum acceptable quantities. Any node

Fig. 1. Matchmaking mechanism in CAN.

meeting a job’s constraints can run the job, but a node whose
coordinate in any dimension is less than that specified by the
job’s constraints, even if very close in the CAN space, is not
a viable choice to run the job. Hence, instead of searching for
the node whose capabilities are closest to the job’s constraints,
our matchmaking/routing procedure must search for a node
whose coordinates in all dimensions meet or exceed the job’s
constraints.

Fig. 1 shows the procedure for matching a job J to the
Node G in a system with two resource types, CPU speed and
Memory size, through routing in the CAN space. A job is
inserted into the system using its requirements as coordinates
({CJ , MJ } for Job J ) and defining the owner of the resulting
zone as the owner node of the job (Node D). The owner
node creates a list of candidate run nodes, and chooses the
(approximately) least loaded among them (Node G) based on
load information periodically exchanged between neighboring
nodes. To determine the least loaded node among the candidate
run nodes, we use the size of its job queue (the current set of
unfinished jobs assigned to a node) at the time the matchmaking
is performed. Queue size can be modeled as either the number
of jobs in the queue (which was used in the experiments in
this paper) or an estimate of the run time for all current jobs
in the queue. Job queue sizes can be included in the periodic
neighbor state update messages of CAN that are propagated to
neighboring nodes [9]. No global synchronization is required,
and the additional overhead is a small fixed cost for each update
message, sent only to direct neighbors.

By selecting the least loaded node as the best run node, we
address the problem of Load balance, as described in Section 2.
The candidate nodes are drawn from the owners of neighboring
zones, such that each candidate is at least as capable as the
original owner node of a job in all dimensions (capabilities),
but more capable in at least one dimension (Nodes G and L).
Precision and Capability follow naturally from the fact that
the owner node of a job maintains the zone containing the
representative point of a job (corresponding to its minimum
resource requirements), so the minimally capable nodes for a
job are neighbors (or next-nearest neighbors) of the owner node.
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Also, under the assumption that there is always at least one node
capable of running a given job, Completeness is assured by the
CAN routing, which in the worst case will eventually map a
job to the most capable node in the system (the node occupying
the extreme corner of the CAN space). In this special case, the
node to which the job is mapped by CAN routing will have to
become the run node and select a neighbor to act as the owner
node.

The above procedure works in all cases, but may cause some
problems for the CAN mechanisms when many nodes have
similar, or perhaps identical, resource capabilities. Since the
coordinates of a node are defined by its resource capabilities,
identical nodes are mapped to the same place in the CAN
volume (New Node and Node A in Fig. 1). The best way to
distribute ownership of a zone across multiple such nodes is
not immediately obvious. Conversely, many jobs might have
very similar requirements. For example, many jobs will likely
be inserted into the system with no requirements specified at
all. In this case, all those jobs will be mapped to the single node
that owns the zone containing the minimum point in the CAN
volume (Node C).

We address this issue by supplementing the “real”
dimensions (those corresponding to node capabilities) with a
virtual dimension. Coordinates in the virtual dimension are
generated uniformly at random. Whenever a new node joins the
system, a representative point for the new node is generated
by combining the resource capabilities of the node and a
randomly generated virtual dimension value. Therefore, even
when multiple identical nodes join the system, they are mapped
to distinct locations, and zone splitting is straightforward.
Similarly, when a new job is inserted into the system, the new
job’s coordinates are a combination of the job’s constraints and
a randomly assigned virtual coordinate. In combination, the
randomly assigned node and job coordinates act to break up
clusters and spread load more evenly.

3.2.1. Changes to original CAN
Our use of CAN differs from the canonical uses in that

coordinates have semantic meaning. This difference requires
several changes in how the underlying network management
algorithms work. The most important changes are in the way
zones are split and merged.

Zones are split when a new node enters the system. The CAN
maps the node to an existing zone, and then the zone is split
between the owner and the new node. The default CAN split
algorithm can choose to split the zone on any axis, because
the mapping of a zone to an owner has no semantics, and the
coordinates of a pair of points usually differ on most, if not all,
axes. In our CAN, however, nodes may be identical in resource
capabilities, differing only in their coordinates in the virtual
dimension (e.g. for a cluster of homogeneous nodes, since we
use the resource capabilities as the representative point for each
node in the system). This restricts the choice of the dimension
on which to split. Therefore, our split mechanism first tries to
find a split axis among the real dimensions that have different
coordinates across the existing node and the new node. If that
is not possible, the virtual dimension is used as the split axis.

To build a better (i.e. closer to cubic) grid space when splitting
real dimensions, we iterate across all dimensions for each split
operation.

The second major change to the CAN algorithms is in how
zones are merged. A zone is merged with a neighbor when it
is orphaned because of an owner leaving, either gracefully or
by failure. The default CAN recovery algorithms allow such
an orphaned zone to be merged with any neighboring zone:
no restriction is made on which nodes can own a zone. In
fact, a node can own multiple zones, which can result in a
highly fragmented coordinate space. Therefore, to achieve a
one-to-one node to zone assignment, CAN runs a periodic
background zone reassignment algorithm. That algorithm can
assign one of the neighbor nodes of the departed node to another
region, without any restrictions on merging and reassigning the
orphaned zone (for details see Ratnasamy et al. [9]). However,
in our system this can violate the required semantics about
the relationship between a zone and the owner of that zone,
whereby a zone should contain the coordinates (i.e., resource
capabilities) of its owner.

Zone owners play two roles. First, they ensure that jobs
mapped to the zone are run. This is accomplished by creating
a set of candidate run nodes and polling them to find the least
loaded candidate run node. For this purpose, the owner of a
zone would not actually have to be mapped into that zone,
because a job’s owner node is never a candidate to run the
job. However, owner nodes also serve as candidate run nodes
for jobs mapped to neighboring zones. For example, assume
that a job is mapped into a zone zi , and that zone z j is zi ’s
neighbor. zi ’s owner may then include z j ’s owner in the list of
candidate run nodes for any job mapped to zi . However, if z j ’s
owner is not actually mapped somewhere in z j , it might not
have the capabilities zi ’s owner expects, and might therefore
not be able to run the job. The zone merging procedure must
therefore preserve the constraint that a zone’s owner must be
mapped into the zone. Satisfying this constraint requires that
zones be merged in a way that is consistent with the original
split order. The zone merge algorithm accomplishes this by
preserving the original split order at the owner, and reversing
that order to select which node should merge the zone with its
own.

3.3. The Rendezvous Node Tree

The Rendezvous Node Tree (RNT) is a distributed data
structure built on top of an underlying DHT, which in our
implementation is Chord [10]. Specifically, the RNT copes
with the Load balance issue by performing a tree traversal
after the random initial mapping, and addresses Completeness
by passing information describing the most capable reachable
node up and down the tree.

An RNT contains all participating nodes in the desktop
grid. Each node determines its parent node based only on local
information, which enables building the tree in a completely
decentralized manner (to find the parent node in the RNT,
divide the GUID of the predecessor node of the child node
in the Chord ring by two and find the successor node of that
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GUID in the Chord ring—see details in Kim et al. [13]). Since
the GUIDs of nodes in the system are generated uniformly at
random, the overall height of the RNT is likely to be O(log N )

where N is the total number of live nodes in the system (we
investigated the characteristics of the RNT in terms of overall
height and node degree in Kim et al. [13]). Due to the dynamics
of the system (new nodes joining, existing nodes departing), the
correct parent pointer of a node can change over time. Therefore
each node must refresh/update its RNT parent node pointer
periodically to maintain the RNT structure.

Once the parent–child relationship in the RNT is determined,
each node periodically sends local subtree resource information
(for the subtree rooted by that node) to its parent node,
and this information is aggregated at each level of the RNT
(hierarchical aggregation). In the work described in this paper,
the only information distributed through the tree is a description
of the maximal amount of each resource available at some node
in the subtree.

We inject a job into the system by mapping it to a randomly
chosen node, which becomes the job’s owner node. This
achieves good initial load balancing by spreading the jobs
randomly across nodes in the system. The owner node then
initiates a search for a run node, which must satisfy the job’s
resource requirements. The search first proceeds through the
subtree rooted at the owner node, only searching up the tree
into subtrees rooted at the ancestors of the owner node if the
subtree does not contain any satisfactory candidates. The search
is pruned using the maximal resource information carried by
the RNT. Rather than stopping at the first candidate capable
of executing a given job, the search proceeds until at least k
capable nodes are found (called extended search). The search
completes by choosing the least loaded of the k nodes to run
the job (as described in Section 3.2). Through experiments not
discussed here, we have determined that a value of five (5) for k
produces robust results with low overhead. Further details about
this search procedure can be found in Kim et al. [13].

3.4. Centralized Matchmaker

To compare against the CAN- and RNT-based matchmaking
algorithms, we have designed an online scheduling mechanism,
called the Centralized Matchmaker, that maintains global
information about the current capabilities and load information
for all the nodes in the system, and so can assign a job to the
node that both satisfies the job constraints and has the minimum
job queue size across all nodes in the entire system (breaking
ties arbitrarily). In our simulation environment, the Centralized
Matchmaker does not incur any cost for gathering the global
information about the nodes in the system and performing
the matchmaking (since the simulator can maintain global
information about all the nodes in the system). Even though
the matchmaking performed by the Centralized Matchmaker is
not always optimal (since it is an online algorithm), it should
provide good load balancing and is a good comparison model
for other matchmaking algorithms [14,15].

We can view the Centralized Matchmaker algorithm as the
extreme case of the RNT- or CAN-based search algorithm,

since it first finds all candidate run nodes that meet the
job constraints and picks the one with the shortest job
queue. However, such a scheme would not be feasible in a
complete system implementation with respect to scalability and
robustness, since the algorithm would incur a large overhead to
find all nodes in the P2P system that meet the job constraints,
and the node performing the centralized algorithm would be a
single point of failure in the system.

4. Performance evaluation

In this section, we evaluate our matchmaking algorithms
in decentralized and heterogeneous environments and present
a comparative analysis of experimental results obtained via
simulations.

4.1. Experimental setup

We use synthetic job and node mixes to simulate the
behavior and measure the performance of both the CAN-
and RNT-based approaches. Our intent is to model a P2P
desktop grid environment with a heterogeneous set of nodes
and jobs. We therefore developed an event-driven simulator
and generated a variety of workloads, each describing a set
of nodes and events. Events include node joins, departures
(graceful or otherwise), and job submissions. The events are
generated using a Poisson distribution with an arrival rate of
1/τ (τ is the average event inter-arrival time and is set to
0.1 s). Jobs can specify constraints for three different resource
types: CPU speed, memory, and disk space. We generated node
profiles using a clustering model to emulate resources available
in a heterogeneous environment, where a high percentage of
nodes have relatively small values for their available resources
and a small fraction of nodes have larger amounts of available
resources [16].

Our first four test workloads are relatively static; no nodes
join or leave during the course of the experiments (after 1000
nodes join the system, 10 000 jobs arrive at the system with
an arrival rate of τ ). The workloads differ on the two axes.
Workloads are categorized as either clustered or mixed (as
described in Section 2). The former divides all nodes and jobs
into a small number of equivalence classes, where all the items
in a given equivalence class are identical. The latter assigns
node capabilities and job constraints randomly. Workloads are
also distinguished by whether the jobs have light or heavy
constraints. For a given job, each type of resource has a fixed
independent probability of being constrained: light jobs have an
average of 1.2 constraints (out of the 3) and heavy jobs have an
average of 2.4. As a job has more resource requirements (heavy
constraints), it is likely to be harder to match the job since fewer
nodes in the system can meet those multiple constraints.

The amount of work W for a job j is generated uniformly
at random from a predefined set of work ranges (200 s on an
average), which means that to run the job j a node must execute
for W time units if it has exactly the same node specification
as does the job j’s constraints. To model the actual running
time of a job, we divide W by the node CPU speed (relative to
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some baseline node CPU speed), to get a run time on the node a
job is assigned to. Finally, for the network communication cost,
the latency of a packet between any two nodes in the system
is modeled by an exponential distribution with a mean of 50
milliseconds.

Our metrics are matchmaking cost (the number of messages
required for finding candidate run nodes by the owner node
of a job), wait time (the amount of time between when a job
is injected and when it actually starts running), and average
queue length, which is the length of the non-preemptive job
queue seen by a job when it is finally assigned to a run
node. Matchmaking cost directly quantifies the messaging cost
needed to perform the matchmaking in a decentralized manner.
Wait time includes the time to perform the matchmaking
algorithm and the time spent waiting in the job queue before
a job is performed. Wait time reflects both protocol overhead
and the quality of the matchmaking results, i.e., load imbalance.
Finally, the distribution of queue lengths provides a direct
measurement of the load balance seen by injected jobs.

We test the CAN approach (CAN, Section 3.2), RNT
approach (RNT, Section 3.3), and the idealized centralized
approach (Centralized, Section 3.4) that uses up-to-date global
information to choose the node with the shortest queue length
from all nodes in the system. We do not include “matchmaking
cost” numbers for the centralized approach because it requires
no messages.

4.2. Experimental results

Fig. 2 shows matchmaking cost (messages), wait time, and
queue length for the clustered workloads, while Fig. 3 shows
the corresponding data for mixed workloads. For the clustered
workloads, the RNT has lower matchmaking costs, but CAN
has lower wait times and smaller queue lengths. The difference
in queue lengths explains the difference in wait times, and
comes from the virtual dimension allowing the nodes in a
cluster to be spread through the CAN space. More specifically,
in the clustered workloads, many nodes have identical resource
capabilities so that the overall CAN space is split along the
virtual dimension. This results in coarse-grained ranges in the
real dimensions, where each node maintains large zones relative
to its own resource capabilities. Therefore, matchmaking in
CAN becomes expensive for jobs that have a small number
of very high resource requirements. However, for jobs that
have more constraints, overall matchmaking performance is
better since jobs with many constraints are more likely mapped
to the right region in the space where many candidate run
nodes are available. However, contrary to the coarse-grained
ranges in the real dimensions, the ranges for virtual dimensions
become fine-grained, which spreads similar jobs uniformly
across multiple nodes in the system to achieve superior load
balancing compared to RNT and close to Centralized (as seen
in Figs. 2(b) and (c)).

The mixed workloads provide a slightly different story.
The matchmaking cost and the wait time for the “heavy”
constraint workload still favor CAN, but CAN’s performance
on the “light” constraint mixed workload is much worse than

(a) Matchmaking cost.

(b) Wait time.

(c) Queue length.

Fig. 2. Performance results for clustered workloads.

that of RNT. Fig. 3(c) shows that queue lengths are much
larger and more varied in CAN than in RNT, implying load
imbalance. To understand why the resulting load imbalance
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(a) Matchmaking cost.

(b) Wait time.

(c) Queue length.

Fig. 3. Performance results for mixed workloads.

is worse than in the clustered case, consider a hypothetical
CAN with only a single real dimension, CPU speed. If most
jobs do not specify CPU requirements (light constraint), their
CPU speed coordinates will have the minimum value in that

dimension. The jobs can still be mostly distributed (via the
virtual dimension) along a line at a single CPU coordinate.
However if most nodes have distinct CPU speeds (mixed node
profiles), the slowest node ends up covering the bulk of the
virtual dimension at low CPU speed, and will become the owner
of a disproportionate number of the jobs, resulting in a hot spot
and load imbalance.

Fig. 4 shows average wait times for three light mixed
dynamic workloads. In these workloads, after 1000 nodes
initially join the system, new nodes join and some existing
nodes depart the system, which overall results in between
10% and 30% of the nodes eventually leaving during the
course of the simulation (the Dynamic III has the highest
node departure rate). Node departures are evenly split between
graceful departures, where a node informs its neighbors before
leaving, and failures, where the neighbors learn of the departure
from the lack of heartbeat messages. For all the three dynamic
workloads the number of jobs is about 10 000, which is similar
to the static workloads, but different sets of nodes are available
in the system at different times, so that we cannot directly
compare across workloads.

The CAN and RNT approaches perform poorly relative to
Centralized because of the need to recover and reconfigure the
network. Although we cannot directly compare results across
the three dynamic workloads (higher departure rates make the
system less stable), the wait times are worse for CAN than for
RNT or Centralized as the overall system becomes more unsta-
ble. Therefore, CAN’s performance appears to be more affected
than RNT’s by increasing the departure rate. Since all of the
dynamic workloads are based on mixed sets of nodes and jobs,
a load imbalance problem similar to the one seen for the CAN
earlier, due to a hot spot in the CAN space, can occur as jobs are
entering the system and being assigned to run nodes. However,
if one of the nodes in the hot spot leaves the system or fails,
that can be disastrous for wait time performance, since all of
the jobs that were running or waiting in the departed node must
be reassigned to live nodes in the system. Since each node in
the hot spot already has a disproportionate number of assigned
jobs, this causes even more severe load imbalance for CAN-
based matchmaking. However, in the RNT approach, since all
of the jobs are assigned to owner nodes by a uniformly random
function, it can achieve more even job allocations compared to
CAN and is affected less by the dynamism of the system.

4.3. Discussion

The RNT and CAN algorithms have different underlying
rationales. The idea motivating the RNT approach is to
balance load by randomizing job assignment, mitigating
the cost of matching demanding jobs by passing static
capacity information across the tree (matchmaking after load
balancing). Job assignment essentially consists of a randomized
mapping, followed by a tree traversal to find a lightly
loaded node capable of running a given job (i.e., meet the
minimum resource requirements of the job). The idea behind
the CAN approach is to first find a node whose capabilities
approximately match the job’s constraints, followed by a local
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Fig. 4. Dynamic workloads.

search among similar nodes to find one that is lightly loaded
(load balancing after matchmaking).

Both the RNT and CAN algorithms can cause poor load
balance in at least two ways. First, the search path (a tree
traversal for RNT and a local search for CAN) may not be
long enough to find existing lightly loaded nodes. However, that
may be a less serious problem for the CAN approach because
each CAN node stores a limited load information for neighbor
nodes. A second potential cause of load imbalance is poor
matches between jobs and nodes (i.e, poor Precision). RNT can
be thought of as a first-fit algorithm; it selects as the run node the
most lightly loaded of a set of randomly chosen nodes, such that
each node meets the minimum job constraints. However, the
chosen run node might be greatly over-provisioned for the job,
and this over-provisioning might not be useful. For example,
over-provisioning in terms of CPU rate may be useful because
it can speed up the execution of a given job, but an extra GB of
memory might not improve execution time, and therefore not be
useful. Meanwhile, other jobs needing the extra memory might
be needlessly queued. In contrast, CAN is more of a best-fit
algorithm (more precise) because the search starts at the node
most closely matching the job’s constraints.

Dynamism of the system also can affect the performance
of CAN and RNT matchmaking mechanisms. Because existing
nodes depart the system, the information carried by the CAN-
and RNT-based mechanisms can be stale compared to the
information maintained for static workloads, and there can
also be some overhead for P2P network recovery. Additionally,
reliable job assignments become more critical in dynamic
environments, as seen from the results for the CAN approach,
where the hot spots in the light mixed workloads become a
problem for load balancing.

5. Related work

Recently there have been several research efforts to combine
P2P and Grid computing techniques to improve the robustness,
reliability and scalability of client–server-based desktop grid
systems [17].

Several groups [18,19] have proposed P2P architectures to
locate and allocate resources in a Grid environment employing
a Time-To-Live (TTL) mechanism. TTL-based mechanisms
are relatively simple but effective to find a resource (that
meets the job constraints) in a widely distributed environment
without incurring too much overhead in the search. However,
such mechanisms may fail to find an appropriate resource on
which to run a given job, even though such a resource exists
somewhere in the network, because of the TTL mechanism
(lack of Completeness).

Studies on encoding static or dynamic information about
computational resources using a DHT hash function for
resource discovery have also been conducted [20–24,14].
Research such as [20–22,24] employs one DHT for each
resource attribute and performs matchmaking for the multi-
attribute queries based on either controlled flooding [20] or
sequential search [21,22], both of which have shortcomings
with respect to search performance when there are a large
number of resource attributes (lack of Low overhead).
Registering all resource attributes in a single DHT, which
enables efficient matchmaking [14,23], can negatively impact
load balancing. A small fraction of the nodes might contain a
majority of the resource information whenever there are many
nodes with very similar (or identical) resource capabilities in
the system (lack of Load balance). Also, simple encoding
of resource information cannot effectively avoid selecting
resources that are over-provisioned with respect to the jobs
(lack of Precision).

The CCOF (Cluster Computing on the Fly) project [15,25]
conducted a comprehensive study of generic searching methods
in a highly dynamic P2P environment to locate idle computer
cycles throughout the Internet. More recent work from the
CCOF group on a peer-based desktop grid system called
WaveGrid, constructed a timezone-aware overlay network
based on CAN to use idle night-time cycles geographically
distributed across the globe [16]. However, the host availability
model in that work is not based on the resource requirements
of the jobs nor the varying capabilities of nodes in the system
(lack of Capability).

Cappello et al. proposed a computational Peer-to-Peer
system called XtremWeb [26], whose aim is to investigate
issues in turning a large scale distributed system into a
parallel computer. The system provides user, administration
and programming interfaces that could be used to harness
simultaneously uncoordinated set of resources. However,
the coordinator component in the XtremWeb architecture,
which performs mediation between clients and workers, is
implemented in a centralized way so is not scalable and robust
as in a P2P-based desktop grid system.

6. Conclusions

In this paper we have described two different approaches
that use P2P protocols to provide job scheduling and resource
matching facilities for desktop grids. The CAN algorithm
produces significantly lower wait times than the RNT approach
over a broad spectrum of workloads. The result is that the
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CAN approach is both more flexible and more efficient, for
the general case where the workload has a great deal of
diversity. However, CAN’s poor performance with the “light
mixed” workload is indicative of a broader problem in the
robustness of the CAN load balancing. While the virtual
dimension feature helps to smooth clumpy job and node
distributions, thereby enabling better matchmaking, it is not
always sufficient.

We are addressing this problem in our ongoing work by
allowing the CAN matchmaking mechanism to push jobs into
underloaded regions of the CAN space [27]. The decision
about whether to push a job uses dynamically aggregated load
information; a fixed amount of current system load information
is propagated along each dimension in the CAN space. If the
overall system is lightly loaded, jobs can also be pushed into
the upper regions of the CAN space, so as to use more capable
nodes in the system. Spreading out jobs via the push mechanism
should allow the CAN algorithm to achieve better load balance
for job assignments in dynamic environments.

Our work up to now has mainly considered continuous
constraints for a job, such as minimum required CPU speed
and memory size. However, we must also deal with discrete
constraints for a job, such as operating system type and version.
These kinds of discrete constraints can make the matchmaking
process more difficult, since we have to find both exact
matches for discrete constraints and approximate matches for
continuous constraints in a single protocol. Also, by introducing
more dimensions in the CAN space, the overall performance of
matchmaking and load balancing can be affected. In particular,
higher dimensions tend to result in shorter paths (both for CAN
routing and for matchmaking) but a greater amount of state to
store at a node. Addressing discrete constraints and their impact
on performance is a subject of future work.

We are in the process of building a prototype system using
CAN-based matchmaking, and will characterize its behavior
on real workloads, via consultation with our application-area
collaborators in astronomy and physics. In the future, we
will measure and report on the behavior of our system for
heterogeneous environments running real applications.
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