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Meta-computing is an increasingly popular and useful method of obtaining resources to solve large computa-
tional problems. However, meta-computer environments pose a number of unique challenges, many of which 
have yet to be addressed effectively. Among these are dynamicism in both applications and environments, and 
heterogeneity at several different levels.  

This chapter discusses current approaches to these problems, and uses the in the Active Harmony system as a 
running example. Harmony supports an interface that allows applications to export tuning alternatives to the 
higher-level system. By exposing different parameters that can be changed at runtime, applications can be 
automatically adapted to changes in their execution environment caused by other programs, the addition or de-
letion of nodes, or changes in the availability of resources like communication links. Applications expose not 
only options, but also expected resource utilization with each option and the effect that the option will have on 
the application’s performance. We discuss how this flexibility can be used to tune the overall performance of a 
collection of applications in a system.  
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1. Introduction 
Meta-computing, the simultaneous and coordinated use of semi-autonomous computing resources in physically 

separate locations, is increasingly being used to solve large-scale scientific problems. By using a collection of 

specialized computational and data resources located at different facilities around the world, work can be done 

more efficiently than if only local resources were used. However, the infrastructure needed to efficiently support 

this type of global-scale computation is not yet available. 

Private workstations connected by a network have long been recognized for use with computation inten-

sive applications. Since a large fraction of the time workstations are unused, idle cycles can be harnessed to run 

scientific computations or simulation programs as a single process or a parallel job. The usefulness of this ap-

proach depends on 1) how much time the machines are available and 2) how well those available resources can 

be harnessed.  

Mutka and Livny [1] found that on the average, 75% of the time machines were idle. Similarly, Krueger 

and Chawla [2] demonstrated that for 199 diskless Sun Workstations on average the nodes were idle 91% of the 

time and that only 50% of those idle cycles were made available for background jobs. The other half of the idle 

cycles could not be harnessed since they belonged either to intervals when the workstation owners were using 

their machines or during a waiting period to ensure that users were away. More recently, Acharya et al [3] also 

observed that 60% to 80% of the workstations in a pool are available by analyzing machine usage traces from 

three academic institutions. 

Both meta-computer environments and the applications that run on them can be characterized by distribu-

tion, heterogeneity, and changing resource requirements and capacities. These attributes make static approaches 

to resource allocation unsuitable. Systems need to dynamically adapt to changing resource capacities and appli-

cation requirements in order to achieve high performance in such environments. The canonical way to run appli-

cations in current meta-computing environments is to pass the application’s name, parameters, and number of 

required nodes to the system, and to hope for the best. The execution environment (hardware and system soft-

ware) is expected to run the program efficiently with little or no information from the application about the ap-

plication’s needs or expectations.  This model of application and system interaction is simple, and allows many 

applications to run well. 

However, this model does not accommodate the full generality of application-system interactions required 

by current applications. In particular, an application may wish to alter its resource requests based on knowledge 

of available resources. For example, a multi-media application might alter its resolution or frame rate based on 

available bandwidth. Second, computational resources are not always static and fixed for the life of an applica-

tion. For example, an application might be running on a system that batch schedules jobs onto idle workstations.  

To address the needs for these types of applications, the interface between applications and the execution envi-

ronment needs to change.  In this chapter, we present our approach to enhancing the application-system inter-

face. 
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Most previous approaches to adapting applications to dynamic environments required applications to be 

solely responsible for reconfiguration to make better use of existing resources. While the actual means that ap-

plications use to reconfigure themselves are certainly application-specific, we argue that the decisions about 

when and how such reconfigurations occur are more properly made in a centralized resource manager. 

Moving policy into a central manager serves two purposes. First, it accumulates detailed performance and 

resource information into a single place. Better information often allows better decisions to be made. Alterna-

tively, this information could be provided directly to each application. Problems with this approach include du-

plicated effort and possible contention from the conflicting goals of different applications. More importantly, 

however, a centralized manager equipped with both comprehensive information on the system’s current state, 

and knobs to permit run-time reconfiguration of  running applications, can adapt any and all applications in or-

der to improve resource utilization.  

For example, consider a parallel application whose speedup improves rapidly up to six nodes, but im-

proves only marginally after that. A resource allocator might give this application eight nodes in the absence of 

any other applications since the last two nodes were not being used for any other purpose. However, when a new 

job enters the system, it could probably make more efficient use of those two nodes. If decisions about applica-

tion reconfiguration are made by the applications, no reconfiguration will occur. However, a centralized deci-

sion-maker could infer that reconfiguring the first application to only six nodes will improve overall efficiency 

and throughput, and could make this happen. 

We target long-lived and persistent applications. Examples of long-lived applications include scientific 

code and data mining applications. Persistent applications include file servers, information servers, and database 

management systems. We target these types of applications because they persist long enough for the global en-

vironment to change, and hence have higher potential for improvement. Our emphasis on long-lived applications 

allows us to use on relatively expensive operations such as object migration since and application re-

configuration since these operations can be amortized across the relatively long life of the application.  

The focus of this chapter is on the interface between applications and the system. Specifically, we ask the 

following questions:  

1) Can we build an API that is expressive enough to define real-world alternatives? 

2) Can a system use this information to improve the behavior of applications during execution? 

3) How can we make accurate predictions of parallel and distributed applications? 

We use the Active Harmony system as a running example of a resource manager that can make the trade-

offs discussed above. However, our intent is to foster a more general dialogue about the role of sophisticated 

resource managers, heterogeneous clusters, and tradeoffs between autonomy and efficiency. Other projects such 

as AppLeS, Condor, Globus, and Legion provide similar functionality with somewhat different abstractions. 

Section 5 describes these systems in more detail. 
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The remainder of this chapter is organized as follows.  Section 2 presents an overview of Harmony and de-

scribes how it facilitates cooperation between applications and system software.  Section 3 describes several 

sub-systems that extend Harmony by performing sophisticated application adaptation. Section 4 describes how 

information about the execution environment can be gathered for use at runtime. Section 5 describes additional 

work related to dynamic resource management. Finally, Section 6 summarizes the issues raised in this chapter. 

2. Harmony structure 
Harmony applications are linked with a Harmony communication library. Each library communicates with the 

centralized Harmony scheduler process, which runs on one node in the system. The overall system is shown in 

Figure 1, and the major components are described below.  

The adaptation controller is the heart of the scheduler. The controller gathers relevant information about 

both the applications and the environment, projects the effects of proposed changes (such as migrating an ob-

ject) on the system, and weigh competing costs and expected benefits of making various changes.  

Active Harmony provides mechanisms for applications to export tuning options, together with information 

about the resource requirements of each option, to the adaptation controller. The adaptation controller then 

chooses among the exported options based on more complete information than is available to individual objects. 

A key advantage of this technique is that the system can tune not just individual objects, but also entire collec-

tions of objects. Possible tuning criteria include network latency and bandwidth, memory utilization, and proc-

essor time. Since changing implementations or data layout could require significant time, Harmony’s interface 

includes a frictional cost function that can be used by the tuning system to evaluate if a tuning option is worth 

the effort required.  

The scheduler uses a metric interface to provide a unified way to gather data about the performance of ap-

plications and their execution environment. Data about system conditions and application resource requirements 

flow into the metric interface, and on to both the adaptation controller and individual applications.  
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Figure 1: Major Components of Active Harmony 
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The library stubs communicate with application through a tuning interface. The tuning interface provides a 

method for applications to export tuning options to the system. Each tuning option defines the expected con-

sumption of one or more system resources. The options are intended to be “knobs” that the system can use to 

adjust applications to changes in the environment. The main concern in designing the tuning interface is to en-

sure that it is expressive enough to describe the effects of all application tuning options. 

2.1 Application to system API 

This section describes the interface between applications and the Harmony adaptation controller (hereafter re-

ferred to as “Harmony”). Applications use the API to specify tuning options to Harmony. Harmony differs from 

previous systems like Matchmaker [4] and the Globus RSI [5] in that it uses simple performance models to 

guide allocation decisions. These models require more application information than previous systems. While 

previous systems might accept requests for “a machine and a network,” Harmony requires each resource usage 

to be specifically quantified. This is necessary because Harmony uses performance prediction to optimize an 

overall objective function, usually system throughput. Estimates of resource usage are employed to build simple 

performance models that can then predict the interaction of distinct jobs. Performance models give Harmony the 

ability to make judgements of the relative merits of distinct choices. 

Harmony’s decision-making algorithm can also consider allocation decisions that require running applica-

tions to be reconfigured. Hence, applications that are written to the Harmony API periodically check to see 

whether Harmony has reconfigured the resources allocated to them. 

We therefore require our tuning option API to have the following capabilities. First, it must be able to ex-

press mutually exclusive choices on multiple axises. These options can be thought of as a way of allowing Har-

mony to locate an individual application in n-dimensional space, such that the choice corresponding to each di-

mension is orthogonal. 

Second, the interface must provide a means to specify the resource requirements of different options. For 

example, we need to be able to represent that a given option requires X cycles and Y amount of network band-

width. However, the “X cycles” is problematic to express. Cycle counts are only meaningful with reference to a 

particular processor, such as “20 minutes of CPU time on a UltraSparc 5.” To circumvent this problem, we spec-

ify CPU requirements with reference to an abstract machine, currently a 400 MHz Pentium II. Nodes then ex-

press their capacity as a scaling factor compared to the reference machine. Similar relative units of performance 

have been included in systems such as PVM [6]. 

Third, the tuning options must be able to express relationships between entities. For example, we need to 

be able to express “I need two machines for 20 minutes, and a 10Mbps link between them.” Note that the link 

can be expressed relative to the machines, rather than in absolute terms. The system must therefore be able to 

understand the topology of the system resources, such as network connections between machines, software ser-

vices, etc. 
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Fourth, the interface must be able to represent the granularity at which the modification can be performed. 

For example, an iterative data-parallel HPF Fortran application might be able to change the number of proces-

sors that it exploits at runtime. However, this adaptation can probably only be performed at the completion of an 

outer loop iteration. 

Fifth, we need to express the frictional cost of switching from one option to another. For example, once the 

above data-parallel HPF application notices the change request from Harmony, it still needs to reconfigure itself 

to run with the new option. If two options differ in the number of processors being used, the application will 

likely need to change the data layout, change the index structures, and move data among nodes to effect the re-

configuration. This frictional cost is certainly not negligible, and must be considered when making re-allocation 

decisions. 

Finally, each option must specify some way in which the response time of a given application choice can 

be calculated by the system. This specification may be either explicit or left to the system. In the latter case, 

Harmony uses a simple model of computation and communication to combine absolute resource requirements 

into a projected finishing time for an application. An explicit specification might include either an expression or 

a function that projects response time based on the amount of resources actually allocated to the application. 

2.1.1 The Harmony RSL 

The Harmony resource description language (RSL) provides a uniform set of abstractions and syntax that can be 

used to express both resource availability and resource requirements. The RSL consists of a set of interface rou-

tines, a default resource hierarchy, and a set of predefined tags that specifies quantities used by Harmony. The 

RSL is implemented on top of the TCL scripting language [7]. Applications specify requirements by sending 

TCL scripts to Harmony, which executes them and sends back resource allocation descriptions. An example of 

one such script is shown in Figure 2. 

Tag Purpose 

harmonyBundle Application bundle. 

 node Characteristics of desired node (e.g., CPU speed, memory, OS, etc.) 

 link Specifies required bandwidth between two nodes. 

 communication Alternate form of bandwidth specification. Gives total communication re-
quirements of application, usually parameterized by the resources allocated 
by Harmony (i.e., a function of the number of nodes). 

 performance Override Harmony’s default prediction function for that application. 

 granularity Rate at which the application can change between options. 

 variable Allows a particular resource (usually a node specification) to be instantiated 
by Harmony a variable number of times. 

harmonyNode Resource availability. 

 speed Speed of node relative to reference node (400 MHz Pentium II). 

Table 1: Primary tags in Harmony RSL 
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Several things make TCL ideal for our purposes. First, it is simple to incorporate into existing applications, 

and easily extended. Second, TCL lists are a natural way to represent Harmony's resource requirements. Finally, 

TCL provides support for arbitrary expression and function evaluation. The latter is useful in specifying para-

metric values, such as defining communication requirements as a function of the number of processors. More to 

the point, much of the matching and policy description is currently implemented directly in TCL. Performance is 

acceptable because recent versions of TCL incorporate on-the-fly byte compilation, and updates in Harmony are 

on the order of seconds not micro-seconds. 

The following summarizes the main features of the RSL: 

Bundles: Applications specify bundles to Harmony. Each bundle consists of mutually exclusive options for tun-

ing the application’s behavior. For example, different options might specify configurations with different 

numbers of processors, or algorithm options such as table-driven lookup vs. sequential search.  

Resource requirements: Option definitions describe requested high-level resources, such as nodes or commu-

nication links. High-level resources are qualified by a number of tags, each of which specifies some character-

istic or requirement that the resource must be able to meet. For example, tags are used to specify how much 

memory and how many CPU cycles are required to execute a process on a given node. 

Performance prediction: Harmony evaluates different option choices based on an overall objective function. 

By default, this is system throughput. Response times of individual applications are computed as simple com-

binations of CPU and network requirements, suitably scaled to reflect resource contention. Applications with 

more complicated performance characteristics, provide simple performance prediction models in the form of 

TCL scripts. 

Naming: Harmony uses option definitions to build namespaces so that the actual resources allocated to any op-

tion can be named both from within the option definition, and from without.  A flexible and expressive nam-

ing scheme is crucial to allowing applications to specify resource requirements and performance as a function 

of other resources. More detail on the naming scheme is presented below. 

Table 1 lists the primary tags used to describe available resources and application requirements. The “harmony-

Bundle” function is the interface for specifying requirements. The “harmonyNode” function is used to publish 

resource availability. 

2.1.2 Naming 

Harmony contains a hierarchical namespace to allow both the adaptation controller and the application to share 

information about the current instantiated application options and about the assigned resources. This namespace 

allows applications to describe their option bundles to the Harmony system, and also allows Harmony to change 

options.  

The root of the namespace contains application instances of the currently active applications in the system. 

Application instances are two part names, consisting of an application name and a system chosen instance id. 
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The next level in the namespace consists of the option bundles supported by the application. Below an option 

bundle are the resource requirements for that option, currently just nodes and links. In addition, nodes contain 

sub-resources such as memory, CPU, I/O etc.  Links currently contain only bandwidth estimates. An example of 

a fully qualified name would be: 
appliction.instance.bundle.option.resourcename.tagname 

For example, if the client in Figure 3 was assigned instance ID 66 by Harmony, the tag describing the memory 

resources allocated to the client of the data-shipping option would: 
DBclient.66.where.DS.client.memory.   

2.1.3 Simple parallel application 

We next show the expressiveness of Harmony’s interface. Our first example is shown in Figure 2 (a). “Simple” 

is a generic parallel application that runs on four processors. There are two high-level resource requests. The 

first specifies the required characteristics of a worker node. Each node requires 300 seconds of computation on 

the reference machine and 32 Mbytes of memory. The “variable” tag specifies that this node definition should 

be used to match four distinct nodes, all meeting the same requirements. Second, we use the “communication” 

tag to specify communication requirements for the entire application. Since specific endpoints are not given, the 

system assumes that communication is general and that all nodes must be fully connected. 

2.1.4 Variable parallelism 

Our second application, “Bag”, is a parallel application that implements an application of the “bag-of-tasks” 

paradigm. The application is iterative, with computation being divided into a set of possibly differently-sized 

tasks. Each worker process repeatedly requests and obtains tasks from the server, performs the associated com-

putations, returns the results to the server, and requests additional tasks. This method of work distribution allows 

the application to exploit varying amounts of parallelism, and to perform relatively crude load-balancing on 

arbitrarily-shaped tasks. 

Bag’s interface with Harmony is shown in Figure 2 (b). There are three additional features in this example. 

First, bag uses the “variable” tag to specify that the application can exploit 1, 2, 4, or eight worker processes. 

Assuming that the total amount of computation performed by all processors is always the same, the total number 

harmonyBundle Simple - { 
  {- {node "worker" 
  {hostname  "*"} 
      {os "linux"} 
  {seconds  "300"} 
  {memory 32}} 
 {variable worker “node” 4}}
 {communication "2 + 2 * 4"} 
 }} 

harmonyBundle bag howMany { 
{default {node "worker" 

 {hostname "*"} 
 {os "linux"} 
 {seconds "200/workerNodes"} 
 {memory  {32}}} 

{variable worker "workerNodes" 1 2 4 8} 
{communication "2 + 2 * workerNodes * workerNodes"} 
{performance {[interp workerNodes {1 1e5} {4 3e4} {8 2e4}]

}} 

(a) simple parallel application (b) bag-of-tasks application 

Figure 2: Harmonized applications 
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of cycles in the system should be constant across different numbers of workers. Hence, we parameterize “sec-

onds” on the “workerNodes” variable defined in the “variable” tag.  

Second, we use the “communication” tag to specify the overall communication requirements as a function 

of the number of processors assigned. The bandwidth specified by the communication tag defines that band-

width grows as the square of the number of worker processes. Hence, “Bag” is an example of a broad domain of 

applications in which communication requirements grow much faster than computation. 

Third, we use the “performance” tag to tell Harmony to use an application-specific prediction model rather 

than its default model. The “performance” tag expects a list of data-points that specify the expected running time 

of the application when using a specific number of nodes. Rather than requiring the user to specify all of the 

points explicitly, Harmony will interpolate using a piecewise linear curve based on the supplied values. 

Other ways of modeling costs could also be useful. For example, a somewhat more accurate model of 

communication costs is CPU occupancy on either end (for protocol processing, copying), plus wire time [8]. If 

this occupancy is significant, cycles on all worker processes would need to be parameterized based on the 

amount of communication.  

2.1.5 Client-server database 

Our third example is that of Tornadito, a hybrid relational database [9]. The database consists of clients and 

servers, with the distinction being that queries are submitted at clients and the data resides at servers. Queries 

can execute at either place. In fact, this is the main choice the application bundle exports to Harmony. We as-

sume a single, always available server and one or more clients. The interface to Harmony is handled entirely by 

the clients. Each client that has queries to execute contacts Harmony with a choice bundle. The bundle consists 

of two options: query-shipping, in which queries are executed at the server, and data-shipping, where queries 

are executed at the client. Each option specifies resource usage on behalf of both the client and the remote 

server. Although there is no explicit link between clients, Harmony is able to combine server resource usage on 

behalf of multiple independent clients in order to predict total resource consumption by the server. 

Figure 3 shows one possible bundle specification. The DBclient application specifies a bundle named 

“where,” with two options: QS (query-shipping), and DS (data-shipping). In either case, cycles and memory are 

consumed at both the client and the server, and bandwidth is consumed on a link between the two. The distinc-

tion is that “QS” consumes more resources at the server, and “DS” consumes more at the client. All other things 

being equal, the query-shipping approach is faster, but consumes more resources at the server.  Each option 

specifies two node resources, and a network link between the two. All numeric arguments are total requirements 

for the life of the job. Both assume that the server is at “harmony.cs.umd.edu”. Clients and servers can locate 

each other given a machine name. Additionally, the nodes are qualified by “seconds”, meaning the total ex-

pected seconds of computation on our reference machine, and “memory,” which specifies the minimum amount 

of memory needed.  
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Both options specify the nodes equivalently. The names “server” and “client” are used within the option 

namespace to identify which node is being referred to. For example, the “link” option specifies the total com-

munication requirements between “server” and “client”, without needing to know at application startup exactly 

which nodes are being instantiated to these names. 

In addition to basic functionality, the example illustrates two relatively sophisticated aspects of Harmony’s 

resource management. First, resource usage is higher at the server with query-shipping than data-shipping. This 

allows the system to infer that server load grows more quickly with the number of clients with query-shipping 

than with data-shipping. At some number of clients, the server machine will become overloaded, resulting in 

data-shipping providing better overall performance. The specification does not require the same option to be 

chosen for all clients, so the system could use data-shipping for some clients and query-shipping for others. 

Second, the memory tag of “>= 32” tells Harmony that 32 MB is the minimal amount of memory that the 

application requires, but that additional memory can be profitably used as well. The specification for bandwidth 

in the data-shipping case is then parameterized as a function of “client.memory.” This allows the application to 

tell Harmony that the amount of required bandwidth is dependent on the amount of memory allocated on the 

client machine. Harmony can then decide to allocate additional memory resources at the client in order to reduce 

bandwidth requirements. This tradeoff is a good one if memory is available, because additional memory usage 

does not increase the application’s response time, whereas additional network communication does. 

2.2 Policies 

A key piece of Harmony is the policies used by the automatic adaptation system to assign resources to applica-

tions. This section describes how Harmony matches application resource requirements to the available re-

harmonyBundle Dbclient:1 where { 
  {QS {node server 
  {hostname harmony.cs.umd.edu} 
  {seconds  9} 
  {memory  20}} 
 {node client   
      {hostname  *} 
  {os  linux} 
  {seconds  1} 
  {memory  42"}} 
 {link client server 2}} 
  {DS {node server 
    {hostname harmony.cs.umd.edu } 
  {seconds  1} 
  {memory  20}} 
 {node client  
      {hostname  *} 
  {os  linux} 
  {memory  >=17} 
  {seconds  9}} 
 {link client server  
  {44 + (client.memory > 24 ? 24 :  
  client.memory) - 17}} 
  }}

Figure 3: Client-Server Database 
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sources. We then describe how we compose the performance information from individual nodes into a global 

picture of resource utilization. Finally, we describe the overall objective function that Harmony optimizes. The 

current polices, although simple, allow us to gain experience with the system. 

2.2.1 Matching resource needs 

Resources are assigned to new applications under Harmony based on the requirements described in the corre-

sponding RSL. When Harmony starts execution, we get an initial estimate of the capabilities of each node and 

links in the system. For nodes, this estimate includes information about the available memory, and the normal-

ized computing capacity of the node. For links, we note the bandwidth and latency attributes. As nodes and links 

are matched, we decrease the available resources based on the application’s RSL entries. 

We start by finding nodes that meet the minimum resource requirements required by the application.  

When considering nodes, we also verify that the network links between nodes of the application meet the re-

quirements specified in the RSL. Our current approach uses a simple first-fit allocation strategy.  In the future, 

we plan to extend the matching to use more sophisticated policies that try to avoid fragmentation.  However, for 

now our goal is to demonstrate the ability of our system to optimize application performance based on the op-

tions, so any initial match of resource requirements is acceptable. 

2.2.2 Explicit (response time) models 

Harmony’s decisions are guided by an overarching objective function. Our objective function currently mini-

mizes the average completion time of the jobs currently in the system. Hence, the system must be able to predict 

the lifetime of applications. Harmony has a very simple default performance model that combines resource us-

age with a simple contention model.  

However, this simplistic model is inadequate to describe the performance of many parallel applications 

because of complex interactions between constituent processes. For example, we might use the critical path no-

tion to take inter-process dependencies into account [10]. Other application models could model piece-wise lin-
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Figure 4: Online reconfiguration – The left side (a) shows the performance of a parallel application and (b) shows 
the eight-processor configurations chosen by Harmony as new jobs arrive. Note the configuration of five nodes (rather than 
six) in the first time frame, and the subsequent configurations that optimize for average efficiency by choosing relatively 
equal partitions for multiple instances of the parallel application, rather some large and some small. 
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ear curves. Figure 4 shows an example of Harmony’s configuration choices in the presence of our client-server 

database and an application with variable parallelism. The parallel application’s speedup curve is described in an 

application-specific performance model1. 

In the future we plan to investigate other objective functions. The requirement for an objective function is 

that it be a single variable that represents the overall behavior of the system we are trying to optimize (across 

multiple applications).  It really is a measure of goodness for each application scaled into a common currency.  

2.2.3 Setting application options 

The ability to select among possible application options is an integral part of the Harmony system. In order to 

make this possible, we need to evaluate the likely performance of different options and select the one that 

maximizes our objective function.  However, the space of possible option combinations in any moderately large 

system will be so large that we will not be able to evaluate all combinations. Instead, we will need a set of heu-

ristics that select an application option to change and then evaluate the overall system objective function. 

Currently, we optimize one bundle at a time when adding new applications to the system. Bundles are 

evaluated in the same lexical order as they were defined. This is a simple form of greedy optimization that will 

not necessarily produce a globally optimal value, but it is simple and easy to implement.  After defining the ini-

tial options for a new application, we re-evaluate the options for existing applications. To minimize the search 

space, we simply iterate through the list of active applications and within each application through the list of 

options.  For each option, we evaluate the objective function for the different values of the option.  During ap-

plication execution, we continue this process on a periodic basis to adapt the system due to changes out of Har-

mony’s control (such as network traffic due to other applications). 

2.2.4 Search-space heuristics 

To be effective, the system needs to find good configurations for each incoming application. Application con-

figuration consists of two parts. First, “Harmonized” applications export mutually exclusive algorithmic alterna-

tives for the system to choose among. Second, a given application and tuning alternative can usually be mapped 

to multiple configurations of nodes in the system. Hence, the search space of possible configurations is clearly 

too large for exhaustive search, especially since “looking” at each individual configuration alternative requires 

evaluating the performance model against that configuration. Thus, heuristics are needed to constrain the search 

space of configurations for a given application and among applications.   

Heuristics are evaluated based on cost and efficiency. A heuristic that performs anything like an exhaus-

tive search clearly has too high of a runtime cost to be useful. On the other hand, a cheap heuristic that leads to 

poor processor efficiencies and response times is of little use. As a starting point, simple variations on first-fit 

and best-fit heuristics show promising behavior whether or not currently running applications can be reconfig-

                                                      
1 This performance model matches a simple bag of tasks parallel application and a client-server database we have modified to support 
Harmony. 



 

13 

ured. Another part of this strategy is to try satisfy a resource request with “local” machines before considering 

all connected remote machines. While sophisticated approaches such as hill-climbing or simulated annealing 

have a number of advantages, our expectation is that simple heuristics will perform nearly as well and at a much 

lower cost than more complicated approaches. 

2.2.5 Performance prediction subsystem 

To effectively compare candidate configurations, we need accurate, lightweight models for the expected behav-

ior of applications in any possible configuration. Accurate models allow the system to make good decisions 

about scheduling jobs on constrained resources. Consider a system with eight nodes and three incoming jobs: a 

two-node job, an eight-node job, followed by another two-node job. A simple FCFS system will delay each job 

until the others have finished. However, running the two smaller jobs at the same time might be a better ap-

proach. The reason that we can not say this with any assurance is that systems have historically not had a priori 

knowledge of expected running times. If the second two-node job runs much longer than the first, jumping it in 

front of the larger job will delay the larger job unfairly. Backfilling [11] schedulers use knowledge of running 

times to determine whether or not re-ordering will delay jobs that arrived first. However, such systems depend 

on accurate knowledge of the running times. Underestimating the times still delays the larger application un-

fairly. Overestimating times reduces the opportunity for re-ordering.  

In addition to simple job duration, we want to be able to handle the more complex resource needs of sup-

porting multiple applications in a system.  For example, we need to manage the amount of memory and net-

working bandwidth used by applications.  Furthermore, we want to be able to handle a reasonably large set of 

performance metrics, in addition to the more “traditional” ones, such as response time and throughput (this will 

become clearer as we discuss the applications below). 

Even if accurate information on running time for a single configuration is available, a global system needs 

to be able to evaluate running times in a variety of configurations, on possibly heterogeneous hosts, and possibly 

in the presence of contention for a variety of resources. End-users clearly can not provide all of this information.  

Thus, analytical models will allow us to develop expressive and accurate predictions of application behav-

ior.  We are currently adapting previous work on using simplified analytical models to represent complex sys-

tems (e.g., as in [12-15]). 

Model Generation 
We are using simple analytical models to predict performance at runtime.  Efficient resource management de-

pends on good resource usage predictions.  Furthermore, better resource management decisions can be made 

dynamically, at runtime, when more information is available about the currently running applications and their 

resource demands.  Such decisions must be made relatively quickly, and simple analytical models are well 

suited for these types of problems. 



 

14 

The constructed analytical models must have appropriate knobs that can be turned in order to make a re-

source allocation decision.  The system can then automatically derive models from information provided by the 

applications. To construct the models automatically, knowledge of resources and the workload to be executed on 

these resources is required. Clearly, the adaptation control has information about available system resources; 

thus, what is needed is a proper workload characterization. In order to simplify matters for the application de-

signers, the system needs to perform workload characterization from a variety of information sources. Specifi-

cally, the information given in the RSL description can be used as a source of resource demands of each applica-

tion. More sophisticated models will be constructed based on more detailed descriptions of application, which 

would require the use of an appropriate specification language. One possible way to represent the models is via 

an existing modeling language such as UML. 

UML (the Unified Modeling Language) [16] provides a standard means of describing software oriented 

designs and promises to be in wide use in the software industry. UML contains several types of diagrams, which 

allow different properties of a system design to be expressed. Such diagrams (and the associated information) 

are useful in the generation of performance models. For instance, Use Case diagrams are useful in characterizing 

the system workload; implementation diagrams are useful in characterizing the mapping of software compo-

nents onto hardware resources and in defining contention for these resources. 

To facilitate automatic generation of analytical models, we are building a library of model components, for 

each of the resources available in our system, which can be used in automatic construction of appropriate ana-

lytical models at runtime. 

Multi-resolution models 
More accurate analytical models generally produce better predictions, but also tend to increase the time needed 

to make resource management decisions. Thus, there is a tradeoff between the “goodness” of the resource man-

agement decision and the amount of time and resources required to make it. The optimum accuracy of the 

model, with respect to its cost and resulting benefits, will to a large extent depend on the application(s) being 

modeled.  Thus, for better results, such decisions should also be made at runtime. To facilitate this, we plan to 

construct “multi-resolution” models and choose the appropriate resolution, based on predicted benefits and 

costs, at runtime.   

For instance, consider a system that manages a shared pool of resources where more resources are allo-

cated to an application as the need for them arises (i.e., as the workload of that application crosses a predefined 

set of thresholds). In order to make such a system stable, one should include a hysteresis, i.e., the set of thresh-

olds for adding resources should be distinct from the set of thresholds for removing resources. In this case, an 

analytical model that accurately represents both the hysteresis behavior and the non-instantaneous resource addi-

tion behavior can be quite costly to solve (details can be found in Golubchik and Liu [12]).  However, a model 

that “ignores” this complex behavior is quite simple (actually, a simple birth-death stochastic process).  The 

more accurate model will tend to give better performance predictions, but would also require quite a bit more 
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time to solve. Thus, depending on the amount of time and resources available to the adaptation controller, it 

would choose one or the other model in making a decision about allocating more resources to an application.  

System state 
For many applications, it will be important to model the behavior of multiple invocations, rather than just one. 

For example, consider a client-server database. There may be little incentive to run a single query on a client 

because we would need to migrate too much data. However, if multiple queries are considered, we might invest 

the time to migrate data to a client to allow a workload of queries to run faster. 

Therefore the system must maintain state information (e.g., which data is being cached by a database cli-

ent) and the performance models must incorporate that state can be passed from one invocation to the next (or 

between applications). We plan to incorporate sate information into the workload characterization process by 

mapping workflow onto system resources (as described above).  Options to represent state in the system include 

simple finite state automata. 

Runtime parameter measurement 
The accuracy of the performance prediction models can be further improved by increasing the accuracy of the 

parameters used by these models, which to a large extent reflect the current state of the system, in terms re-

source and workload characteristics.  To aid in increasing the accuracy of this information, we use runtime per-

formance measurements, such as  [10, 17]. 

2.3 Mechanisms 

Most of the mechanisms needed by meta-computer schedulers are identical to those needed by local schedulers. 

One difference is that meta-computing on non-dedicated resources, such as idle machines, must be prevented 

from impacting the owners of those machines. This section briefly describes a set of techniques that allow re-

mote jobs to co-exist with local jobs without the performance of the local jobs being affected. We describe how 

to realize fined-grained cycle stealing (the linger-longer approach), and the requirements that this approach im-

poses on local schedulers.  The key feature of fine-grained cycle stealing is to exploit brief periods of idle proc-

essor cycles while users are either thinking or waiting for I/O events. We refer to the processes run by the work-

station owner as host processes, and those associated with fine-grained cycle stealing as guest processes. 

In order to make fine-grained cycle-stealing work, we must limit the resources used by guest processes and 

ensure that host processes have priority over them. Guest processes must have close to zero impact on host pro-

cesses in order for the system to be palatable to users. To achieve that goal requires a scheduling policy that 

gives absolute priority to host processes over guest processes, even to the point of starving guest processes. This 

also implies the need to manage the virtual memory via a priority scheme. The basic idea is to tag all pages as 

either guest or host pages, and to give priority on page replacement to the host pages. The complete mechanism 

is presented in Section 2.3.3. 
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Previous systems automatically migrate guest processes from non-idle machines in order to ensure that 

guest processes do not interfere with host processes. The key idea of our fine-grained cycle stealing approach is 

that migration of a guest process off of a node is optional. Guest processes can often co-exist with host proc-

esses without significantly impacting the performance of the latter, or starving the former. 

A key question in evaluating the overhead of priority-based preemption is the time required to switch from 

the guest process to the host process. There are three significant sources of delay in saving and restoring the con-

text of a process: 1) the time required to save registers, 2) the time required (via caches misses) to reload the 

process’s cache state, and 3) the time to reload the working set of virtual pages into physical page frames. We 

defer discussion of the latter overhead until Section 2.3.3. On current microprocessors, the time to restore cache 

state dominates the register restore time. In a previous paper [18], we showed that if the effective context-switch 

time is 100 microseconds or less, the overhead of this extra context-switch is less than 2%. With host CPU loads 

of less than 25%, host process slowdown remains under 5% even for effective context switch times of up to 500 

micro-seconds.  

In addition, our simulations of sequential processes showed that a linger-based policy would improve av-

erage process completion time by 47% compared with previous approaches. Based on job throughput, the Lin-

ger-Longer policy provides a 50% improvement over previous policies.  Likewise our Linger-Forever policy 

(i.e. disabling optional migrations) permits a 60% improvement in throughput.  For all workloads considered in 

the study, the delay, measured as the average increase in completion time of a CPU request, for host (local) pro-

cesses was less than 0.5%. 

2.3.1 Linux kernel extensions 

This section introduces the modifications to the local Linux scheduler necessary to support the Linger-Longer 

scheduling policy. These extensions are designed to ensure that guest processes can not impede the performance 

of host processes. We first describe the general nature of our kernel modifications, and then describe how we 

modified the scheduler and virtual memory system of Linux to meet our needs.  

One possible concern with our approach is the need for kernel modifications.  In general, it is much harder 

to gain acceptance for software that requires kernel modifications.  However, for the type of system we are 

building, such modifications are both necessary and reasonable. First, guest processes must be able to stay run-

ning, yet impose only an unnoticeable impact on foreground local processes. There is no practical way to 

achieve this without kernel modifications. Additionally, we feel that kernel modifications are a reasonable bur-

den for two reasons. First, we are using the Linux operating system as an initial implementation platform, and 

many software packages for Linux already require kernel patches to work. Second, the relatively modest kernel 

changes required could be implemented on stock kernels using the kernInst technology [19]. KernInst allows 

fairly complex customizations of a UNIX kernel at runtime via dynamic binary re-writing. All of the changes we 

have made could be implemented using this technique. 
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Current UNIX systems support CPU priority via a per-process parameter called the nice value. Via nice, 

different priorities can be assigned to different processes. These priority levels are intended to reflect the relative 

importance of different tasks, but they do not necessarily implement a strict priority scheme that always sched-

ules the highest priority process. The nice value of a process is just a single component that is used to compute 

the dynamic priority during execution. As a result, sometimes a lower static priority process gets scheduled over 

higher static priority processes to prevent starvation, and to ensure progress of the lower priority processes. 

However, we need a stricter concept of priority in CPU scheduling between our two classes of processes. Guest 

processes should not be scheduled (and can even starve) when any host process is ready no matter what its run 

time priority is. Meanwhile, the scheduling between the processes in the same class should be maintained as it is 

under current scheduling implementation. 

While many UNIX kernels provide strict priorities in order to support real-time deadlines, these real-time 

priorities are higher than traditional UNIX processes.  For Linger-Longer, we require just the opposite, a lower 

priority than normal.  

Current general-purpose UNIX systems provide no support for prioritizing access to other resources such 

as memory, communication and I/O. Priorities are, to some degree, implied by the corresponding CPU schedul-

ing priorities. For example, physical pages used by a lower-priority process will often be lost to higher-priority 

processes. Traditional pages replacement policies, such as Least Recently Used (LRU), are more likely to page 

out the lower-priority process’s pages, because it runs less frequently. However, this might not be true with a 

higher-priority process that is not computationally intensive, and a lower priority process that is. We therefore 

need an additional mechanism to control the memory allocation between local and guest processes. Like CPU 

scheduling, this modification should not affect the memory allocation (or page replacement) between processes 

in the same class.  

We chose Linux as our target operating system for several reasons. First, it is one of the most widely used 

UNIX operating systems. Second, the source code is open and widely available. Since many active Linux users 

build their own customized kernels, our mechanisms could easily be patched into existing installations by end 

users. This is important because most PCs are deployed on people’s desks, and cycle-stealing approaches are 

probably more applicable to desktop environments than to server environments. 

2.3.2 Starvation-level CPU scheduling 

The Linux scheduler chooses a process to run by selecting the ready process with the highest runtime priority, 

where the runtime priority can be thought of as the number of 10ms time slices held by the process. The runtime 

priority is initialized from a static priority derived from the nice level of the process. Static priorities range from 

-19 to +19, with +19 being the highest2. New processes are given 20+p slices, where p is the static priority level. 

The process chosen to run has its store of slices decremented by one.  Hence, all runnable processes tend to de-

crease in priority until no runnable processes have any remaining slices. At this point, all processes are reset to 



 

18 

their initial runtime priorities. Blocked processes receive an additional credit of half of their remaining slices. 

For example, a blocked process having 10 time slices left will have 20 slices from an initial priority of zero, plus 

five slices as a credit from the previous round. This feature is designed to ensure that compute-bound processes 

do not receive undue processor priority compared to I/O bound processes. 

This scheduling policy implies that processes with the lowest priority (nice -19) will be assigned a single 

slice during each round, while normal processes consume 20 slices. When running two CPU-bound processes, 

where one has normal priority and the other is niced to the minimum priority, -19, the latter will still be sched-

uled 5% of the time. While this degree of processor contention might or might not be visible to a user, running 

the process could still cause contention for other resources, such as memory.  

We implemented a new guest priority in order to prevent guest processes from running when runnable 

host processes are present. The change essentially establishes guest processes as a different class, such that guest 

processes are not chosen if any runnable host processes exist. This is true even if the host processes have lower 

runtime priorities than the guest process. 

Second, we verified that the scheduler reschedules processes any time a host process unblocks while a 

guest process is running. This is the default behavior on Linux, but not on many BSD derived operating systems. 

One potential problem of our strict priority policy is that it could cause priority inversion. Priority inversion oc-

curs when a higher priority process is not able to run due to a lower priority process holding a shared resource. 

This is not possible in our application domain because guest and host processes do not share locks, or any other 

non-revocable resources. 

2.3.3 Prioritized page replacement 

Another way in which guest processes could adversely affect host processes is by tying up physical memory. 

Having pages resident in memory can be as important to a process’s performance as getting time quanta on 

processors.  Our approach to prioritizing access to physical memory tries to ensure that the presence of a guest 

process on a node will not increase the page fault rate of the host processes. 

Unfortunately, memory is more difficult to deal with than the CPU. The cost of reclaiming the processor 

from a running process in order to run a new process consists only of saving processor state and restoring cache 

state. The cost of reclaiming page frames from a running process is negligible for clean pages, but quite large for 

modified pages because they need to be flushed to disk before being reclaimed. The simple solution to this prob-

lem is to permanently reserve physical memory for the host processes. The drawback is that many guest proc-

esses are quite large. Simulations and graphics rendering applications can often fill all available memory. Hence, 

not allowing guest processes to use the majority of physical memory would prevent a large class of applications 

from taking advantage of idle cycles. 

We therefore decided not to impose any hard restrictions on the number of physical pages that can be used 

by a guest process. Instead, we implemented a policy that establishes low and high thresholds for the number of 

                                                                                                                                                                                     
2 Nice priorities inside the kernel have the opposite sign of the nice values seen by user processes. 



 

19 

physical pages used by guest processes. Essentially, the page replacement policy prefers to evict a page from a 

host process if the total number of physical pages held by the guest process is less than the low threshold. The 

replacement policy defaults to the standard clock-based pseudo-LRU policy up until the upper threshold. Above 

the high threshold, the policy prefers to evict a guest page. The effect of this policy is to encourage guest proc-

esses to steal pages from host processes until the lower threshold is reached, to encourage host processes to steal 

from guest processes above the high threshold, and to allow them to compete evenly in the region between the 

two thresholds. However, the host priority will lead to the number of pages held by the guest processes being 

closer to the lower threshold, because the host processes will run more frequently. 

In more detail, the default Linux replacement policy is an LRU-like policy based on the “clock” algorithm 

used in BSD UNIX. The Linux algorithm uses a one-bit flag and an age counter for each page. Each access to a 

page sets its flag.  Periodically, the virtual memory system scans the list of pages and records which ones have 

the use bit set, clears the bit, and increments the age by three for the accessed pages. Pages that are not touched 

during the period of a single sweep have their age decremented by one. Only pages whose age value is less than 

a system-wide constant are candidates for replacement.  

We modified the Linux kernel to support this prioritized page replacement. Two new global kernel vari-

ables were added for the memory thresholds, and are configurable at run-time via system calls. The kernel keeps 

track of resident memory size for guest processes and host processes. Periodically, the virtual memory system 

triggers the page-out mechanism. When it scans in-memory pages for replacement, it checks the resident mem-

ory size of guest processes against the memory thresholds. If they are below the lower thresholds, the host proc-

esses’ pages are scanned first for page-out. Resident sizes of guest processes larger than the upper threshold 

cause the guest processes’ pages to be scanned first. Between the two thresholds, older pages are paged out first 

regardless of which process is using them. 

Correct selection of the two parameters is critical to meeting the goal of exploiting fine-grained idle inter-

vals without significantly impacting the performance of host processes. Too high of value for the low threshold 

will cause undue delay for host processes, and too low of value will cause the guest process to constantly thrash.  

However, if minimum intrusiveness by the guest process is paramount, the low memory threshold can be set to 

zero to guarantee the use of the entire physical memory by foreground process.  
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In a previous paper [20] we evaluated Linger-Longer’s effect on parallel applications on our test cluster. 

We used the Musbus interactive UNIX benchmark suite [21] to simulate the behavior of actual interactive users. 

Musbus simulates an interactive user conducting a series of compile-edit cycles. The benchmark creates proc-

esses to simulate both interactive editing (including appropriate pauses between keystrokes), UNIX command 

line utilities, and compiler invocations. We varied the size of the program being edited and compiled by the 

“user” in order to change the mean CPU utilization of the simulated local user. In all cases, the file being ma-

nipulated was at least as large as the original file supplied with the benchmark. 

The guest applications are Water and FFT from the Splash-2 benchmark suite [22], and SOR, a simple red-

black successive over-relaxation application [23]. Water is a molecular dynamics code, while FFT implements a 

three-dimensional Fast Fourier transform. All three applications were run on top of CVM [24], Harmony’s user-

level Distributed Shared-Memory (DSM) layer. DSM’s are software systems that provide the abstraction of 

shared memory to threads of a parallel application running on networks of workstations. These three applica-

tions are intended to be representative of three common classes of distributed applications. Water has relatively 

fine-grained communication and synchronization, FFT is quite communication-intensive, while SOR is mostly 

compute-bound. 

In the first set of experiments, we ran one process of a four-process CVM application as a guest process on 

each of four nodes. We varied the mean CPU utilization of the host processes from 7% to 25% by changing the 

size of the program being compiled during the compilation phase of the benchmark.  The results of these tests 

are shown in Figure 5. The left graph shows the slowdown experienced by the parallel applications. The solid 

lines show the slowdown using our Linger-Longer policy, and the dashed lines show the slowdown when the 

guest processes are run with the default (i.e., equal priority). As expected, running the guest processes at starva-

tion level priority generally slows them down more than if they were run at equal priority with the host proc-

esses. However, when the Musbus utilization is less than 15% the slowdown for all applications is lower with 

lingering than with the default priority. For comparison, running sor, water, and fft on three nodes instead of 

four slows them down by 26%, 25%, and 30%, respectively. Thus for the most common levels of CPU utiliza-
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Figure 5: Impact of running one process of four-process CVM applications as a guest process.  
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tion, running on one non-idle node and three idle would improve the application’s performance compared to  

running on just three idle nodes. Our previous study [18] showed that node utilization of less than 10% occurs 

over 75% of the time even when users are actively using their workstations. 

The right side of Figure 5 shows the slowdown experienced by the host Musbus processes.  Again, we 

show the behavior when the guest processes are run using our Linger-Longer policy and the default equal prior-

ity. When the guest processes were run with moderate CPU utilization (i.e., over 10%), all three guest processes 

started to introduce a measurable delay in the host processes when equal priority was used. For Water and SOR, 

the delay exceeds 10% when the Musbus utilization reaches 13%. At the highest level of Musbus CPU utiliza-

tion, the delay using the default priority exceeds 10% for all three applications and 15% for two of the three ap-

plications. However, for all three parallel guest applications, the delay seen when running with Linger-Longer 

was not measurable. This experiment demonstrates that our new CPU priority and memory page replacement 

policy can limit the local workload slowdown when using fine-grained idle cycles.  

2.4 Prototype  

We have developed a prototype of the Harmony interface to show that applications can export options and re-

spond to reconfiguration decisions made by system. The architecture of the prototype is shown in Figure 6. 

There are two major parts, a Harmony process and a client library linked into applications. 

The Harmony process is a server that listens on a well-known port and waits for connections from applica-

tion processes. Inside Harmony is the resource management and adaptation part of the system. When a Har-

mony-aware application starts, it connects to the Harmony server and supplies the bundles that it supports.  

A Harmony-aware application must share information with the Harmony process. The interface is summa-

rized in Figure 7. First, the application calls functions to initialize the Harmony runtime library, and define its 

option bundles. Second, the application uses special Harmony variables to make run-time decisions about how 

the computation should be performed.  For example, if an application exports an option to change its buffer size, 

it needs to periodically read the Harmony variable that indicates the current buffer size (as determined by Har-

mony controller), and then update its own state to this size. Applications access the “Harmony” variables by us-

ing the pointer to a Harmony variable returned by the harmony_add_variable() function.   
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New values for Harmony variables are buffered in the until a flushPendingVars()call is made. This 

call sends all pending changes to the application processes. Inside the application, a I/O event handler function 

is called when the Harmony process sends variable updates. The updates are then applied to the Harmony vari-

ables. The application process must periodically check the values of these variables and take appropriate action. 

Our system uses a polling interface to detect changes in variables at the application. Many long-running 

applications have a natural phase where it is both easier and more efficient to change their behavior rather than 

requiring them to react immediately to Harmony requests.  For example, database applications usually need to 

complete the current query before re-configuring the system from a query shipping to a data-shipping configura-

tion.  Likewise, scientific applications generally have a time-step or other major loop that represents a natural 

point to re-configure the application.  

The Harmony process is an event driven system that waits for application and performance events. When 

an event happens, it triggers the automatic application adaptation system, and each of the option bundles for 

each application gets re-evaluated to see it should be changed (see Section 2.2 for a complete description of the 

way the evaluation is done).  When option bundles are changed, the appropriate variables are updated in each 

application. 

2.5 An example application 

To explore the ability of the Harmony server to adapt an application, we modified a hybrid client-server data-

base to allow Harmony to reconfigure where queries are processed: on client nodes or on server nodes. The da-

tabase system used was Tornadito, a relational database engine built on top of the SHORE (Scalable Heteroge-

neous Object REpository) storage manager [25, 26]. All experiments were run on nodes of an IBM SP-2, and 

used the 320Mbps high performance switch to communicate between clients and the server. Each client ran the 

same workload, a set of similar, but randomly perturbed join queries over two instances of the Wisconsin 

benchmark relations [27], each of which contains 100,000 208-byte tuples. In each query, tuples from both rela-

tions are selected on an indexed attribute (10% selectivity) and then joined on a unique attribute. While this is a 

Harmony Process

Application
Options

Performance
Data

Option
Instantiation

C Code

Option Selection
 (TCL Code)

Send/Recv (TCP)

Application Process Application Process

Paramters

(e.g., cache size)

Alternative

Algorithms

Harmony Library

Application Code

Paramters

(e.g., cache size)

Alternative

Algorithms

Harmony Library

Application Code

 
Figure 6: Architecture of Harmony Prototype. 
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fairly simple model of database activity, such query sets often arise in large databases that have multiple end 

users (bank branches, ATMs), and in query refinement.  

The Harmony interface exported by this program is the set of option bundles shown in Figure 3. For our 

initial experiments, the controller was configured with a simple rule for changing configurations based on the 

number of active clients.  We then ran the system and added clients about every three minutes.  The results of 

this experiment on shown in Figure 8. In this graph, the x-axis shows time, and the y-axis shows the mean re-

sponse time of the benchmark query. Each curve represents the response time of one of the three clients. During 

the first 200 seconds, there is only one client active and the system is processing the queries on the server. Dur-

ing the next 200 seconds, two clients are active, and the response time for both clients is approximately double 

the initial response time with one active client.  

At 400 seconds, the third client starts, and the response time of all clients increases to approximately 20 

seconds. During this interval one of the clients has a response time that is noticeably better than the other two 

(client #1 for the first 100 seconds, and then client #2). This is likely due to cooperative caching effects on the 

server since all clients are accessing the same relations. 

The addition of the third client also eventually triggers the Harmony system to send a re-configuration 

event to the clients to have them start processing the queries locally rather than on the server. This results in the 

response time of all three clients being reduced, and in fact the performance is approximately the same as when 

two clients were executing their queries on the server. This demonstration shows that by adapting an application 

to its environment, we can improve its performance. 

3. Transparent system-directed application adaptation 
Harmony has several means of adapting applications to their environments. Environments, consisting of local 

schedulers, can be controlled directly. Application execution can be steered explicitly through the RSL interface. 

harmony_startup(<unique id>, <use interrrupts>)

A program registers with the Harmony server using this call.

harmony_bundle_setup(“<bundle definition>”)

An application informs Harmony of one of its bundles this way.  The bundle definition looks like the 

examples given in Section 2.1.1.

void *harmony_add_variable(“variable name”, <default value>, <variable type>)

An application declares a variable that to communicate information between Harmony and the application. 

Harmony variables include bundle values, and resource information (such as the nodes that the application 

has been assigned to use). The return value is the pointer to the variable.

harmony_wait_for_update()

The application process blocks until the Harmony system updates its options and variables.

harmony_end()

The application is about to terminate and Harmony should re-evaluate the application's resources. 

Figure 7: Harmony API Used by Application Programs. 
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This section shows a method transparently steering application execution, i.e. a method of dramatically recon-

figuring running applications that have not been explicitly “harmonized.” 

Harmony provides an automatically reconfigurable shared memory abstraction (DSM) to parallel applica-

tions running on networks of workstations. DSM applications are multi-threaded, and assumed to have many 

more threads than the number of nodes used by any one application. Overall performance depends on parallel-

ism, load balance, latency tolerance, and communication minimization. In this section, we focus on communica-

tion minimization through active correlation tracking [28], a mechanism for tracking data sharing between 

threads, and its implementation in CVM [29]. Consistency between data located on different processors is main-

tained by using virtual memory techniques to trap accesses to shared data and a protocol to ensure timely propa-

gation of these updates to other processors. Information on the type and degree of data sharing is useful to such 

systems because the majority of network communication is caused by the underlying consistency system. When 

a pair of threads located on distinct machines (nodes) both access data on the same shared page, network com-

munication can only be avoided by moving at least one of the threads so that they are located on the same node.  

In order to minimize communication, therefore, the system needs to identify the thread pairs that will 

cause the most communication if not located on the same node. The information should be complete, in that we 

need information on all threads in the system, and it must be accurate, in that small errors in the relative ordering 

of thread pairs might cause large differences in communication.   

Ideally, sharing behavior would be measured in terms of access rates. However, a naïve implementation 

would add overhead to all writes, not just those that occur when the tracking mechanism is turned on. Function 

cloning could be used to create tracking and non-tracking versions, but every function that might possibly access 

shared data would have to be cloned. Current systems [30, 31], therefore, merely track the set of pages that each 

thread accesses. Changes in sharing patterns are usually accommodated through the use of an aging mechanism.  

In any case, word-level access densities are not the proper abstraction for a page-based system. We there-

fore track data sharing between threads by correlating the threads’ accesses to shared memory. Two threads that 

frequently access the same shared pages can be presumed to share data. We define thread correlation as the 

number of pages shared in common between a pair of threads. We define the cut cost to be the aggregate total of 
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Figure 8: Client-server database application – Harmony chooses query-shipping with one 
or two clients, but switches all clients to data-shipping when the third client starts. 
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thread correlations for thread pairs that must communicate across node boundaries. Cut costs can then be used to 

compare candidate mappings of threads to nodes in the system. Once the best mapping has been identified, the 

run-time system can migrate all threads to their new homes in one round of communication. 

3.1.1 Thread correlations and cut costs 

The cut cost of a given mapping of threads to nodes is the pairwise sum of all thread correlations, i.e. a sum with 

n2 terms, where n is the number of threads. This sum represents a count of the pages shared by threads on dis-

tinct machines.  

We hypothesized that cut costs are good indicators of data traffic for running applications. We tested this 

hypothesis experimentally by measuring the correlation between cut costs and remote misses of a series of ran-

domly generated thread configurations. A remote miss occurs any time a process accesses an invalid shared 

page. Pages are invalid either because the page has never been accessed locally, or because another process is 

modifying the page3. In either case, the fault is handled by retrieving a current copy of the page from another 

node. For purposes of this experiment, we assume that all remote sites are equally expensive to access; thereby 

ensuring that the number of remote faults accurately represents the cost of data traffic. 

In all but one case, we had correlation coefficients are at least 0.72. Aside from a single extraneous miss 

caused by CVM’s garbage collection mechanism, one application’s correlation coefficient would be 1.0. 

3.1.2 Correlation maps 

Thread correlations are used to create correlation maps. Correlation maps are grids that summarize correlations 

between all pairs of threads. We can represent maps graphically as two-dimensional squares where the darkness 

of each point represents the degree of sharing between the two threads that correspond to the x,y coordinates of 

that point. Correlation maps are useful for visualizing sharing behavior. For example, Figure 9a shows a correla-

tion map for a parallel FFT with 32 threads. Note the prevalence of dark areas near the diagonals, which imply 

the presence of nearest-neighbor communication patterns. However, the sharing is concentrated in discrete 

blocks of threads, rather than being continuous. 

This correlation map represents a version of FFT with 32 threads distributed equally across four nodes. 

The points inside the dark squares represent those thread pairs that are located on the same nodes, and hence do 

not figure into cut costs or require network communication. There are four squares, since there are four nodes, 

or regions where sharing is free. Since all of the dark regions are inside the “free zones” that represent nodes, we 

can infer that communication requirements will be relatively minimal.  

                                                      
3 This is a gross simplification, but captures the essence. 
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Now consider instead Figure 9 (b). This picture represents a configuration of four threads running on each 

of eight nodes. The correlation map is the same, but the smaller “free zones” encompass only half of the dark 

areas. Hence, we can infer that this configuration has more communication than the four-node version. Together 

with information on the ratio of communication to computation in the application, a runtime system could po-

tentially make a rough guess at whether the eight-node configuration would have any performance advantage 

over the four-node version. 

Finally, consider Figure 9 (c).  This is the same application, with unchanged sharing patterns. However, 

we have randomly permuted the assignment of threads to nodes. Doing so results in a configuration with a much 

higher cut cost, which is not addressed effectively by either the four-node or eight-node configurations. Similar 

situations would arise with applications in which sharing patterns change slowly over time. 

3.1.3 Correlation-tracking mechanisms 

Previous systems obtained page-level access information by tracking existing remote faults. Remote faults occur 

when local threads attempt to access invalid shared pages. Remote faults are satisfied by fetching the latest ver-

sion of the shared page from the last node that modified it. The underlying DSM can overload this process to 

inexpensively track the causes of remote faults, slowly building up a pattern of the pages accessed by each 

thread. 

The problem is that this approach only captures information about the first local thread that accesses a 

page, and captures no information about sharing between local threads. Even after multiple (ten or more) rounds 

of thread migrations, passive tracking only comes close to obtaining complete information for one of the appli-

cations that we tested, and this application is by far the least complex of our applications.  

The solution used by Harmony is to use active correlation tracking. Multiple rounds of threads migrations 

can be avoided by obtaining additional information about correlations between local threads before any thread 

migration takes place. We obtain this information through an active correlation-tracking phase, which itera-

tively obtains access information for each local thread.  

The reader is referred to [28] for details. In summary, however, the active approach consists of a discrete 

phase where page faults are forced to occur at the first access to each page by each local thread. This informa-

tion is collected at the next global synchronization operation, giving the synchronization owner complete infor-

(a) (b) (c) 

Figure 9: 32-thread FFT, 26 x 26 x 26 - (a) on four nodes, squares indicate 
thread sharing that does not cause network communication, (b) on eight 
nodes, as above, (c) randomized thread assignments for four nodes 
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mation about page accesses by all threads in the system. This information is complete, and collected without 

multiple rounds of migrations. Assuming static sharing behavior, the cost of the extra local page faults can be 

amortized across the entire execution of the application.  

3.1.4 Using correlation maps to direct migration 

Thread correlations are primarily useful as a means of evaluating cut costs (and, indirectly, communication re-

quirements) of candidate mappings of threads to nodes. Such comparisons are only meaningful if applications 

can be configured to match arbitrary thread mappings. Hence, reconfigurations require thread migrations. We 

assume a DSM system that supports per-node multithreading [32] (multiple threads per node) and thread migra-

tion. Per-node multithreading is only problematic when DSMs only allow dynamically allocated data to be 

shared, like CVM. The problem is that it exposes an asymmetry in the threads’ view of data. Threads on a single 

node share the same copy of statically allocated global data, but each node has distinct copies. This problem is 

usually handled by restricting threads from accessing any of these variables. Instead, threads can access only 

stack and globally shared data. 

Given the above, thread migration can be accomplished through little more than copying thread stacks 

from one machine to another. Care must be taken to preserve the stack’s address before and after a copy so that 

pointer values do not become orphaned. Additionally, thread migration in systems that support relaxed consis-

tency models must ensure that the thread’s view of shared data at the destination is not missing any updates that 

were visible at the source. 

3.1.5 Identifying good thread assignments 

The combination of finding the optimal mapping of threads to nodes is a form of the multi-way cut problem, the 

general form of which is NP-hard (meaning that it is at least as hard as any problem in NP, and possibly harder). 

Applications Time 
(secs) 

Remote 
Misses 

Total 
Mbytes Cut Cost 

m-c 43.0 120730 218.1 125518 Barnes ran 46.5 124030 254.2 129729 
m-c 37.3 22002 172.2 8960 FFT7 ran 68.9 86850 685.9 14912 
m-c 7.3 11689 121.3 31696 LU1k ran 97.1 231117 1136.2 58576 
m-c 21.2 123950 446.3 26662 Ocean ran 28.9 171886 605.5 29037 
m-c 240.1 125929 551.8 273920 Spatial ran 273.7 249389 870.8 289280 
m-c 3.6 881 5.4 28 SOR ran 5.9 8103 47.7 252 
m-c 19.3 20956 49.0 21451 Water ran 21.1 33188 72.0 23635 

Table 2: 8-node performance by heuristic 
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While good approximation schemes have been found for the general form of the communication minimization 

problem [33], our problem is complicated by the fact that we must also address load balancing and parallelism.  

For the purposes of this chapter, we restrict the problem to merely identifying the best mapping of threads 

to nodes, given a constant and equal number of threads on each node. We investigated several ways of identify-

ing good mappings. We used integer programming software to identify optimal mappings. We developed sev-

eral heuristics based on cluster analysis [34], and showed that two heuristics identified thread mappings with cut 

costs that were within 1% of optimal for all of our applications. We collectively refer to these heuristics as min-

cost (“m-c” in the captions). 

Table 2 shows communication requirements, counts of remote misses, and overall performance for each 

application with both min-cost (“m-c”) and a random assignment (“ran”) of threads to nodes.  

4. Resource information and metrics 
In order to make intelligent decisions about resource allocation and adaptation, data about the application and its 

behavior are required. Previously two major types of information were available. First, static performance pre-

diction has been used to try to predict the behavior on an application when it executes on a given collection of 

hardware.  Second, runtime-profiling tools have been used to record information about application execution to 

allow programmers to revise their code between executions to improve its performance. In this section, we re-

view the first two types of information. We then present a new type of data we call predictive metrics that are a 

combination of performance prediction and runtime observation that allow adaptive systems to use data about 

their current execution to forecast the impact of possible runtime configuration changes. 

4.1 Prediction models  

An important component of the Harmony approach to adaptive systems is to include performance prediction to 

allow the system to evaluate tuning alternatives.  Although there has been considerable work in the area of per-

formance prediction, much of the work has concentrated on abstract system performance prediction rather than 

predicting the performance of a specific application. However, there has been some recent work to allow accu-

rate prediction of application performance. 

The POEMS project [35] is developing an integrated end-to-end performance prediction environment for 

parallel computation. They are combining analytical modeling with discrete simulation to allow different levels 

of fidelity in their predictions based on user need. The Performance Recommender allows an application pro-

grammer to select parameters for a specific problem instance by drawing on a database of information derived 

from previous program executions and inferred via modeling. The POEMS project differs from Harmony in that 

POEMS considers static information such as number of nodes, whereas the Harmony system also includes run-

time information such as system load. 

Schopf and Berman [36] have combined stochastic modeling of applications with runtime observations to 

create time varying predictions of the execution time of applications.  Their approach represents the predicted 
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application performance as a structural model that represents application behavior as component models and 

component interactions.  Values for component models (such as the bandwidth used or functional unit operation 

counts) are modulated by runtime observations of available resources to provide accurate predictions of the 

completion time of a component operation for a system with multiple users.  Component interactions capture the 

attributes of the parallel application such as synchronization points and data decomposition. 

4.2 Runtime performance metrics 

To effectively adapt an application, raw performance data needs to be distilled down into useful information. 

Historically, performance metrics have been used to provide programmers with data to allow them to improve 

the performance of their application.  In a system that automatically adapts, the role of performance metrics is to 

provide similar insights not to the programmer, but to the tuning infrastructure.  In this section, we review dif-

ferent performance metrics, and in the next section we describe how one of them has been adapted to support 

automatic application tuning. 

4.2.1 Parallel Performance Metrics 

Simply extending sequential metrics to parallel programs is not sufficient because, in a parallel program, im-

proving the procedure that consumes the largest amount of time may not improve the program's execution time. 

Inter-process dependencies in a parallel program influence which procedures are important to a program's exe-

cution time. Different parallel metrics measure and report these interactions differently. A common way to rep-

resent the execution of a parallel program is in terms of a graph of the application's execution history that incor-

porates both these inter-process dependencies as well was the sequential (intra-process) time. We refer to this 

graph as a Program Activity Graph (or PAG). Nodes in the graph represent significant events in the program's 

execution  (e.g., message sends and receives, procedure calls and returns). Arcs represent the ordering of events 

within a process or the synchronization dependencies between processes. Each arc is labeled with the amount of 

process and elapsed time between events. 

One of the first metrics specifically designed for parallel programs was Critical Path Analysis [37, 38]. 

The goal of this metric is to identify the procedures in a parallel program that are responsible for its execution 

time. The Critical Path of a parallel program is the longest CPU time weighted path through the PAG. Non-

productive CPU time, such as spinning on a lock, is assigned a weight of zero. The Critical Path Profile is a list 

of the procedures or other program components along the Critical Path and the time each procedure contributed 

to the length of the path. The time assigned to these procedures determines the execution time of the program. 

Unless one of these procedures is improved, the execution time of application will not improve. 

Although Critical Path provides more accurate information than CPU time profiles such as gprof, it does 

not consider the effect of secondary and tertiary paths in limiting the improvement possible by fixing a compo-

nent on the Critical Path. An extension to Critical Path called Logical Zeroing [39] addresses this problem. This 

metric calculates the new Critical Path length when all of the instances of a target procedure are set to zero. The 
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difference between the original and new Critical Paths is a prediction of the potential improvement achieved by 

tuning the selected procedure. 

Critical Path provides detailed information about how to improve a parallel program, but building the PAG 

and calculating the metric requires significant space and time. On-line Critical Path Analysis [40] permits com-

puting the critical path profile value or logical zeroing value of a selected procedure during program execution. 

This is done by "piggy-backing" instrumentation data onto the application messages or locks. 

4.2.2 Automating Performance Diagnosis 

Different performance metrics provide useful information for different types of bottlenecks. However, since dif-

ferent metrics are required for different types of bottlenecks the user is left to select the one to use. To provide 

better guidance to the user, rather than providing an abundance of statistics, several tools have been developed 

that  treat the problem of finding a performance bottleneck as a search problem. 

AtExpert [41] from Cray Research uses a set of rules to help users improve FORTRAN programs written 

with the Cray auto-tasking library. The auto-tasking library provides automatic parallelism for FORTRAN pro-

grams; however, there are a number of directives that can that greatly affect performance. AtExpert measures a 

program that has been auto-tasked and attempts to suggest directives that would improve the performance of the 

program. Since, the tool works on a very specific programming model, FORTRAN programs on small scale 

shared-memory multi-processors, it is able to provide precise prescriptive advise to the user. 

Cray also produced the MPP Apprentice for their T3D platforms [42, 43]. This tool differs from ATExpert 

in that it handles a larger variety of parallel programming semantics (not limited to helping with auto-tasking). 

As a result, it is more generally applicable, but provides a less definitive suggestions on how to fix your pro-

gram. MPP Apprentice uses the compiler to automatically insert instrumentation into an application. This in-

strumentation is in the form of counters and timers, so is (relatively) compact and finite size. The compiler pro-

duces a Compiler Information File (CIF), as a guide to map the counter/timer information back to the source 

code of the application program. After the program completes, a Run-time Information file (RIF) is produced, 

containing the values of the counters and timers. MPP Apprentice includes a rich set of performance visualiza-

tions that correlate this information with the application source code. These tools allow the programmer to navi-

gate quickly through the performance data. 

Predicate profiling [44] permits comparing different algorithms for the same problem as well as the scal-

ability of a particular algorithm. It defines a common currency, time, and then calibrate all losses in terms of 

how many cycles it consumed. Losses due to load imbalance, starvation, synchronization, and the memory hier-

archy are reported. Results are displayed in a bar chart showing how the available cycles were spent (both to 

useful work and various sources of loss). Information is presented for the entire application, which provides de-

scriptive information about the type of bottleneck. However, they do not include suggestions about how to fix 

the problem or information about which procedure contain the bottleneck. 
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Another approach is to provide a search system that is independent of the programming model and ma-

chine architecture. Paradyn's Performance Consultant [45] uses a hierarchical three axis search model (the 

“why”, “where”, and “when” of a performance bottleneck). The “why” axis represents hypotheses about poten-

tial bottlenecks in a parallel program (i.e., message passing, computation, I/O). The “where“ axis defines a col-

lection of resource hierarchies  (CPU, interconnect, disk) that could cause bottleneck. The “when” axis isolates 

the bottleneck to a specific phase of the program's execution. A unique feature of the Performance Consultant is 

that it searches for bottlenecks while the program is executing. This requires an adaptive style of instrumenta-

tion, but it can greatly reduce the volume of performance data that needs to be collected. Only the performance 

data required to test the current hypothesis for the currently selected resources need be collected. 

4.3 Adaptation metrics  

In order to make informed choices about adapting an application, Harmony needs metrics to predict the per-

formance implications of any changes. To meet this need, we have developed a metric called Load Balancing 

Factor (LBF) to predict the impact of changing where computation is performed. This metric can be used by the 

system to evaluate potential application reconfigurations before committing to potentially poor choices. 

We have developed two variants of LBF, one for process level migration, and one for fine-grained proce-

dure level migration. Process Load Balancing Factor (LBF) predicts the impact of changing the assignment of 

processes to processors in a distributed execution environment. Our goal is to compute the potential improve-

ment in execution time if we change the placement. Our technique can also be used to predict the performance 

gain possible if new nodes are added. Also, we are able to predict how the application would behave if the per-

formance characteristics of the communication system were to change. 

To assess the potential improvement, we predict the execution time of a program with a virtual placement, 

during an execution on a different one. Our approach is to instrument application processes to forward data 

about inter-process events to a central monitoring station that simulates the execution of these events under the 

target configuration. 

The details of the algorithm for process level-LBF are described in [46]. Early experience with process-

LBF is encouraging.  Figure 10 shows a summary of the measured and predicted performance for a TSP applica-

tion, and four of the NAS benchmark programs [47]. For each application, we show the measured running time 

for one or two configurations and the predicted running time when the number of nodes is used. For all cases, 

we are able to predict the running time to within 6% of the measured time. 

While process LBF is designed for course-grained migration, procedure-level LBF is designed to measure 

the impact of fine-grained moved of work. The goal of this metric is to compute the potential improvement in 

execution time if we move a selected procedure, F, from the client to the server or visa-versa. 
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Application 
Target 

Meas. 
Time Pred. Error Pred. Error 

TSP   4/1 4/1 
    4/4 85.6 85.5 0.1 (0.1%) 85.9 -0.3 (-0.4%)
    4/1 199.2 197.1 2.1 (1.1%) 198.9 0.3 (0.2%)
EP - class A  16/16 16/8 
    16/16 258.2 255.6 2.6 (1.0%) 260.7 -2.5 (-1.0%)
FT- class A  16/16 16/8 
    16/16 140.9 139.2 1.7 (1.2%) 140.0 0.9 (0.6%)
IS- class A  16/16 16/8 
    16/16 271.2 253.3 17.9 (6.6%) 254.7 16.5 (6.0%)
MG- class A  16/16 16/8 
    16/16 172.8 166.0 6.8 (4.0%) 168.5 4.3 (2.5%)

Figure 10: Measured and predicted time for LBF. For each application, we show 1-2 target configu-
rations. The second column shows the measured time running on this target configuration. The rest of 
the table shows the execution times predicted by LBF when run under two different actual configura-
tions. 

The algorithm used to compute procedure is based on the Critical Path (CP) of a parallel computation (The 

longest process time weighted path through the graph formed by the inter-process communication in the pro-

gram). The idea of procedure LBF is to compute the new CP of the program if the selected procedure was 

moved from one process to another4. 

In each process, we keep track of the original CP and the new CP due to moving the selected procedure. 

We compute procedure LBF at each message exchange. At a send event, we subtract the accumulated time of 

the selected procedure from the CP of the sending process, and send the accumulated procedure time along with 

the application message. At a receive event, we add the passed procedure time to the CP value of the receiving 

process before the receive event. The value of the procedure LBF metric is the total effective CP value at the 

end of the program’s execution. Procedure LBF only approximates the execution time with migration since we 

ignore many subtle issues such as global data references by the “moved” procedure. Figure 11 shows the com-

putation of procedure LBF for a single message send. Our intent with this metric is to supply initial feedback to 

the programmer about the potential of a tuning alternative. A more refined prediction that incorporates shared 

data analysis could be run after our metric but before proceeding to a full implementation.  

We created a Synthetic Parallel Application (SPA) that demonstrates a workload where a single server be-

comes the bottleneck responding to requests from three clients. In the server, two classes of requests are proc-

essed: servBusy1 and servBusy2. ServBusy1 is the service requested by the first client and servBusy2 is the ser-

vice requested by the other two clients.  

The results of computing procedure LBF for the synthetic parallel application are shown in Figure 13. To 

validate these results, we created two modified versions of the synthetic parallel application (one with each of 

servBusy1 and servBusy2 moved from the server the clients) and measured the resulting execution time5. The 

                                                      
4 Our metric does not evaluate how to move the procedure. However, this movement is possible if the application uses Harmony's shared 
data programming model. 
5 Since Harmony's shared data programming model is not yet fully implemented, we made these changes by hand. 
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results of the modified programs are shown in the third column of Figure 13. In both cases, the error is small 

indicating that our metric has provided good guidance to the application programmer. 

For comparison to an alternative tuning option, we also show the value for the Critical Path Zeroing metric 

[40].  CP Zeroing is a metric that predicts the improvement possible due to optimally tuning the selected proce-

dure (i.e., reducing its execution time to zero) by computing the length of the critical path resulting from setting 

the time of the selected procedure to zero. We compare LBF with Critical Path Zeroing because it is natural to 

consider improving the performance of a procedure itself as well as changing its execution place (processor) as 

tuning strategies.  

The length of the new CP due to the movement of servBusy1 is 25.4 and the length due to servBusy2 is 

16.1 while the length of the original CP is 30.7. With the Critical Path Zeroing metric, we achieve almost the 

same benefit as tuning the procedure ServBusy1 by simply moving it from the server to the client. Likewise, we 

achieve over one-half the benefit of tuning the ServBusy2 procedure by moving it to the client side.  

4.4 Other sources of information 

In addition to gathering data directly from applications, it is important to incorporate performance data into the 

system from other sources such as the operating system or the network. 

startRecv
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Before "moving" F
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Figure 11: Computing procedure LBF - The PAG before and after mov-
ing the procedure F. The time for the procedure F is moved from the send-
ing process (which is on the application’s critical path) to the receiving one 
(which is not). 

Procedure LBF 
Improve-

ment 
CP 

Zeroing  
Improve-

ment 

ServBusy1 25.3 17.8% 25.4 17.4% 
ServBusy2 23.1 25.1% 16.1 47.5% 
 

Figure 12: Procedure LBF vs. CP Zeroing.

Procedure Procedure 
LBF  

Measured  
Time 

Difference 

ServBusy1 25.3 25.4 0.1 (0.4%) 
ServBusy2 23.0 23.1 0.1 (0.6%) 
 

Figure 13: Procedure LBF accuracy. 
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4.4.1 Operating System Instrumentation Techniques 

Operating systems are another important source of data for adaptable systems. While it is possible to instrument 

an operating system, generally it is better if the basic instrumentation is already built into it. For example, most 

operating systems keep track of statistics about the virtual memory system, file system and file cache. However, 

since this data is intended for use by the operating system or for system administration tools these counters are 

difficult to gather. To support application oriented instrumentation systems, it is important that OS level count-

ers be exposed via APIs that permit efficient access from user processes. An example of such a facility is the 

reading performance counters from the UNIX kernel memory via the /dev/kmem psuedo-device. Harmony (and 

other resource-aware meta-computing environments) run atop commodity operating and thus making this type 

of data available in current operating systems is critical. 

4.4.2 Active network monitoring 

There are two major ways to measure a network: passive monitoring and active monitoring. Passive network 

monitoring inserts measurement systems or instruments network components to observe and record the informa-

tion about the traffic that passes through the network. Active monitoring involves injecting new traffic into the 

network, or changing the transmission of existing traffic. Active monitoring can gather additional information 

not available via passive monitoring; however, because it alters the traffic on the network it is more intrusive. 

A basic type of passive monitoring for local area networks takes advantage of the fact many local area 

networks use broadcasts at the physical media level. For example, the packet filter [48] puts an Ethernet adapter 

into promiscuous mode and then observes all traffic on that segment. Since gathering all traffic on a network can 

result in an enormous amount of data, the packet filter provides a simple predicate language to filter traffic 

based on packet content. With switched Ethernet, it is no longer possible to implement a packet filter at an arbi-

trary compute node. However, many switches provide a monitoring port that can be configured to receive all, or 

a filtered subset, of the traffic passing through the switch. 

In addition, the RMON protocol [49]  provides a way for hubs and switches to  record and report statistics 

about the traffic passing through them. The RMON protocol defines a set of SNMP variables that can be ex-

tracted and displayed by any SNMP compliant monitoring station. RMON permits gathering statistics about 

packet counts,  a matrix of traffic by sending and receiving host,  and statistics about selected TCP and UDP 

ports. 

A basic type of active monitoring is to use Internet Control Message Protocol (ICMP) echo packets, often 

called ping packets, to measure the network performance between two hosts. By sending an echo packet and 

noting the time it leaves the host and the time when it returns, it is possible to compute the average round-trip 

delay between hosts. By attaching a sequence number to each echo packet, estimates of network losses may be 

made by counting the number of lost packets. In addition, since the size of ICMP echo packets can be varied it is 

possible to use them to estimate the available bandwidth between hosts. 
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A second type of active monitoring is to exploit the time-to-live field in IP packets to discover the route 

taken between two hosts. This technique is used by the ``traceroute'' utility. All IP packets have a time-to-live 

field which limits the number of hops that a packet can travel. This field was originally intended to prevent 

packets from looping through the network when a routing error caused a cycle in the path between two hosts. At 

each hop in the network, the time-to-live field is decremented by one. When the count reaches zero, the packet is 

dropped and an ICMP message containing the identity of the host where the packet was dropped is sent back to 

the originating host. By setting the time-to-live field to one, a host can discover the first hop in routing a packet 

to a destination. By repeatedly incrementing the time-to-live field, a sender can discover the entire route to the 

desired destination. Since IP networks route traffic on a per packet basis, it is possible that the routes taken by 

these probe packets may be different. However, over short periods of time, the routes taken by packets bound 

for the same destination tend to travel the same path. Like echo packets, trace-route packets can be used to 

gather information about the time packets take to reach their target. By comparing the return times of adjacent 

nodes it is possible to identify the bottleneck link between the source and destination.  

Another way to estimate the delays in the network is based on sending “packet pairs”, two back-to-back 

packets [50, 51]. The key idea of this approach is that by measuring the difference in the arrival times of the two 

packets it is possible to estimate the queuing delay of the bottleneck switch between the sender and receiver. 

Network Weather Service [52, 53] provides dynamic resource forecasts in meta-computing environments. 

The service gathers the time varying load data from a distributed set of sensors. The load data includes CPU 

availability and network performance (bandwidth between two nodes). Numerical models are then used to pre-

dict and forecast the load conditions for a given time frame. Their prediction models embody various stochastic 

techniques such as mean-based methods, median-based methods and auto-regressive models. Since different 

estimation techniques yield the best forecasts at different times, the Network Weather Service dynamically 

chooses one prediction model based on the error between all predictors and sampled data. 

4.4.3 Hardware counters 

Some performance information only can be provided efficiently with hardware support. This information in-

cludes high resolution timers, memory system performance, and internal details of processor use (such as float-

ing point unit utilization or FLOP counts). Fortunately, many modern processors provide high-resolution per-

formance data via special registers or memory-mapped locations. 

A crucial hardware feature for instrumentation is an accurate clock. To be useful to measure fine-grained 

events, a clock should provide sufficient resolution so that it does not roll over during an application’s execu-

tion. For example, at current processor clock rates, a 32 bit counter will roll in less than 10 seconds. 64 bit 

clocks should be considered a basic requirement. Most recent micro-processors include high resolution 

clocks[54-57] include high resolution clocks. 

However, high resolution alone is not sufficient, for a clock to be useful it must be accessible with low la-

tency to permit measuring fine-grained events. Clock operations need to be supported by user-level instructions 
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that execute with similar performance as register-to-register instructions. The Intel Pentium family provides a 

clock that meets this requirement, however SPARC v9 does not. 

As more and more features are integrated onto a single chip, it is increasingly important that instrumenta-

tion be incorporated into the chips since many useful types of information are no longer visible to an external 

instrumentation system. Modern processors, such as the Sun UltraSPARC, Intel Pentium Pro, and IBM Power2 

provide a rich collection of performance data. For example, the Pentium Pro provides access to its performance 

data through the Model Specific Registers (MSR's). These registers include counts of memory read & writes, L1 

cache misses, branches, pipeline flushes, instructions executed, pipeline stalls, misaligned memory accesses, bus 

locked cycles, and interrupts. The UltraSPARC, Power2, and MIPS R10000 provide a similar set of counters. 

In addition to processors it is increasing important that other system components provide instrumentation 

at the hardware level. For example, network interfaces, and I/O systems are increasing using high speeds and 

higher levels of integration. One system that provided detailed system instrumentation was the IBM RP3 [58] 

which included a passive  hardware monitor, with instrumentation built into almost every subsystem of the 

computer. Each device recognized its own events and passed the information through I/O pins to a Performance 

Monitor Chip (PMC) which counts the events. The PMC also sampled memory references to provide statistics 

about memory usage. The capabilities were limited, however, due to constraints on space and cost imposed on 

the designs. 

5. Related work 
Although we have tried to present much of the work in resource ware computing throughout this chapter, in this 

section we summarize some of the key enabling technology for resource-ware computing, and present a few 

projects that have looked at various aspects of the problem. 

5.1 Meta-computing and adaptive applications 

Globus [59] and Legion [60] are major projects to build an infrastructure for meta-computing. They are trying to 

address various requirements to seamlessly aggregate heterogeneous computing resources. The required services 

include global naming, resource location and allocation, authorization, and communications. Prospero Resource 

Manager (PRM) [61] also provides a uniform resource access to the nodes in different administration domains 

so that users don’t have to manage them manually. By contrast, our work is concentrating on the specific prob-

lem of developing interfaces and policies to allow applications to react to their computing environment 

From the application’s view, it is advantageous for the application to adjust itself to changing resource 

status since the application knows more than the underlying resource manager how to obtain good performance 

from different resources. Based upon this concept, the AppLeS [62] project developed application-centric 

scheduling. AppLes allows applications to be informed of the variations in resources and presented with candi-

date lists of resources to use.  In this system, applications are informed of resource changes and provided with a 

list of available resource sets. Then, each application allocates the resources based upon a customized schedul-
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ing to maximize its own performance. This is different from most other systems, which strive to enhance sys-

tem-wide throughput or resource usage. The Network Weather Service [52] is used to forecast the network per-

formance and available CPU percentage to AppLeS agents so that the applications can adapt by appropriate 

scheduling. Harmony differs from AppLes in that we try to optimize resource allocation between applications, 

whereas AppLes lets each application adapt itself independently. In addition, by providing a structured interface 

for applications to disclose their specific preferences, Harmony will encourage programmers to think about their 

needs in terms of options and their characteristics rather than as selecting from specific resource alternatives 

described by the system. 

Dome [63] is another parallel programming model which supports application-level adaptation using load 

balancing and checkpointing. While the load balancing for the different CPU and network performance is trans-

parent, the programmers are responsible for writing suitable checkpointing codes using provided interfaces. 

The Odyssey [64] project also focuses on online adaptation. Odyssey gives resources, such as network 

bandwidth, to applications on a best-effort basis. Applications can register system callbacks to notify them when 

resource allocations stray outside of minimum and maximum thresholds. When the application is informed that 

the resource availability goes outside the requested bounds, it changes the fidelity and tries to register a revised 

window of tolerance. For example, when the available network bandwidth decreases, the video application can 

decrease the fidelity level by skipping frames, and thus displaying fewer frames per second.  

EMOP[65] provides mechanisms and services (including object migration facilities) that allow applica-

tions to define their own load-balancing and communication services. Its programming model is based on 

CORBA and uses an Object Request Broker (ORB) for communications between application components. 

EMOP supports multiple, possibly user defined, communication protocols. Its automatic protocol selection 

adaptively chooses the most suitable protocol at run-time. However, the decision is made based only on a prede-

fined order. The first available protocol will be selected from an ordered list of preferred protocols. Therefore, 

EMOP cannot consider changing available bandwidth in choosing communication protocol. The load-balancing 

mechanisms are based on Proxy Server Duality. The server object acts as a proxy when the load increases, and 

forwards the requests to other server objects. When the load decreases, it switches back to server mode, and pro-

cesses the requests. 

5.2 Computational steering 

Computational Steering [66-69] provides a way for users to alter the behavior of an application under execution. 

Harmony’s approach is similar in that applications provide hooks to allow their execution to be changed. Many 

computational steering systems are designed to allow the application semantics to be altered, for example adding 

a particle to a simulation, as part of a problem-solving environment, rather than for performance tuning. Also, 

most computational steering systems are manual in that a user is expected to make the changes to the program.   

One exception to this is Autopilot [66], which allows applications to be adapted in an automated way. 

Sensors extract quantitative and qualitative performance data from executing applications, and provide requisite 
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data for decision making. Autopilot uses a fuzzy logic to automate the decision making process. Their actuators 

execute the decision by changing parameter values of applications or resource management policies of underly-

ing system. Harmony differs from Autopilot in that it tries to coordinate the use of resources by multiple appli-

cations. 

5.3 Idle-cycle harvesting and process migration 

Many research prototypes and practical systems have been developed to harvest those idle cycles. Condor 

[70] is built on the principle of distributing batch jobs around a cluster of computers. It identifies idle worksta-

tions and schedules background jobs on them. The primary rule Condor attempts to follow is that workstation 

owners should be able to access their machine immediately when they want it. To do this, as soon as the ma-

chine’s owner returns, the background job is suspended and eventually migrated to another idle machine. This 

low perturbation led to successful deployment of the Condor system. For fault tolerance, Condor checkpoints 

jobs periodically for restoration and resumption. It also provides machine owners with the mechanisms to indi-

vidually describe in what condition their machine can be considered idle and used. IBM modified Condor to 

produce a commercial version, Load Leveler [71]. It supports not only private desktop machines but also IBM’s 

highly parallel machines. 

Sprite [72] is another system providing process migration to use only idle machines and respecting the 

ownership of workstations. A migrated process is evicted when the owner reclaims their machine. The major 

difference from Condor is that job migration is implemented at the operating system level. The advantage is the 

migration overhead is much lower: a few hundred milliseconds while user level evictions typically occur in a 

few seconds. However, the fully custom OS kernel hinders the wide deployment and extension to the heteroge-

neous environment.  

DQS [73] is an early non-commercial cluster computing system. Like Condor, it supports most of the 

existing operating systems. Different job queues are provided based on architecture and group. DQS ensures the 

local autonomy of a private machine by suspending currently running background jobs when keyboard or mouse 

activities are detected. However, their emphasis is placed on distributing the jobs to different shared machine 

clusters in a balanced manner. Jobs can be suspended and resumed, but migration is not supported. DQS 3.0 

[74], the latest version, is widely used by companies such as Boeing and Apple Computer. 

Load Sharing Facility (LSF) [75] was developed to automatically queue and distribute jobs across a het-

erogeneous network of Unix computers. This system was intended for much larger groups of workstation clus-

ters consisting of thousands of machines. The basic assumption on each participating machine is that a host is by 

default sharable, which is opposite to the policy of Condor-like systems. Local autonomy is not respected, and 

hence few mechanisms are provided to protect machine owners. LSF focuses on two major goals. The first is to 

place jobs on nodes that meet the application’s requirement. The second is to balance the load across machine 

clusters to achieve better turn-around time of jobs and system utilization in the entirety. Since job migration is 
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not supported, the process should finish on the node it started. It also lacks the checkpointing mechanism, so 

remote jobs are vulnerable to node failure.  

The Butler system [76] also gives users access to idle workstations. This system requires the Andrew 

System [77] for shared file access. The basic concept of this system is to provide transparent remote execution 

on idle nodes. Lack of support for job migration in Butler can lead to loss of work by remote jobs when the ma-

chine owner returns. The system will just warn the remote user, then kill the process so as not to disturb the ma-

chine owner. 

There is one approach, which supports local autonomy of individual machines in a different way. The 

Stealth system [2] runs remote processes with lower priority to preserve the performance of local work. Thus, 

when the owner reclaims their machine, the remote job does not leave the node, rather keeps running with low 

priority. They prioritized several major resources including CPU, memory and the file buffer cache on the 

MACH operating system so as not to interfere with local processes. This is similar to our fine-grain cycle steal-

ing approach. However, lack of support for job migration can lead to extreme delay or even starvation of back-

ground jobs.  Also, this system is not intended for parallel jobs. 

There have been studies of specific issues involved in using idle cycles. Theimer and Lantz [78] investi-

gated into how to find idle machines more efficiently. They found that a centralized architecture can be scaled 

better and can be more easily monitored, while a decentralized architecture is easier to implement. Bhatt et al 

[79] investigated finding an optimal work size to run remotely assuming that the partial result will be lost when 

idle machines are reclaimed. In their cycle stealing model, too small chunks of remote work will suffer from 

high network overhead and too large chunks can waste cycles by losing larger partial work. While checkpoint-

ing can avoid this problem, a study showed that it should be carefully designed. Basney and Livny [80] used 

data from the Condor system to show that their initial matchmaking and checkpointing design could cause a 

bursty utilization of network bandwidth, and thus interfere with interactive processes and even unrelated remote 

job migrations. They suggested a better design that gives priority to applications with low network requirements. 

Also, this approach limits the bandwidth consumed by job placement and checkpointing for a given time period.  

Immediate migration does not always satisfy machine owners since it takes a noticable time to recover 

the previous state of machine such as CPU cache, I/O cache buffers and memory pages. Arpaci et al [81] limited 

this perturbation by restricting the number of times when returning users notice disruptions on their machine to a 

fixed limit per day. Petrou et al [82] present a more complex solution to increase the available time of idle ma-

chines. Their system predicts when a user will return based on the past history and actively restores the memory-

resident state in anticipation of a user returning.     

General load balancing and process migration mechanisms have been studied extensively. MOSIX [83] 

provides load-balancing and preemptive migration for traditional UNIX processes. DEMO/MP [84], Accent 

[85], Locus [86], and V [87] all provide manual or semi-automated migration of processes. 
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5.4 Parallel job scheduling 

Non-interactive computation-intensive applications are often found in the form of parallel programs. Since a 

collection of idle machines connected by a high speed network can be viewed as a virtual parallel machine, par-

allel computing in this environment is a natural match. However, this is far more complicated than running mul-

tiple independent sequential jobs on idle machines. Furthermore, multiple parallel jobs should be able to be 

served at the same time for two reasons. First, a very large pool of workstations can be wasted if only single 

parallel job can run at once. Second, the response time of each parallel job should be acceptable as well as the 

system throughput. In general, scheduling of multiple parallel programs is classified to two styles: time sharing 

and space sharing [88].  

In time shared scheduling, different parallel jobs share the nodes and take turns for execution. However, 

global coordination across the processors are essential since independent process switching on each node will 

lead to large inefficiencies. In Gang scheduling, context switches between different parallel jobs occurs simulta-

neously at all the processors in a synchronized manner.  Thus, constituent processes(or threads) can interact at a 

fine granularity.   

There have been extensive studies to efficiently implement the Gang scheduling. Ousterhout [89] sug-

gested and evaluated a few algorithms for coscheduling. He verified that avoiding fragmentation of slots for 

processes on processors are critical for system throughput. A number of variants of coscheduling were also ex-

plored. Sbalvarro et al [90] presented demand-based coscheduling. This dynamic scheduling algorithm cosched-

ules the processes exchanging messages. The implicit coscheduling work by Dessau et al [91] shows that co-

scheduling can be achieved implicitly by independent decisions of local schedules based on the communication 

pattern. This study focuses more on how to immediately schedule the corresponding process and keep the com-

municating processes on the processors without blocking.   

Space sharing partitions the nodes and executes a number of applications side by side. This has the ad-

vantage of reducing the operating system overhead on context switching [92]. However, an important constraint 

is that activities on one partition should not interfere with the others. Therefore, processor partitioning in a clas-

sic parallel machine needs to be aware of the interconnection architecture between processing units. The sim-

plest way of space slicing is fixed partitioning. Fixed partitions are set by the system administrators. Certain par-

titions can be dedicated to a certain group of users or different job classes [93, 94]. Many commercial systems 

split the system into two partitions: one for interactive jobs and the other for batch jobs. This is because the re-

sponsiveness of interactive jobs shouldn’t be compromised by a heavy load of batch jobs. In spite of its simplic-

ity, this system will suffer from internal fragmentation. Variable partitioning can change the partition size upon 

job’s requests. Nonetheless, external fragmentation remains an issue because free processors left might not be 

enough for any queued jobs. Another issue is the scheduling decision: which job in the queue should be sched-

uled first. Obviously, first-come-first-service will introduce more external fragmentation. The “shortest job first” 

can give better average response time, but starve long jobs. In addition, it is not easy to know the lifetime of 

submitted jobs in advance. Other policies such as “smaller job first” and the opposite, “longer job first” were 
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explored and turned out to be not much better than a simple FCFS scheduling. Backfilling [11] is another sched-

uling algorithm to reduce external fragmentation while still offering fairness to queued jobs with respect to their 

arrival time.  

The flexibility of applications can give more opportunity for the scheduler for global optimization. 

Many parallel programs can be written so that they can run on different number of processors. However, this 

does not necessarily mean that it can adapt the partition size at run time. For these parallel jobs, the scheduler 

can decide the number of processors to be allocated. Fairness plays a more important role here since the decision 

is made mostly by the scheduler with little application involvement. Various on-line algorithms were suggested. 

Equipartition [95] allocates the same number of processors to all queued jobs. However, since “non-malleable” 

jobs cannot change the level of parallelism at run time, all running jobs will not have the same number of proc-

essors as jobs come and go. Equipartition works as it is intended when treating “moldable” jobs that can adapt 

the partition size at run time. However, too frequent reconfiguration should be avoided to limit overhead. For 

dynamic partitioning with moldable parallel jobs, two different schemes have been proposed: the two-level 

scheduler [96] designed at University of Washington and the “process control” scheduler [92] designed in Stan-

ford University. An interesting study on running run-time reconfigurable parallel jobs was done by Zahorjan et 

al [97]. They measured the job efficiency of different processor allocations and found the best configurations 

yielding maximum speedup at run time. This self-tuning is based on the fact that the speedup stops increasing 

after a certain size of the partition due to a heavy communication overhead. Studies showed that the memory 

constraint should be considered since it can put a lower bound on the partition size [98] and below this lower 

bound, using virtual memory unacceptably degrades the parallel job performance due to heavy paging [99].   

The scheduling policies surveyed above were originally developed for dedicated parallel systems. Thus, 

they cannot be directly applied to the network of workstation environment where interactive jobs require a quick 

response time. In most such systems, local interactive processes are not controllable and should be protected 

from aggressive background jobs. Parallel jobs are much more difficult to run on idle machines than sequential 

jobs because the suspension of one constituent process can block the whole parallel job resulting in poor system 

usage.  

There have been many studies on running parallel jobs on non-dedicated workstation pools. Pruyne and 

Livny [100] interfaced the Condor system and PVM [6] through CARMI (Condor Application Resource Man-

agement Interface) to support parallel programming. Their Work Distributor helped the parallel job adapt as the 

resources came and went. The MIST [101] project also extended PVM to use only idle machines. The distinc-

tion between the two systems is that CARMI requires a master-workers style programming and the inclusion 

and exclusion of machines is handled by creation and deletion of new worker processes, whereas MIST migrates 

running PVM processes. Piranha [102] works similarly, but it is restricted to programs using Linda [103] tuple-

space based communication, whereas CARMI and MIST can serve in a general message passing environment. 

Cilk-NOW [104] also supports this adaptive parallelism for parallel programs written in Cilk. When a given 
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workstation is not being used by its owner, the workstation automatically joins in and helps with the execution 

of a Cilk program. When the owner returns to work, the machine automatically retreats from the Cilk program.  

The NOW project [105] investigated various aspects of running parallel jobs on a network of worksta-

tions. They developed the River system [106] that supports I/O intensive parallel applications, such as external 

sort, running on dynamically changing resources. Their load balancing scheme, using distributed queue and data 

replication, removes the drastic performance degradation of a I/O intensive parallel application due to the re-

duced I/O bandwidth on some nodes. Another study [81] in the NOW project investigated, through simulation, 

running parallel jobs and interactive sequential jobs of local users. This showed that a non-dedicated NOW clus-

ter of 60 machines can sustain a 32-node parallel workload. Acharya et al [3] also studied running adaptive par-

allel jobs on a non-dedicated workstation. Their experiments confirmed NOW’s 2:1 rule in running parallel jobs. 

They also showed that the parallel job throughput depends on the flexibility of adaptive parallel jobs. Restricting 

the possible number of constituent processes to a certain number, like power of two, would yield a poor per-

formance since not all of the available nodes are used. 

5.5 Local scheduling support by operating systems 

The concept of “time-sharing” a machine has been widely adopted and served for a long time to provide a good 

response time to each process and better system utilization. For the same class of jobs, the system strives to en-

sure the “fairness” in allocating the CPU time to existing processes. Most current UNIX systems [107, 108] are 

using dynamic priority adjustment to achieve fair scheduling. For example, if a process releases the CPU before 

its time-quanta expires, it is rewarded by a temporary priority boost for the future. On the other hand, it is some-

times necessary to treat some types of processes differently or unfairly. A typical example is the case of running 

CPU-intensive jobs in background with interactive jobs. Unix systems provide users with different user-level 

priorities so that processes that are more important can execute more frequently by using a higher priority. How-

ever, the definition of “priority” is quite different depending on implementation. In addition, the priority is en-

forced only to CPU scheduling, thus, can be compromised by competition for other resources such as memory 

and disk I/O.  

Some systems provide special local resource scheduling for different classes of jobs. Host processes that 

belong to the machine owner should run as if there were no other activities. Guest processes, which are either 

initially intended as background jobs or moved from other machines to balance the load, can use only the time 

and resources which are not used by host processes. The Stealth Distributed Scheduler [2] supports this by a lo-

cal scheduler that protects the performance of owner’s processes. They prioritized not only CPU scheduling but 

also memory management and file accesses. Stealth was implemented on a network of Sun 3/50 and IBM RT 

workstations using a customized version of Mach 2.5.  

Verghese et al. [109] investigated dynamic sharing of multi-user multiprocessor systems. Their primary 

scheme is to isolate the performance of the processes belonging to the same logical entity, such as a user. Logi-

cal smaller machines named Software Performance Units (SPU) were suggested to achieve two performance 
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goals: 1) Isolation: If the allocated resources meet the requirement of an SPU, its performance should not be de-

graded by the load placed to the systems by others, and 2) Sharing: If the allocated resources are less than the 

requirement, the SPU should be able to improve its performance utilizing idle resources. Like Stealth, only idle 

time of the CPU and unused memory can be loaned to non-host SPUs and will be revoked immediately when 

the host SPU needs them. Their system was implemented in the Silicon Graphics IRIX operating system. While 

their approach requires changes to similar parts of the operating system, their primary goal was to increase fair-

ness to all applications, while our goal is to create an inherently unfair priority level for guest processes. Having 

logical smaller machines in this study is similar to the classic virtual machine concept developed by IBM ma-

chines [110]. However, virtual machines on a physical machine was developed mainly to provide an illusion of 

having multiple machines and run different operating systems on a single machine. The system efficiency can be 

limited due to internal fragmentation resulted from lack of support for dynamic resource sharing between virtual 

machines. 

In the current version of IRIX operating system [111], the Miser feature provides deterministic schedul-

ing of batch jobs. Miser manages a set of resources, including logical CPUs and physical memory, that Miser 

batch jobs can reserve and use in preference to interactive jobs. This strategy is almost opposite of our approach, 

which promotes interactive jobs.  

6. Conclusions 
Tying together multiple administration domains and systems is the most cost-effective method of meeting to-

day’s high-end computational demands. However, this approach poses a number of difficult challenges, most 

notably that of dealing with dynamic and heterogeneous environments. We feel the best way to address the issue 

of dynamic environments is to use a rich interface between applications and the system and to allow the system 

fine-grained control over application resource use.  Much of our work has focused on building an API that is 

expressive enough to define real-world alternatives, and the scheduling infrastructure that can use this informa-

tion to improve application performance. The remaining missing piece is that of deriving simple, accurate per-

formance models. A great deal of work has been done in performance models in other domains. It remains to be 

seen whether this work can be directly applied to meta-computing. 
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