Distributed Ranked Search

Vijay Gopalakrishnah, Ruggero Morselfi, Bobby Bhattacharjée Pete Keleher and
Aravind Srinivasah

1 AT&T Labs — Research
2 Google Inc
3 University of Maryland

Abstract. P2P deployments are a natural infrastructure for building distributed
search networks. Proposed systems support locating and retridViresualts,

but lack the information necessary to rank them. Users, howevepramarily
interested in the most relevant results, not necessarily all possibléstesu

Using random sampling, we extend a class of well-known information vedrie
ranking algorithms such that they can be applied in this decentralized setting.
We analyze the overhead of our approach, and quantify how oumsystales
with increasing number of documents, system size, document to nopigimga
(uniform versus non-uniform), and types of queries (rare vepaymilar terms).
Our analysis and simulations show that a) these extensions are efficiésgae
with little overhead to large systems, and b) the accuracy of the results efbtain
using distributed ranking is comparable to that of a centralized implementation

1 Introduction

Search infrastructures often order the results of a queggdpfication-specific notions
of rank. Users generally prefer to be presented with small setsriderd results rather
than unordered sets of all results. For example, a recenglésearch for “HiPC 2007”
matched over 475,000 web pages. The complete set of altsesoauld be nearly use-
less, while a very small set of the top-ranked results woildely contain the desired
web site. Moreover, collecting fewer results reduces theokk bandwidth consumed,
helping the system scale up—to many users, hosts, and dats—#teand down—to
include low-bandwidth links and low-power devices.

Ranking results in a decentralized manner is difficult beealecisions about which
results to return are made locally, but the basis of the dew@srank, is a global prop-
erty. Technically, we could designate one node as beingresiple for ranking all the
search results. Such an approach, however, would restiisipéer receiving an unfair
amount of load. Further, there are the issues of scalahitityfault-tolerance with using
just one node.

The main contribution of this paper is the design and evadnaif a decentralized
algorithm that efficiently and consistently ranks searchits over arbitrary documents.
Our approach is based on approximation techniques usirigranrandom sampling,
and the classic centralized Vector Space Model (VSM) [1]r @sults apply to both
structured and unstructured networks.

Our analysis shows that the cost of our sampling-baseditiigois usually small
andremains constant as the size of the system incre&gepresent a set of simulation

results, based on real document sets from the TREC colle§2ip that confirm our

analysis. Further, the results show that the constantseirptbtocol are low, e.g., the
protocol performs very well with samples from 20 nodes peargon a 5000 node net-
work, and that the approach is robust to sampling erroralrdocument distribution,

and query location.

The rest of the paper is organized as follows. We first presemie background on
ranking in classical information retrieval in Section 2. Wi#en discuss our design for
ranking results in Section 3 and analyze its properties.€ctiSn 4, we present exper-
imental results where we compare the performance of theluistd ranking scheme
with a centralized scheme. We discuss other related workati@h 5 before concluding
in Section 6.

2 The Vector Space Model (VSM)

The Vector Space Model (VSM) is a classic information re@lemodel for rank-
ing results. VSM maps documents and queries to vectors Thdamensional term
space, wheré is the number ofiniqueterms in the document collection. Each term
i in the document! is assigned a weight; 4. The vector for a document is de-
fined asd = (w1,4,w2,4,...,wr,q). A query is also represented as a vecjor=
(w1,4,Wayq,...,wr,q), Whereg is treated as a document.

Vectors that are similar have a small angle between them. US8 this intuition to
compute the set of relevant documents for a given querwaatedocuments will differ
from the query vector by a small angle while irrelevant doeuas will differ by a large
angle. Given two vectorX andY’, the angled between them can be computed using

\/En&:;\?wn =. This equation is also known as the cosine similarity, and
i=1Tj i=1Yi
has been used in traditional information retrieval to idfgrand rank relevant results.

cost =

2.1 Generating Vector Representation

The vector representation of a document is generated by wmgtheweightof each
term in the document. The key is to assign weights such thmatst¢hat capture the
semantics in the document and therefore help in discrinmigdtetween the documents
are given a higher weight.

Effective term weighting formulae have been an area of maskarch (e.g., [3,4]),
unfortunately with little consensus. While any of the comigarsed formulae can be
used with our scheme, we use the weighting formula used iIBMART [5] system as
it has shown to have good retrieval quality in practice:

wpg=Infrq+1)-In (3) Q)

wherew; 4 is the weight of ternt in documentd, f; 4 is the raw frequency of termin
documentl, D is the total number of documents in the collection, &hds the number
of documents in the collection that contain tetm

3 Distributed VSM Ranking

In this section, we present our distributed VSM ranking sgstfor keyword-based
queries. There are three main components needed for rardéngrating a vector rep-
resentation for exported documents, storing the documeciiovs appropriately, and
computing and ranking the query results. We first describeassumed system model
and then discuss each of these components in detail.

3.1 System Model

Our ranking algorithm is designed for both structured andtwctured P2P systems.
Our algorithm constructs an inverted index for each keywand these indexes are dis-
tributed over participating nodes (which are assumed todoperative). Aninverted
index of a keyword stores the list of all the documents having thenked. We as-
sume that the underlying P2P system providésokup mechanism necessary to map
indexes to nodes storing them. While APIs for lookup are add in all structured
systems, we rely on approaches such as LMS [6] and Yappefer[iokup over un-
structured systems. The underlying P2P system dictate hewntexes are mapped to
nodes; structured P2P systems store indexes at a singkiolocahile an index may
be partitioned over many locations in unstructured syst&tash nodeexportsa set of
documents when it joins the system. A set of keywords (byudgfall words in the
document) is associated with the document. The procesgoftixg a document con-
sists of adding an entry for the document in the index astetiaith each keyword.
When querying, users submit queries containing keywordsnaaw specify that only
the highest ranked results be returned. The system then computes tResesults in

a distributed manner and returns the results to the user.

3.2 Generating Document Vectors

Recall that to generate a document vector, we need to assEmhts to each term of
the document. Also recall Equation (1), which is used to cot@phe weight of each
termt¢ in a document. The equation has two components: a local coempon f; 4+ 1,
which captures the relative importance of the term in thegifocument, and a global
componentln(D/D;), which accounts for how infrequently the term is used acatlss
documents. The local component can be easily obtained hbytioguthe frequency of
the word in the document. The global component is statedrind®f the number of
documentsD in the system, and the number of documebishat have the term. We
use random sampling to estimate these measures.

Let V be the number of nodes in the system, @hend D, be as above. We choose
k nodes uniformly at random. This can be done either with ramdalks, in unstruc-
tured systems [6], or routing to a random point in the namespa structured sys-
tems [8]. We then compute the total numberof documents and), of documents
with term¢ at the sampled nodes. For simplicity, we accept that the sende may be
sampled more than once. It is easy to see Bj] = kL andE[D,] = k2t where
E indicates expectation of a random variable. The intuit®ihat, if we take enough

samplesD andD, are reasonabjy close to their expected value. If that isdlse,chen
we can estimat® /D, as— DQ

To derive a sufficient condltlon for this approximation, vsroduce two new quan-
tities. LetM and M, be the maximum number of documents and maximum number of
documents with the term respectively, on a node. We call the estimadresp.D,)
“good”, if it is within a factor of (140) of its expected value. The estimate can be “bad”

with a small probability €).
Theorem 1. Let D, N, k, M be as above. Forany < § < 1 ande > 0, if

3 M
>
k> ZD/N In(2/¢)

then the random variabl® (as defined above) is very close to its mean, except with
probability at most (see [9] for proof). Specifically:

()

kD kD
—9—-—2<D< it _
Pr{(1-0)57 <D< (14+8)5-] > 1 @3)
If we replaceD, M, D with D,, M,, D, the theorem also implies that if
3 M,
>
k> 52 D, /N In(2/€) 4)

then the random variablB, is also a good estimate.
The following observations follow from Theorem 1.:

— Theorem 1 tells us that for a good estimate, the number of kmmeeded does not
depend onV directly, but on the quantitie® /N andD;/N and, less importantly,
on M and M;. This means that as the system size grows, waameed more
samples as long as the number of exported documents (witht}exlso increases.

— If the number of document® is much larger than the system sixeand queries
consist of popular termdf; = 2(NN)), then our algorithm provides performance
with ideal scaling behavior: Sampling a constant numbepoois gives us provably
accurate resultsegardless of the system size

— In practice, documents and queries will contain rare (het,popular) terms, for
whichn(D/D;) may be estimated incorrectly. However, we argue that sutth es
mation error is both unimportant and inevitable. The estiiomais relatively unim-
portant because if the query contains rare terms, then thee eset of results is
relatively small, and ranking a small set is not as importémgeneral, sampling
is a poor approach for estimating rare properties and aterapproaches are re-
quired.

— The number of samples is proportional to the ratios betwbemtaximum and the

'o) /N) This means

that, as the distribution of documents in the system becomﬂxe imbalanced,

more samples are needed to obtain accurate results.

Note that in the special case where the documents are digtdluniformly at ran-
dom, the cost of sampling is significantly decreased becthes@umber of samples
need not be proportional to the maximum numbéiof documents at any node. Please
refer to the companion technical report [9] for more details

Index 1

. 4 P) .
. .
L]] .
e . e e ks d [w
P | w
S Index k3
° ° ° o °
kil
k2 L4
k3 (] °
N . p T
Export_Document(d) Estimate_Global_Weight() Insert(dxr) Index k2

Fig. 1: Various steps in exporting documents and their vector repregenta

3.3 Storing Document Vectors

Document vectors need to be stored such that a query relewvdahe document can
quickly locate them. We store document vectors in disteduinverted indexes. As
mentioned previously, amverted indeXor a keywordt is a list of all the documents
containingt. For each keyword, our system stores the corresponding inverted index
like any other object in the underlying P2P lookup systemisTmoice allows us to
efficiently retrieve vectors of all documents that sharesast one term with the query.

Figure 1 shows the process of exporting a document. We firstrgée the corre-
sponding document vector by computing the term weightsclwhises the procedure
described in section 3.2. Next, using the underlying s®sgtem API, we identify the
node storing the index associated with each term in the dentiand add an entry to
the index. Such entry includes a pointer to the documentlz@ddcument vector.

The details of storing document vectors in inverted indedeggzend on the underly-
ing lookup protocol. In structured systems, given a keywottie index fort is stored
at the node responsible for the key corresponding. tbhe underlying protocol can
be used to efficiently locate this node. A similar approadhgiinverted indexes has
previously been used by [10-13] for searching in structugstems. In unstructured
networks, indexes would need to be partitioned or replatfe7].

Reducing storage cosEo far, we have assumed that each word in the document is a
keyword. Hence an entry is added for the document in the ieglekall the words in the
document. A document, however, will not appear among thdeapresults when its
weights for the query terms are low. Hence, not having theseweight entries in the
index does not reduce the retrieval quality of the top fewltessWe use this intuition to
reduce the cost of propagating and storing vectors in insléke assume that there is

a constant threshold,,,;,,, that determines if the document entry is added to an index.
The vector is not added to the index corresponding to the tefrthe weight oft is
below the thresholdv,,,;,,. Note that the terms with weights below this threshold are
still part of the vector. This heuristic has also been susftdly used in eSearch [10].

3.4 Evaluating Query Results

A query is evaluated by converting it into a vector repreatah, and then comput-
ing the cosine similarity with respect to each “relevanttdment vector. We compute
query vectors using the same techniques used to generatedtment vector. The next

step is to locate the set of relevant documents. For eachdeeyin the query, we use
the lookup functionality provided by the underlying systenidentify the node storing
the index of that keyword. We then compute the cosine siityléetween the query
and each of the document vectors stored in the index. Thissgig a ranking of the
documents available in this index. Finally, we fetch the fopesults computed at each
of the indexes and compute thaion of these result sets. The tdpg-documents in this
union, sorted in the decreasing order of cosine similajtigve us our final result set.

4 Evaluation

In this section, we validate our distributed ranking sysiéasimulation. We measure
performance by comparing the quality of the query resultsrreed by our algorithm
with those of a centralized implementation of VSM.

Experimental setup/Ne use the TREC [2] Web-10G data-set for our documents. We
used the first 100,000 documents in this dataset for our arpats. These 100K doc-
uments contain approximately 418K unique terms. Our defgdtem size consists of
1000 nodes. We use two different distributions of documentr nodes: a uniform
distribution to model the distribution of documents ovetractured P2P system and a
Zipf distribution to model distribution in unstructuredstgms.

Since our large data set (100K documents) did not have quassociated with it,
we generated queries of different lengths. Our default yjget consists exclusively
of terms that occur in approximately 5000 documents. We tetiis query set as the
Qsx query set in our experiments. The intuition behind pickingse query terms is
that they occur in a reasonable number of documents, andesreelpopular. At the
same time, they are useful enough to discriminate docum#/gsalso use query sets
that exclusively contain keywords that are either very pap(occur in more than 10K
documents) or those that are very rare (occur in less thard@60ments). We denote
these query sets d3,,, and Q... respectively. Each result presented (except for
details from individual runs) is an average of 50 runs.

We use three metrics to evaluate the quality of distribugedking:

1. CoverageWe define coverage as the number of #@pquery results returned by
the distributed scheme that are also present in thefapsults returned by a cen-
tralized VSM implementation for the same query. For examiple’re interested
in the top3 results, and the distributed scheme returns the docuniehts, D)
while the centralized scheme returfy, B, C'), then the coverage for this query is
2.

2. FetchWe define fetch as the minimum numbetsuch that, when the user obtains
the set ofR’ results as ranked by the distributed sche®é&contains all the topgs’
results that a centralized implementation would returntfier same query. In the
previous example, if the fourth result returned by the distied case had beds,
then the fetch fork’ = 3 would be 4.

3. Consistency:We define consistency as the similarity in the rank of restdisthe
same query, for different runs using different samples.

NetworkNumber o Top-K results
Setup | Samples 10 | 20] 30] 40] 50
1000 10 [8.49 (1.08)16.99 (1.20}25.30 (1.55)33.68 (2.07)42.28 (2.01)
uniform 20 |8.90(0.99)17.81 (1.04)26.44 (1.26)35.23 (1.87)44.30 (1.82)
50 |9.28(0.82)18.63 (0.82)27.66 (1.04)36.08 (1.45)46.30 (1.46)
5000 10 |6.78(1.39)13.58 (1.74)20.43 (2.39)27.35 (2.99)34.59 (3.40)
uniform| 20 |7-74 (1.29)15.41 (1.46)22.92 (1.96)30.50 (2.47)38.49 (2.58)
50 [8.52(1.09)16.96 (1.18)25.20 (1.56)33.59 (2.11)42.34 (1.98)
1000 10 [8.27 (1.15)16.52 (1.26)24.66 (1.71)32.82 (2.21)41.20 (2.27)
Zipf 20 [8.82(0.99)17.63 (1.06)26.22 (1.35)34.83 (1.93)43.70 (1.88)
50 |9.26 (0.80)18.54 (0.88)27.52 (1.12)36.71 (1.49)46.12 (1.56)
5000 10 [6.09 (1.54)12.29 (1.97)18.58 (2.68)25.01 (3.39)31.67 (3.97)
Zipf 20 |7.34(1.31)14.71 (1.62)21.89 (2.10)29.34 (2.64)36.93 (2.90)
50 |8.41(1.13)16.73 (1.22)24.92 (1.61)33.22 (2.08)41.71 (2.03)

Table 1: Mean and Std. Deviation of coverage with the distributed rankimgnse.

We do not explicitly present network overhead measuresedine cost of the rank-
ing (without counting the cost to access the indexes) isysdveaual to the number of
nodes sampled.

4.1 Coverage

In the first experiment, we measure the coverage of the blig&d retrieval scheme. We
show that by sampling only a few nodes even on a reasonalgly a1stem, our scheme
produces results very close to a centralized implememtatio

In our base result, we use a 1000 node network. The documentaapped uni-
formly to nodes. To compute the global weight of tetmwe sample 10, 20 and 50
nodes in different runs of the experiment. The queries ardi keywords from the
Qsx query set, i.e. the keywords occur in approximately 500Quduents.

The results are presented in Table 1. It is clear from Tablkat the distributed
ranking scheme performs very similar to the centralizedlém@ntation. On a 1000
node network with documents distributed uniformly, the maacuracy for the togs
results is close to 93% with 50 random samples. Even with h@lom samples, the
results are only slightly worse at 85% accuracy.

With 5000 nodes, the retrieval quality is not as high as a agtwith 1000 nodes.
With 20 random samples, the mean accuracy is 77% forfosults. There is a 8%
increase in mean accuracy when we increase the sampling@ladeisit 1% (50) of the
nodes. This result is a direct consequence of Theorem 1, Hieraumber of documents
has remained the same, but the number of nodes has incrétmsak, higher number
of nodes sampled leads to better estimates.

Table 1 also shows the retrieval quality for documents mdgpenodes using a
Zipf distribution with parameter 0.80. With 1000 nodes afdsamples, the retrieval
quality is similar to that of the uniformly distributed cad#ith 10 samples, however,
the mean accuracy drops a few percentage points to betwe&3% With 5000 nodes
and 50 samples, we see similar trends. While the quality isseajood as it is with

100

100 T
10 Samples

20 Samples - 20 Samples -

50 Samples 50 Samples

10 Samplés

80 80

60 60

40 40 -

of results to be fetched
of results to be fetched

20 Optimal 20 - Optimal

0 iO 2‘0 310 4‘0 50 0 iO 2‘0 310 4‘0 50
top-K centralized results top-K centralized results
Fig. 2: Average fetch of the distributed rankFig. 3: Average fetch of the distributed rank-

ing scheme with 1000 nodes. The error bairsgg scheme with 5000 nodes. The error bars
correspond to 95% confidence interval. correspond to 95% confidence interval.

the uniformly distributed data, it does not differ by moreth2%. With 10 samples,
the results worsen by about much as 7%. Hence, we believeebanse can be applied
over lookup protocols on unstructured networks withoutrapjable loss in quality.

4.2 Fetch

Given the previous result, an obvious question to ask is hamymesults need to be
fetched before all the top< results from the centralized implementation are available
(we called this measure Fetch). We experiments with bott® @ 5000 nodes with
the documents uniformly distributed. We used g, query set for our evaluation. We
plot the result in Figures 2 and 3. The x-axis is the fmf results from the centralized
implementation, while the y-axis represents the corredpmnaverage fetch.

With a 1000 node network, we see that fetch is quite small @enly ten nodes
are sampled. For instance, sampling 10 nodes, we need 1&resmatch the top-10
results of the centralized case. With samples from 50 nddes) is minimal even for
less relevant documents: we need 11 entries to match theedesp-10 results and 63
to match the top-50 results from the centralized implenténta

As expected, with increasing network size, but same doctsetn the fetch in-
creases. When we sample 1% of the 5000 nodes, we need 13 tesdt®r the top-10
and 88 to cover the top-50. With lesser sampling, howeveneesl to fetch a lot more
results to cover the tope. This behavior, again, is predicted by Theorem 1: when the
number of nodes increases without a corresponding inclieattee number of docu-
ments, the samples needed to guarantee a bound on samptingleo increases.

Other experiments indicate similar results when the documistribution is skewed.
We merely summarize those results here. With a 1000 nodeonetand 10 random
samples, the fetch increases by 10% compared to the netwekewdocuments are
mapped uniformly to nodes. In a 5000 node network, this mees by 35% compared
to the uniform case. The results in both the network sizeh &t random samples,
however, are comparable to the uniform case.

‘ run5

== run 4
s

Tt Network Top-K results

"1 ne Setup [10| 20 | 30 | 40 | 50
Slhne 500 nodes7.7516.1125.0833.6242.24
1000 nodefy.9916.3324.5§32.9841.59
] 5322 2000 nodes.6715.8523.9632.0040.11
Junz 5000 nodef.9515.21,22.9930.6638.85

5 10 15 20 2 % % 40 45 0
centralized result rank Table 2: Mean coverage when the number of

]) _ nodes and documents scale proportionally.
Fig. 4: Consistency of top-50 results in dis-

tributed ranking for three different queries
from Qs set

4.3 Consistency

In our system, a new query vector is generated each time g dguevaluated. This
leads to different weights being assigned to the terms duiffierent evaluations of the
same query. This can increase the variance in ranking, atehipally lead to different
results for different evaluations of the query. In this expent, we show that is not the
case, and that the results are minimally affected by themdifft samples.

We use a network of 1000 nodes with documents mapped unifjdothese nodes.
We sample 20 random nodes while computing the query vec®ustl)s ;- and record
the top-50 results for different runs and compare the resadfainst each other and
against the centralized implementation.

Figure 4 shows the results obtained during five represeetatins for three repre-
sentative queries each. For each run, the figure includesali box corresponding to
a document ranked in the top-50 by centralized VSM if and dfrtlyis document was
retrieved during this run. For example, in Figure 4, queryuh, 2 retrieved documents
rankedl ... 25, but did not return the document ranked 26 in its top 50 res@itso,
note that the first 25 centrally ranked documents need na&ssacily be ranked exactly
in that order, but each of them were retrieved within the 56p-

There are two main observations to be drawn: first, the saigploes not adversely
affect the consistency of the results, and different rumsrneessentially the same re-
sults. Further, note that these results show that the cgees&the top results is uni-
formly good, and the documents that are not retrieved arengéiy ranked towards the
bottom of the top-50 by the centralized ranking. In fact, taded analysis of our data
shows that this trend holds in our other experiments as well.

4.4 Scalability

In this experiment, we evaluate the scalability of our schemith increasing system
size. Theorem 1 states that the number of samples requiradapendent of the sys-
tem size, under the condition that the size of the documergreess proportionally to

the number of nodes. We demonstrate this fact by showingcthatrage remains ap-

Welght QSK onp Qrure
Threshold 10 30 50|10 30 50|10 30 50
0.0 (0.0) [8.90 26.44 44.38.32 26.31 44.48.59 26.01 44.47
0.05 (55.5)8.90 26.44 44.3/8.33 26.32 44.48.50 26.01 44.47
0.10 (85.0)8.90 26.40 44.2[8.32 26.17 43.8B.59 26.01 43.54
0.20 (97.2)7.64 20.43 30.9/6.39 17.90 26.7/8.46 21.41 28.43
0.30(99.3)4.53 7.98 8.882.79 6.84 9.9(}@.66 9.78 9.99
Table 3: The mean coverage of distributed ranking for different wekglsholds. The numbers in
parenthesis show the reduction in the size of the indexes correspondiedifferent thresholds.

proximately constant as we increase the system size ter(ffom 500 to 5000), while
sampling the same number of nodes (20).

The number of documents in each experiment is 20 times théeaunf nodes in
the system. For all the configurations, the terms used inggieccur in more than 10%
of the total documents. For the 5000 node network, this spoads to the),., query
set. In each case, we sample 20 random nodes to estimat®bs gkights.

Table 2 shows the mean coverage of our distributed schentbeAable shows, the
coverage of the distributed retrieval is very similar in moases. This result confirms
that our scheme depends almost entirely on the density aidh#her documents per
node, and that it scales well as long as the density remaiikasi

4.5 Reducing storage cost

Recall our optimization to store document vectors only ia thdexes of keywords
whose weights are greater than a threshojgl,,. In this experiment, we quantify the
effect of this optimization. For this experiment, we usedcework of 1000 nodes with
documents distributed uniformly at random over the nodes.ugé all the three query
sets and sample 20 nodes to estimate the weights. Note thmatrwalize the vectors; so
the term weights range between 0.00 and 1.00. We presefisrsithresholds ranging
from 0.00 to 0.30. We compare the results retrieved from émgralized implementation

The results of this experiment are tabulated in Table 3. Gmeof distributed rank-
ing is not adversely affected when the threshold is set t6 6r@®.10. However, larger
thresholds (say 0.20 and above) discard relevant entrids;@sequently decrease rank
quality appreciably. In order to understand the reductibtamed by using the thresh-
old, we recorded the total number of index entries in theesyistor each threshold.
The total number of index entries in our system is 15.9M whenthreshold is 0.0.
Our experiments show a reduction of 55.5% entries when weaubkeeshold of 0.05.
Increasing the threshold to 0.1 leads to an additional 308@aatéon in index size. A
threshold value of 0.1 seems to be a reasonable trade-ofEebatsearch quality and
decreased index size.

5 Related Work

Work related to ours can be broadly classified into work thed been done in the
realm of classic information retrieval and more recentlytia area of search over P2P

systems. We present a brief description (for lack of spaeed but refer the reader to
the companion Technical Report [9] for an extended disonssi related work.

Classic Information RetrievalCentralized information retrieval and automatically or-
dering documents by relevance has long been an area of msearch. We discussed
the Vector Space Method [1] in Section 2. Latent Semantieximd) (LSI) [14] is an ex-
tension to VSM that attempts to eliminate the issues of symsrand polysemy. While
there are techniques to implement PageRank [15] in a digéibsetting (e.g., [16]), it
cannot be applied on an arbitrary document set because laidkef hyper-links. Fagin
et al.’s Threshold Algorithm (TA) [17] can also be used to puie the topK results.

Distributed Search over P2P systenihe idea of using Vector Space Methods has
been applied previously in the context of P2P search. FPafidd] is a content-based
search scheme that uses VSM. Nodes store vectors locallgossip digests of their
local content. Queries are evaluated by rankingrtbdesfirst and then evaluating the
query using VSM at the top-ranked nodes. pSearch [19] uséd %% LSI to gen-
erate document and query vectors, and maps these vectorhigh-alimension P2P
system. Bhattacharya et al. [20] use similarity-preseytiashes (SPH) and the cosine
similarity to compute similar documents owemy DHT. Odissea [21], a P2P distributed
search infrastructure, proposes to make use of TA to rankckseasults. None of these
schemes, however, discuss how to compute the vectors, vehiothk of our work.

6 Conclusions

In this paper, we have presented a distributed algorithnnafioking search results. Our
solution demonstrates that distributed ranking is feasitith little network overhead.
Unlike previous work, we do not assume that the documentoveare provided to
the system. Instead, our algorithm computes such vectorssing random sampling
to estimate term weights. Through simulations and formalyasis, we show that the
retrieval quality of our approach is comparable to that oéatralized implementation
of VSM. We also show that our approach scales well under thsomable condition
that the size of the document set grows with the number ofiode

7 Acknowledgments

We thank Divesh Srivastava for his comments and suggesfltnms work was partially
supported by NSF awards CCR-0208005, CNS-0626636, and NSFRWward CNS-
0426683. Bobby Bhattacharjee was also supported in part fgflavship from the
Sloan Foundation.

References

1. Salton, G., Wong, A., Yang, C.: A vector space model for infdaramaretrieval. Journal of
the American Society for Information Retrieves(11) (1975) 613-620

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. TREC: Text REtrieval Conference. http://trec.nist.gov/ ()
. Dumais, S.T.: Improving the retrieval of information from extersaiirces. Behavior Re-

search Methods, Instruments, and Compu2&) (1991) 229-236

. Salton, G., Buckley, C.: Term-weighting approaches in automaticeéigval. Information

Processing and Manageme(5) (1988) 513-523

. Buckley, C.: Implementation of the SMART information retrieval systdechnical report,

Dept. of Computer Science, Cornell University, Ithaca, NY, USA &)98

. Morselli, R., Bhattacharjee, B., Srinivasan, A., Marsh, M.A. fidignt lookup on unstruc-

tured topologies. In: Proceedings of the 24th symposium on Principldsiibuted com-
puting (PODC’05), New York, NY, USA (2005) 77-86

. Ganesan, P, Sun, Q., Garcia-Molina, H.: Yappers: A peeets-fpokup service over ar-

bitrary topology. In: 22nd Annual Joint Conf. of the IEEE Computedl @ommunications
Societies (INFOCOM), San Francisco, USA (2003)

. King, V., Saia, J.: Choosing a random peer. In: Proceedingseo81d symposium on

Principles of distributed computing (PODC '04), New York, NY, USA (20225-130

. Gopalakrishnan, V., Morselli, R., Bhattacharjee, B., KeleherSfhnivasan, A.: Ranking

search results in peer-to-peer systems. Technical Report CSFTR-Wniversity of Mary-
land, College Park, MD (2006)

Tang, C., Dwarakadas, S.: Hybrid global-local indexing focifit peer-to-peer information
retrieval. In: Proceedings of USENIX NSDI '04 Conference, SaanBisco, CA (2004)
Gopalakrishnan, V., Bhattacharjee, B., Chawathe, S., KeléherEfficient peer-to-peer
namespace searches. Technical Report CS-TR-4568, Univefsitaryland, College Park,
MD (2004)

Reynolds, P., Vahdat, A.: Efficient peer-to-peer keywordchéag. In: Proceedings of
IFIP/ACM Middleware. (2003)

Loo, B.T., Hellerstein, J.M., Huebsch, R., Shenker, S., Stbicenhancing P2P file-sharing
with an internet-scale query processor. In: Thirtieth International &enice on Very Large
Data Bases (VLDB '04), Toronto, Canada (2004) 432—-443

Deerwester, S., Dumais, S., Landauer, T., Furnas, G.hhtanis, R.: Indexing by latent
semantic analysis. Journal of the American Society for Informationn8eié1(6) (1990)
391-407

Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerankioitaalgorithm: bringing
order to the web. Technical report, Dept. of Computer Science, Sthbfioiversity (1999)
Wang, Y., DeWitt, D.J.: Computing PageRank in a distributed inteessich engine sys-
tem. In: Thirtieth International Conference on Very Large Data Bage®B '04), Toronto,
Canada (2004) 420-431

Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithmsriatdleware. Journal of
Computer and System Sciences (JC6&)}) (2003) 614—656

Cuenca-Acuna, F.M., Peery, C., Martin, R.P., Nguyen,: TBlanetP: Using Gossiping to
Build Content Addressable Peer-to-Peer Information Sharing Cortiesinn: Proceedings
of the 12th Symposium on High Performance Distributed Computing (HRRCIEEE
Press (2003)

Tang, C., Xu, Z., Dwarkadas, S.: Peer-to-peer informatitiieral using self-organizing
semantic overlay networks. In: Proceedings of ACM SIGCOMM ’'03;lgtahe, Germany,
ACM Press (2003) 175-186

Bhattacharya, |., Kashyap, S.R., Parthasarathy, S.: Simila#ycking in peer-to-peer
databases. In: Proceedings of the 25th International Conferenbéstiibuted Computing
Systems (ICDCS’05). (2005) 329—-338

Suel, T., Mathur, C., Wu, J., Zhang, J., Delis, A., Kharrazi, Mng, X., Shanmugasun-
daram, K.: Odissea: A peer-to-peer architecture for scalable weststs@nd information
retrieval. In: 6th International Workshop on the Web and Databases[® (2003)

