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Abstract—Eventually consistent systems can be made more
consistent by reducing the time until a write is fully repli-
cated, thereby improving global update visibility. While gossip-
based anti-entropy methods scale well, random selection of anti-
entropy partners is less than efficient. Moreover, while eventual
consistency may be consistent enough in a single data center,
geographic replication increases visibility latency and leads to
externally observable inconsistencies. In this paper, we explore
an improvement to pairwise, bilateral anti-entropy; instead of
uniform random selection, we introduce reinforcement learning
mechanisms to assign selection probabilities to replicas most
likely to have information. The result is more efficient repli-
cation, faster visibility, and stronger eventual consistency while
maintaining high availability and partition tolerance.

Index Terms—Eventual Consistency; Anti-Entropy; Geo-
Replication; Multi-Armed Bandits; Reinforcement Learning;

I. INTRODUCTION

A distributed system is made highly available when indi-
vidual servers are allowed to operate independently without
failure-prone, high latency coordination. The independent na-
ture of the server’s behavior means that it can immediately
respond to client requests, but that it does so from a limited,
local perspective which may be inconsistent with another
server’s response. If individual servers in a system were
allowed to remain wholly independent, individual requests
from clients to different servers would create a lack of order
or predictability, a gradual decline into inconsistency, i.e. the
system would experience entropy. To combat the effect of
entropy while still remaining highly available, servers engage
in periodic background anti-entropy sessions [17].

Anti-entropy sessions synchronize the state between servers
ensuring that, at least briefly, the local state is consistent with
a portion of the global state of the system. If all servers
engage in anti-entropy sessions, the system is able to make
some reasonable guarantees about consistent replication; the
most famous of which is that without requests the system will
become globally consistent, eventually [17]. More specifically,
inconsistencies in the form of stale reads can be bound by
likelihoods that are informed by the latency of anti-entropy
sessions and the size of the system [2], [3]. Said another way,
overall consistency is improved in an eventually consistent
system by decreasing the likelihood of a stale read, which
is tuned by improving the visibility latency of a write, the
speed at which a write is propagated to a significant portion
of servers. This idea has led many system designers to decide
that eventual consistency is “consistent enough” [6], [18],
particularly in a data center context where visibility latency

is far below the rate of client requests, leading to practically
strong consistency.

However, propagation rates need to be re-evaluated because
distributed systems are growing, while simultaneously becom-
ing geographically distributed outside of datacenters. Large
geographically-distributed systems are becoming the norm
particularly as mobile devices and sensor systems participate
in computing and storage at the edge of large distributed
systems [9], [16]. From content delivery systems that span
the globe, to mobile applications, to future systems such as
automated vehicular networks, all will require additional con-
sistency guarantees without sacrificing availability. However,
scaling an eventually consistent system to dozens or even
hundreds of nodes increases the radius of the network, which
leads to increased noise during anti-entropy e.g. the possibility
that an anti-entropy session will be between two already syn-
chronized nodes. Geographic distribution and extra-datacenter
networks also increase the latency of anti-entropy sessions
so that inconsistencies become more apparent to external
observers.

We address the challenge of large, geographically dis-
tributed eventually consistent systems by improving synchro-
nization using reinforcement learning techniques. Anti-entropy
uses gossip and rumor spreading to propagate updates deter-
ministically without saturating the network even in the face of
network outages [10], [11], [14]. These protocols use uniform
random selection to choose synchronization peers, which
means that a write occurring at one replica is not efficiently
propagated across the network. In this paper we explore the
use of multi-armed bandit algorithms [12], [13] to optimize for
fast, successful synchronizations by modifying peer selection
probabilities. The result is a synchronization topology that
emerges according to access patterns and network latencies.
Such topologies produce efficient synchronization, localize
most data exchanges, lower visibility latency, and increase
consistency.

Our contribution for this early stage work is a demonstration
of the potential for replicas to meaningfully influence global
consistency by modifying local behavior in response to their
computing environment. This potential has been motivated
by our larger work, which investigates the effect of scaling
systems, both in terms of size and distance, on consistency.
We show this potential though experiments run on a system
with dozens of replica distributed across five continents. Our
results show that even a relatively simple implementation of



adaptivity leads to a pronounced benefit in visibility latency,
and therefore the overall consistency of the system.

II. BACKGROUND

Our investigation considers an eventually consistent, in-
memory key-value store that is totally replicated using anti-
entropy [8]. A brief description of the system and consistency
considerations follows.

A. Accesses and Consistency

Clients can Put (write) and Get (read) key-value pairs to
and from one or more replicas in a single operation. The set
of replicas that responds to a client creates a quorum that must
agree on the state of the operation at its conclusion. Clients
can vary read and write quorum sizes to improve consistency
or availability – larger quorums reduce the likelihood of incon-
sistencies caused by concurrent updates, but smaller quorums
respond much more quickly, particularly if the replicas in the
quorum are co-located with the client. In large, geo-replicated
systems we assume that clients will prefer to choose fewer,
local replicas to connect with, optimistic that collisions across
the wide-area are rare, e.g. that writes are localized but reads
are global.

On Put, the instance of the key-value pair created by the
update is assigned a monotonically increasing, conflict-free
version number [1], [15]. For simplicity, we assume a fixed
number of replicas, therefore each version is made up of
two components: the update and precedence ids. Precedence
ids are assigned to replicas during configuration, and update
ids are incremented to the largest observed value during
synchronization. As a result, any two versions generated by
a Put anywhere in the system are comparable such that the
latest version of the key-value pair is the version with the
largest update id, and in the case of ties, the largest precedence
id.

Additional version metadata, including the parent version
of the update (in a read-then-write system or simply the latest
version of the key stored locally), implements a virtual object
history that allows us to reason about consistency. Keys can
be managed independently, e.g. each key has its own update id
sequence resulting in per-object consistency, or all objects can
be managed together with a single sequence; in the latter case,
it is possible to construct an ordering history of operations to
all objects and in the former, a sequence of operations for each
object. Object histories allow us to reason about the global
consistency of the system.

There are two primary inconsistencies that can occur in this
system: stale reads and forked writes. A stale read means that
the Get operation has not returned the globally most recent
version of the object, e.g. the local replica is behind in the
object history. A forked write is caused when there are two
concurrent writes to the same object, a symptom of stale reads.
Forked writes cause a divergence in the object history such that
there are two or more branches of update operations. As we
will see in the next section, one of these writes will eventually

be stomped before it can become fully replicated, meaning
that the eventual consistency prunes these branches at the cost
of losing the update. The ideal consistency for a system is
represented by a linear object history without forks [7], which
demonstrates that the system was in a consistent state during
all accesses.

Both forms of inconsistency can be primarily attributed to
visibility latency, that is the time it takes for an update to
propagate to all replicas in the system. Visibility latency is
directly related to the likelihood of stale reads with respect to
the frequency of accesses [3]; said another way, decreasing the
visibility latency improves the overall consistency of a system.
However, in a system that uses anti-entropy for replication,
the propagation speed of an update is not governed solely
by network connections, it is also bound to the number and
frequency of anti-entropy sessions conducted as well as the
radius of the network.

B. Anti-Entropy

Anti-entropy sessions are conducted in a pairwise fashion
on a periodic interval to ensure that the network is not
saturated with synchronization requests which may reduce
client availability. At each interval, every replica selects a
synchronization partner such that all replicas have a uniform
likelihood of selection. This ensures that an update originating
at one replica will be propagated to all online replicas given
the continued operation of replication. This mechanism also
provides robustness in the face of failure; a single unresponsive
replica or even network partition does not become a bottleneck
to synchronization, and once the failure is repaired synchro-
nization will occur without reconfiguration.

There are two basic forms of synchronization: push synchro-
nization is a fire-and-forget form of synchronization where
the remote replica is sent the latest version of all objects,
whereas pull synchronization requests the latest version of
objects and minimizes the size of data transfer. To get the
benefit of both, we consider bilateral synchronization which
combines push and pull in a two-phase exchange. Bilateral
synchronization increases the effect of anti-entropy during
each exchange because it ensures that in the common case
each replica is synchronized with two other replicas instead
of one during every anti-entropy period.

Bilateral anti-entropy starts with the initiating replica send-
ing a vector of the latest local versions of all keys currently
stored, usually optimized with Merkel or prefix trees to make
comparisons faster. The remote replica compares the versions
sent by the initiating replica with its current state and responds
with any objects whose version is later than the initiating
replica’s as well as another version vector of requested objects
that are earlier on the remote. The initiating replica then
replies with the remote’s requested objects, completing the
synchronization. We refer to the first stage of requesting later
objects from the remote as the pull phase, and the second stage
of responding to the remote the push phase.



There are two important things to note about this form
of anti-entropy exchange. First, this type of synchronization
implements a latest writer wins policy. This means that not all
versions are guaranteed to become fully replicated – if a later
version is written during propagation of an earlier version,
then the earlier version gets stomped by the later version
because only the latest versions of objects are exchanged. If
there are two concurrent writes, only one write will become
fully replicated, the write on the replica with the greater
precedence. Second, visibility latency is maximized when all
replicas choose a remote synchronization partner that does
not yet have the update. This means that maximal visibility
latency is equal to t log3 n, where t is the anti-entropy interval
and n is the number of replicas in the network. In practice,
however, because of inefficient exchanges due to uniform
random selection of synchronization partners, this latency is
never practically achieved, and is instead modulated by a noise
variable that is proportional to the size of the network.

III. BANDIT APPROACHES

To combat the effect of noise on visibility latency our
initial approach employs a technique commonly used in active
and reinforcement learning: multi-armed bandits. Multi-armed
bandits refer to a statistical optimization procedure that is
designed to find the optimal payout of several choices that
each have different probabilities of reward. In this case, we use
bandits to improve uniform random selection of peers so that
replicas choose synchronization partners that are most likely
to exchange information, and thus more quickly propagate up-
dates, while still maintaining the properties of full replication
and fault tolerance.

A bandit problem is designed by identifying several (usually
more than two) competing choices called “arms”1, as well as a
reward function that determines how successful the selection
of an arm is. During operation, the bandit selects an arm,
observes the rewards, then updates the payout likelihood of
the selected arm, normalized by the number of selections. As
the bandit selects arms, it learns which arm or arms have the
highest likelihood of reward, and can modify it’s arm selection
strategy to maximize the total reward over time.

Bandits must balance exploration of new arms with possibly
better reward values and exploitation of an arm that has higher
rewards than the other. In the epsilon greedy strategy, the
bandit will select the arm with the best reward with some
probability 1 − ε, otherwise it will select any of the arms
with uniform probability. The smaller ε is, the more the bandit
favors exploitation of known good arms, the larger ε is, the
more it favors exploration. If ε = 1 then the algorithm is
simply uniform random selection. A simple extension of this
is a strategy called annealing epsilon greedy, which starts
with a large ε, then as the number of trials increases, steadily
decreases ε on a logarithmic scale. There are many other bandit

1Arms refer to the pulling mechanism of a slot machine, the metaphor
generally used to motivate the multi-armed bandit problem.

Pull Push Total

Synchronize at least 1 object 0.25 0.25 0.50
Additional for multiple objects 0.05 0.05 0.10
Latency ≤ 5ms (local) 0.10 0.10 0.20
Latency ≤ 100ms (regional) 0.10 0.10 0.20

Total 0.50 0.50 1.00

TABLE I: Reward Function

strategies but we have chosen these two simple strategies
for our initial research to demonstrate a bolt-on effective
improvement to existing systems.

Peer selection for anti-entropy is usually conducted with
uniform random selection to guarantee complete replication.
To extend anti-entropy with bandits, we design a selection
method whose arms are remote peers and whose rewards are
determined by the success of synchronization. The goal of
adding bandits to anti-entropy is to optimize selection of peers
such that the visibility latency becomes closer to the optimal
propagation time as a synchronization topology emerges from
the bandits. A secondary goal is to minimize anti-entropy
latency by preferring local (in the same data center) and
regional (e.g. on the same continent) connections.

Our initial reward function favors synchronizations to repli-
cas where the most writes are occurring by giving higher
rewards to anti-entropy sessions that exchange later versions
in either a push or a pull, as well as additional rewards if
more than one object is exchanged. Additionally, the latency
of the synchronization RPCs is computed to reward replicas
that are near each other. The complete reward function is given
in Table I: for each phase of synchronization (push and pull),
compute the reward as the sum of the propositions given. For
example if a synchronization results in three objects being
pulled in 250ms, and one object being pushed in 250ms, the
reward is 0.75.
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Fig. 3: Visibility Latency by Region

The design of reward functions can be implemented to
the needs of a specific system. For example, in a system
that has workloads with variable sized writes, object size
could be considered or systems with imbalanced deployments
might consider a reward function that prioritizes inter-region
communication.

IV. EXPERIMENTS

We conducted experiments using a distributed key-value
store totally replicated across 45 replicas in 15 geographic
regions on 5 continents around the world. Replicas were hosted
using AWS EC2 t2.micro instances and were connected to
each other via internal VPCs when in the same region, using
external connections between regions. The store, called Honu,
is implemented in Go 1.9 using gRPC and protocol buffers
for RPC requests; all code is open source and available on
GitHub.

The workload on the system was generated by 15 clients,
one in each region and colocated with one of the replicas.
Clients continuously created Put requests for random keys with
a unique prefix per-region such that consistency conflicts only
occur within a single region. The average throughput generated
per-client was 5620.4 puts/second. The mean synchronization
latency between each region ranged from 35ms to 630ms as
shown in Figure 1. To ensure at least one synchronization
per anti-entropy session, we set the anti-entropy interval to
1 second to train the system, then reduced the interval to
125ms while measuring visibility latency. To account for lag
between commands sent to replicas in different regions, each
experiment was run for 11 minutes, the bandit learning period
was 4 minutes then visibility latency was observed for 6
minutes, buffered by 30 seconds before and after the workload
to allow replicas to initialize and gracefully shutdown.

Our first experiments compared uniform random peer selec-
tion with epsilon greedy bandits using ε ∈ {0.1, 0.2, 0.5} as
well as an annealing epsilon greedy bandit. The total system
rewards as a rolling mean over a time window of 20 synchro-
nizations are shown in Figure 2. The rewards ramp up from
zero as the clients come online and start creating work to be
synchronized. All of the bandit algorithms eventually improve

over the baseline of uniform selection, not only generating
more total reward across the system, but also introducing less
variability in rewards over time. None of the bandit curves
immediately produces high rewards as they explore the reward
space; lower ε values may cause exploitation of incorrect arms,
while higher ε values take longer to find optimal topologies.
However, in the static workload case, the more aggressive
bandit strategies converge more quickly to the optimal reward.

Visibility latencies were computed by reducing the work-
load rate to once every 4 seconds to ensure the write becomes
fully visible across the entire network. During the visibility
measurement period, replicas locally logged the timestamp the
write was pushed or pulled; visibility latency is computed as
the difference between the minimum and maximum times-
tamp. The average visibility latency per region is shown in
Figure 3 measured by the left y-axis. Because the anti-entropy
delay is a fixed interval, the estimated number of required
anti-entropy sessions associated with the visibility delay is
shown on the right y-axis of the same figure. Employing
bandit strategies reduces the visibility latency from 2360ms on
average in the uniform case to 1870ms, reducing the number
of required anti-entropy intervals by approximately 4.

To show the emergent behavior of bandits, we have visual-
ized the resulting topologies as network diagrams in Figure 4
(uniform selection), Figure 5 (annealing epsilon) and Figure 6
(epsilon greedy ε = 0.1). Each network diagram shows each
replica as a vertex, colored by region e.g. purple is California,
teal is Sao Paulo, Brazil, etc. Each vertex is also labeled with
the 2-character UN country or US state abbreviation as well as
the replica’s precedence id. The size of the vertex represents
the number of Put requests that replica received over the
course of the experiment; larger vertices represent replicas
that were colocated with workload generators. Each edge
between vertices represents the total number of successful
synchronizations, the darker and thicker the edge is, the more
synchronizations occurred between the two replicas. Edges are
directed, the source of the edge is the replica that initiated
anti-entropy with the target of the edge.

Comparing the resulting networks, it is easy to see that more
defined topologies result from the bandit-based approaches.
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The uniform selection network is simply a hairball of connec-
tions with a limited number of synchronizations. Clear optimal
connections have emerged with the bandit strategies, dark lines
represent extremely successful synchronization connections
between replicas, while light lines represent synchronization
pairs that are selected less frequently. We posit that fewer
edges in the graph represents a more stable network; the
fewer synchronization pairs that are selected, the less noise
that occurs from selecting a peer that is in a similar state.

V. DISCUSSION

To achieve stronger eventual consistency, the visibility la-
tency of a system replicated with anti-entropy must be reduced.
We believe that this can be achieved with two primary goals:
increasing the number of successful synchronizations and
maximizing the number of local and regional synchronizations
such that the average latency of anti-entropy sessions is as
low as possible. These goals must also be tempered against
other requirements, such as fault and partition tolerance, a
deterministic anti-entropy solution that ensures the system
will become consistent eventually, and load balancing the
synchronization workload evenly across all replicas.

Bandit based approaches to peer selection clearly reduce
noise inherent in uniform random selection as shown in
Figure 2. The bandit strategies achieve better rewards over
time because peers are selected that are more likely to have
an update to synchronize. Moreover, based on the network
diagrams shown in Figures 4-6, this is not the result of one
or two replicas becoming primary syncs: most replicas have
only one or two dark in-edges meaning that most replicas are
only the most valuable peers for one or two other replicas.

Unfortunately, the rewards using a bandit approach, while
clearly better than the uniform case, are not significantly better
– this is an interesting demonstration of the possibility of adap-
tive systems to improve consistency but further investigation
is required. The primary place we see for adjustment is future
work to explore the reward function in detail. For example,
the inclusion of penalties (negative rewards) might make the

system faster to adjust to a high quality topology. Comparing
reward functions against variable workloads may also reveal
a continuum that can be tuned to the specific needs of the
system.

As for localization, there does appear to be a natural
inclination for replicas that are geographically proximate to be
a more likely selection. In Figure 6, replicas in Canada (light
blue), Virginia (dark blue), Sydney (grey), California (purple),
and Frankfurt (light green) all prioritize local connections.
Regionally, this same figure shows strong links such as those
between Ohio and California (CA42 → OH38) or Japan and
Singapore (JP17→ SG25). Replicas such as BR19 and IN3
appear to be hubs that specialize in cross-region collaboration.
Unfortunately there does also seem to be an isolating effect,
for example Sydney (grey) appears to have no significant
out of region synchronization partners. Isolated regions could
probably be eliminated by scaling rewards with the number
of transmitted updates, or by using larger epsilons. Multi-
stage bandits might be used to create a tiered reward system
to specifically adjust the selection of local, regional, and
global peers. Other strategies such as upper confidence bounds,
softmax, or Bayesian selection may also create more robust
localization.

Finally, and perhaps most significantly, the experiments
conducted in this paper were on a static workload; future
work must explore dynamic workloads with changing access
patterns to more closely simulate real world scenarios. While
bandit algorithms are considered online algorithms that do
respond to changing conditions, the epsilon greedy strategy
can be slow to change since it prefers to exploit high-value
arms. Contextual bandits use side information in addition
to rewards to make selection decisions, and there is current
research in exploring contextual bandits in dynamic worlds
that may be applicable [13]. Other strategies such as periodic
reseting of the values may incur a small cost to explore the best
anti-entropy topology, but could respond to changing access
patterns or conditions in a meaningful way.



VI. CONCLUSION

In this paper we have presented a demonstration of adaptive
consistency in the geo-replicated eventually consistent systems
by employing a novel approach to peer selection during anti-
entropy – replacing uniform random selection with multi-
armed bandits. Multi-armed bandits consider the historical
reward obtained from synchronization with a peer, defined by
the number of objects synchronized and the latency of RPCs,
when making a selection. Bandits balance the exploitation of
a known high-value synchronization peer with the exploration
of possibly better peers or the impact of failures or partitions.
The end result is a replication network that is less perturbed
by noise due to randomness and capable of more efficiently
propagating updates.

In an eventually consistent system, efficient propagation of
updates is directly tied to higher consistency. By reducing vis-
ibility latency, the likelihood of a stale read decreases, which
is the primary source of inconsistency in a highly available
system. We have demonstrated that bandit approaches do in
fact lower visibility latency in a large network.

This work, however, is preliminary. Future efforts will con-
sider different reward functions, different selection strategies,
dynamic environments, and how the priorities of system de-
signers can be embedded into rewards. Reward functions that
capture more information about the expected workload of the
system such as object size, number of conflicts, or localizing
objects may allow specific tuning of the adaptive approach. We
will also specifically explore in detail the effect of dynamic
workloads on the system and how the reinforcement learning
can adapt in real time to changing conditions. We plan to
investigate periodic resets, anomaly detection, and auction
mechanisms to produce efficient topologies that are not brittle
as access patterns change. We also plan to evaluate other
reinforcement learning strategies such as neural or Bayesian
networks to determine if they handle dynamic environments
more effectively.

We believe that the results presented show a promising
start to a renewed investigation of highly available distributed
storage systems in novel network environments, particularly
those that span the globe. Specifically, this work is part of a
larger exploration of adaptive, globally distributed data sys-
tems that federate consistency levels to provide stronger guar-
antees [5]. Federated consistency combines adaptive eventually
consistent systems such as the one presented in this paper
with scaling geo-replicated consensus such as Hierarchical
Consensus [4] in order to create robust data systems that
are automatically tuned to provide the best availability and
consistency. Distributed systems that adapt to and learn from
their environments and access patterns, such as the emerging
synchronization topologies we observed in this paper, may
form the foundation for the extremely large, extremely efficient
networks of the future.

All code for the key-value store and bandit-based anti-
entropy as well as experimental results is open source and

available on GitHub at https://github.com/bbengfort/honu.
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