
Hierarchical Routing with Soft-State Replicas in TerraDir

Bujor Silaghi, Vijay Gopalakrishnan, Bobby Bhattacharjee, and Pete Keleher
Department of Computer Science, University of Maryland, College Park�

bujor, gvijay, bobby, keleher � @cs.umd.edu

Abstract

Recent work on peer-to-peer systems has demonstrated
the ability to deliver low latencies and good load balance
when demand for data is relatively uniform. We describe
an adaptive replication protocol that delivers low latencies,
good load balance even when demand is heavily skewed.
The protocol can withstand arbitrary and instantaneous
changes in demand distribution. Our approach also ad-
dresses classical concerns related to topological constraints
of asymmetrical namespaces, such as hierarchical bottle-
necks in the context of hierarchical namespaces. The proto-
col replicates routing state in an ad-hoc manner based on
profiled information, is lightweight, scalable, and requires
no replica consistency guarantees.

1 Introduction

Peer-to-peer (P2P) systems perform any number of dif-
ferent functions, but their most fundamental task is that of
locating data. Recent work [11, 17, 12, 18] has shown the
ability to deliver low latencies and good load balance when
demand for most items is relatively balanced. The distribu-
tion of demand for real data is often skewed, and sometimes
time-varying, leading to poor balancing and dropped mes-
sages. The situation is even worse with hierarchical names-
paces such as TerraDir [15], where the system topology
is inherently asymmetrical, resulting in uneven load across
servers even with uniformly distributed demand. This paper
describes and evaluates a lightweight and adaptive replica-
tion protocol that is efficient at redistributing data load in
such circumstances, and that can improve query latency and
reliability as well.

In this study we will focus on routing load and discrimi-
nate between the lookup of an object and its actual retrieval
(few of the objects looked up or searched for are effectively
retrieved if we are to consider presently deployed P2P appli-
cations). So far, load has usually been addressed by caching
and replicating data in an end-to-end manner by client ap-
plications of P2P lookup services (e.g. CFS [6], PAST [7]).

The resulting protocol layering incurs the usual inefficien-
cies, causes functionality to be duplicated at the application
level, and overall is quite heavyweight.

To our knowledge, none of the previous work has ad-
dressed routing load as a distinct phenomenon in the context
of P2P systems. We believe that lightweight and efficient
solutions can be developed more readily if one makes such
a distinction. Note that replicating data and replicating rout-
ing state for lookup purposes in the overlay P2P network are
orthogonal. The service provided by a lookup procedure re-
solves an object name to one or multiple locations, without
having to visit those locations or retrieve the object content.

We evaluate our approach with respect to the following
goals in the context of TerraDir [15], a lightweight, hier-
archical P2P lookup service: local information and scala-
bility, adaptation versus stabilization, fairness, fault toler-
ance, and exclusive use of profiled a posteriori information.
The main contribution of this study is showing that these
goals can be met for hierarchical structures by employing a
lightweight adaptive replication model, and that the imple-
mentation of such a model in real systems is feasible.

The rest of the paper is structured as follows. In Sec-
tion 2 we present a hierarchical routing protocol based upon
our replication model. The replication protocol is described
in Section 3. Section 4 experimentally evaluates the pro-
posed model. We address the context of our approach and
related work in the area in Section 5. Section 6 concludes
the paper.

2 Hierarchical routing in TerraDir

We describe the assumed data model, the semantics
of query processing, a routing procedure on hierarchical
namespaces, and finally augment the routing model with
replication and caching.

2.1 Data model and query semantics

A node is a fully qualified hierarchical name, much like
file names in Unix file-systems or host names in the DNS

space. Each node has a set of neighboring nodes that in-
cludes the parent and children of the node in the namespace.
Here we assume that the structure of the namespace is that
of a tree with a special node, the root node, as the root of
the tree. TerraDir allows arbitrary graph-rooted topologies
to be specified.

Nodes export two types of optional application-supplied
information: data and meta-data. Node data is the actual
contents of a node, while meta-data consists of node an-
notations most commonly found in the form of attributes
(name-value pairs). For a file-system implemented on top
of TerraDir or a file-sharing utility, there is a � -to- � cor-
respondence between files and nodes. The node’s data in
this case is the file, and the meta-data are file attributes and
searchable keywords annotated to it.

Every node is owned by exactly one server (peer) known
as the owner. The owner of a node keeps the node’s data
and meta-data as well as additional state needed by the Ter-
raDir protocol in making routing decisions. Note that the
owner of a node is also the server that exports its data. Hash-
based peer-to-peer systems virtualize the object namespace
and the server that exports the object data will most likely
be different than the server that keeps the object’s hash key.
For such systems the location of data and the location of
pointers to data are different.

A lookup query returns the node’s name, its meta-data,
and mapping information for the requested node. The map-
ping is a set of servers that host the node’s data. Given
the result of a query, the client application can further re-
quest the node’s data from one of the servers in the map.
Note that getting node data is a two-step process: a node
lookup, followed by the actual data retrieval. Complex
search queries are decomposed hierarchically into individ-
ual lookup queries, the appropriate nodes are resolved, and
then the results are aggregated and sent back to the re-
quester. Subsequently, the query initiator may ask for the
data of some of the nodes in the result.

Deployed P2P systems make a similar distinction be-
tween searching for data and retrieval of the data. This study
focuses on lookups and how queries are routed in the net-
work using a lightweight replication mechanism.

2.2 Hierarchical routing

A query is initiated at one of the servers and then routed
through one or more servers to its destination.

2.2.1 Routing procedure

The routing algorithm proceeds in a straightforward man-
ner by forwarding queries up and down the hierarchy. Usu-
ally, a query for node � originating at the owner of node �
will be routed “up” until reaching the first common ances-
tor of � and � , and then “down” to node � . For instance, if

people

public private

people

staff studentsfacultystudents

SteveJohn Ann MaryLisa

university

initiator

Step A

Step B Step C
Step D

Step E

Figure 1. Route for query /university/private.

�����	�
�	���������� and �����	�
�	���	� the resulting path will be� �����	�
������������
�	����������� . In Fig. 1 we illustrate a more in-
volved routing example using replication and caching (see
the following sections). Step D follows a child-parent link
induced by the hierarchical topology.

2.2.2 Routing state

To facilitate routing, a server maintains for each owned
node its context in the namespace. The node context con-
sists of neighboring nodes and guarantees routing with in-
cremental progress towards the destination. With each rout-
ing step the query gets closer to the destination by at least
one unit in the namespace distance metric.

A server maintains mappings for the neighboring nodes
of every node that it owns. The mapping is the association
of a node’s name and a set of servers hosting the node. For
tree namespaces with � nodes on � participating servers
we can only bound the number of neighboring maps (links)
maintained per node by "!#�%$. However, the cumulative
number of links for all nodes is exactly &
!'�)(*�	$, which
yields a comfortable mean of & links per node. In Fig. 1
neighboring links are shown as straight arrows between par-
ent and children nodes.

2.3 Replication

Straightforward routing on a hierarchical namespace
suffers from well-known bottlenecks. Even assum-
ing uniformly distributed queries (both source-wise and
destination-wise), servers hosting nodes at the top of the
namespace will incur exponentially disproportionate more
load than servers hosting leaf nodes. Furthermore, varia-
tions in user input may cause other parts of the namespace
to be similarly afflicted (e.g. hot-spots). Finally, we do re-
quire some form of routing state redundancy to increase the
resiliency of the routing procedure and routing state avail-
ability. While hierarchical bottlenecks can be addressed by
static replication mechanisms [15], the last two arguments
call for an adaptive scheme.

We therefore dynamically replicate heavily loaded
nodes. We attempt to minimize the amount of state repli-
cated per node, subject to the following constraints:

1. Lookup queries can be resolved by reaching a replica
of the node. Such state includes node meta-data, and
some mapping for the node. The mapping can be used
by the query initiator if it further wishes to retrieve the
node data.

2. Routing through a replica needs to be functionally
equivalent to routing through the original node. There-
fore, a replica will also keep the context of the original
node: mapping information for each of its neighboring
nodes.

The term host will denote hereafter the owner, or one
of the replicating servers (in the sense presented here) of
a node. In Fig. 1, the owner of /university/public/people
hosts a replica of /university/private/people. Step C is thus
abstract and does not incur query forwardings or network
hops. Through replication not only is the owner of /univer-
sity/public/people present in other parts of the namespace
(/university/private/people), but it can also further forward
and resolve requests that come in on behalf of the repli-
cated node. This serves a dual purpose: improved query la-
tencies (additional shortcuts), and a mechanism to balance
routing load by shedding some of it from the owner of /uni-
versity/private/people.

Note that we only replicate routing state and meta-data.
Inconsistent routing state (nodes leaving or joining the sys-
tem) will manifest in less precise forwarding steps. A query
could reach a server on behalf of some node even though
the server does not host the node any longer. In such cases
incremental progress cannot be guaranteed for the current
forwarding step. We assume that node meta-data is invari-
ant or else that there are no consistency/freshness require-
ments for its update/use. Only the owner server of a node
is allowed to modify meta-data, and replicas will keep the
newest version that they have encountered.

2.4 Caching

A cache entry for a node consists solely of some mapping
for that node. A hit in the cache cannot by itself bring query
resolution. The query still needs to be forwarded to one
of the resolved node’s hosting servers (found in the node
map). Caches provide only indirect routing functionality:
they lack routing context, and act as mere pointers in the
namespace. Step B of Fig. 1 corresponds to the shortcut
taken with a cache entry.

Caches are ad-hoc state in the sense that there is no corre-
lation between cache contents at different servers. Replace-
ment, eviction and aging is performed locally. Cache en-
tries are replaced using an LRU policy with an entry being

touched whenever used in routing. Our caches differ from
straightforward caches in that the path “so far” is cached at
every step along the query path (path propagation); culmi-
nating in the entire path being cached at the source when
the query completes.

Caches increase the routing state maintained per server
to "!������ � $ (� is the number of servers) and substantially
improve query latency. Caches are able to exploit both tem-
poral and spatial locality in the query stream. Even in the
absence of locality, the routing procedure will benefit from
caching by taking shortcuts over potentially large portions
of the namespace. Routing resiliency is also augmented by
the ability to jump over namespace partitions induced by
network failures. Path propagation not only brings nodes
far apart into the cache (the source caches the destination,
and vice-versa), but also nodes from different levels of the
namespace tree, and nearby nodes. This mixture of close
and far nodes performs significantly better than caching the
query endpoints.

Table 1. Server-node relationships.

Node � State Name Map Data Meta Context

Owned � � � � �
Replicated � � � �

Neighboring � �
Cached � �

We summarize the various relationships between servers
and nodes in Table 1, along with the type of state main-
tained. Note that cached nodes and neighboring nodes
are similar except that cached nodes can be arbitrarily re-
placed and are not imposed by topological constraints of
the namespace. The routing context (last column) refers to
maintaining links to neighboring nodes in order to guaran-
tee incremental progress.

3 Replication protocol

The replication protocol addresses replica and mapping
management operations: (i) when, what, and where to repli-
cate, (ii) when, and what to de-replicate, (iii) what servers
to keep in a map, and how many, (iii) what servers in a map
to advertise, and how many, and finally (iii) how to combine
two maps for the same node.

3.1 Server load metrics

Replication is used to improve server load balance and
routing resiliency in the face of network failures. The first
objective is pursued explicitly while the latter follows im-
plicitly from the first: hosting servers for nodes with failed
replicas will incur more load after failure than before, and

will replicate again to meet new load conditions. Load bal-
ance is our first and most important fairness criterion.

We assume that a normalized load metric can be defined
for all participating servers. A server’s load in this met-
ric is valued in the interval � �
� ��� with the semantics of the
extremes being “no load” and “full capacity load” respec-
tively. The normalization process ensures that system het-
erogeneity is accounted for. Additionally, the load metric
must be:

1. Linearly comparable: given two load values, ��� and
��� , the value �	� �
��� should mean that server � has �	� �����
times more load than server & .

2. Locally defined: the load must be defined exclusively
based on local server information (busy cycles, mem-
ory requirements, incoming queue occupancy, etc),
and independent of other servers’ load condition. Load
definition need not be the same for all servers. This ac-
counts for machine heterogeneity.

The replication model is independent of any specific load
metric, as long as such metrics respect the above require-
ments. We evaluate the replication protocol using a simple
load measure: fraction of server busy time over a window
period � (e.g. half a second).

A server initiates load balancing sessions by replicating
nodes on other servers when its load exceeds a high-water
threshold, ������� . This threshold is a measure of the load-
imbalance we are willing to tolerate, and can automatically
be set in proportion to the overall system utilization. A
server will agree to host new replicas if there is a differ-
ence of at least ��� � � between the load of the requester and
its own load.

3.2 Node ranking

When a server’s load exceeds the high-water threshold,
hosted nodes that comparatively incur more load on the
server will be further replicated. Load based node ranking
is achieved by identifying the nodes for which processing is
performed whenever routing a query.

The criteria for node ranking is given by assigning node
weights to each node hosted by a server. The weight for
each node is proportional to the load incurred by the server
on the node’s behalf. Simple counter variables can be main-
tained to implement node weights. With each incoming
query the appropriate counter is incremented, and all coun-
ters are rescaled periodically to approximate recent demand
patterns.

3.3 Replica creation

The protocol for creating new replicas proceeds as fol-
lows. Assume source server ��� has load ��� .

1. Replication is triggered when a server’s load exceeds
the high-water threshold, ��� ��������� . A server checks
its load after each processed query.

2. Among all the servers that it knows about, ��� picks the
one with minimum load, ��� . ��� makes this decision
based on load information that it has for servers, not
the actual load of servers. ��� contacts ��� and learns
its actual load, ��� .

3. If ��� (���� �!� � � � , ��� will replicate nodes on ��� .
Given a node ranking for server ��� , �#" s.t. � � �
� � �%$&$'$(� �#) , the top ranked * nodes will be
replicated on �+� , where * is the smallest number s.t.,.-
"0/ � �1" �

,)"0/ � �#"2� ���3547683093 4
.

4. � � and � � will adjust their loads to � � �.� � (�� !	� � (
� � $ and � � �.� �;: �� !	� � (<� � $ to reflect the ideal load
redistribution targeted after replication. This acts as a
hysteresis and will prevent replica thrashing.

5. If ��� (=���>�?� � � � above is not met, then ��� makes
another attempt of selecting a destination server, and
the protocol continues with step 2. After a few failed
attempts, � � aborts the current replication session and
initiates another one after a short delay.

3.4 Controlling the extent of replication

Our second fairness criterion is the amount of replicated
state maintained per server. We need to bound the number
of replicas, either globally or on a local basis. Otherwise,
nodes may continually be replicated in response to fluctuat-
ing load, and the system could easily converge to extreme
configurations where each node is hosted by every server.
We constrain the number of replicas hosted by a server to be
proportional to the number of nodes owned by the server.

The replication factor, @BADC�E'F , controls the maximum
number of replicas hosted per server relative to the owned
nodes. The replication factor need not be the same for all
servers. Allowing servers to replicate nodes in proportion
to the number of hosted nodes is a locally enforced and, we
believe, fair policy. A locally enforced replication factor
translates easily to global constraints. The overall number
of replicas is bounded by the highest replication factor rel-
ative to the number of all nodes in the system. Note that
we impose constraints on a per server basis. Nodes can still
have as many replicas as globally allowed by the replication
factor.

3.5 Replica deletion

To heed the replication factor and at the same time al-
low the model to continuously adapt to changing demand

patterns, node replicas have to be deleted. A hosting server
may decide at any time to evict replicas that have not been
in use for a long time, i.e. low ranking nodes. Addition-
ally, some replicas may have to be evicted (as dictated by
@ ADC�E'F) by a server � � when some other server � � requests
that some of its nodes be replicated on � � . In such cases,
� � will delete as many replicas as needed starting with the
lowest ranking node and proceeding in increasing order.

Replica deletion is a local process as it involves only the
server that hosts the replica. Other servers will learn about
deletions in a lazy manner, or may not learn at all about
some of the evictions. Inconsistent views are caused by
stale mapping configurations and adversely affect routing
performance. We do not specify any consistency model for
managing mapping configurations. A limited form of con-
trol can be exercised by removing stale entries from maps
when they are routed through servers. The degree of incon-
sistency can be further reduced by using inverse-mapping
information.

3.6 Inverse-mapping digests

Maps provide a name resolution service by identifying
some of the servers that host a node. Resolving node names
to hosts is needed every time routing is done on behalf
of the node. The inverse function, resolving a server to
node names hosted by that server, improves performance
and routing quality.

The TerraDir replication protocol benefits from inverse-
mapping approximations (digests from now on) as follows.
Each server generates a digest regarding its hosted nodes.
The digest is a Bloom filter [2], and its value is determined
by hashing the names of all the nodes hosted by the corre-
sponding server. The only allowed operation on a digest is
testing node names against it, and producing a yes/no an-
swer with possible false positives. Digests are used to dis-
cover additional shortcuts in the namespace and to maintain
up-to-date node maps.

3.6.1 Discovering additional shortcuts

The standard routing algorithm is a minimizing procedure.
A server � routing query � always chooses the closest node
to � that it knows about, � , and forward the query to one
of the servers in � ’s map. Using inverse-mapping digests,
� might indirectly know about some other node, � , that is
even closer to � than � . Node � is discovered as follows.

1. Assume � generates all node names that it can infer,
and let this set be ������� . �	�
��� includes hosted, neigh-
boring, and cached node names, as well as destination
name � .

2. By performing prefix extractions, � also includes in
�	����� ancestor names —all the way to the root— for all

faculty

John Steve

people

students

public

university

S Sd

S

Sd

caching

digest hit

Figure 2. Shortcut taken from server � due to
a hit of /university/public in the digest of �� .

these nodes. Each of the names in ������� can be tested
against digests of servers that � knows about.

3. Assume a hit for some name �������	�
��� occurs in a
digest associated with server �� , and that ��� is closer
to � than � . In this case � can optimize the routing
by forwarding the query to �� instead of some server
from � ’s map.

4. By choosing � to be the closest � � to � , server � is
guaranteed to make the best decision it can in terms of
namespace distance.

We illustrate the procedure in Fig. 2. Server �
hosts nodes /university/public/people/faculty and /univer-
sity/public/people/student/John. Names in �	����� are shown
using dashed ellipses. In this case, the names of all four
such nodes are prefixes of hosted nodes. � also has an en-
try for /university/public/people/students/Steve in its cache.
The mapping for the cached entry includes one of the node’s
hosts, �� , and �� ’s digest. ��� also hosts /university/public,
and � gets a hit for node /university/public in ��� ’s digest
present at � . Thus � can forward the current query to ���
and skip node /university/public/people.

3.6.2 Pruning node maps

Consider server � that knows about node � by keeping
some map of it. For each of the servers in the map, � keeps
the corresponding inverse-mapping digest. Thus � can pro-
duce a potentially more accurate map for � by testing node
� against each of these digests. Servers in � ’s map whose
test fails can safely be eliminated from the map.

False positives associated with digests may preclude �
from eliminating one or more servers from a map. Further,
not only the node’s map but some of the digests used to
prune the map may be outdated as well. Despite the fact
that node map pruning is a conservative operation, it en-
ables the routing procedure to perform with close-to-perfect
accuracy.

3.7 Node mapping management

A node map associates a node name with a (possibly in-
complete and inaccurate) list of servers that own or replicate
the node. Servers keep mapping information for owned,
replicated, neighboring and cached nodes. The following
policies govern how replica information is spread in the net-
work, and how servers use replicas for routing queries.

Map size: A node map contains at most @���� E entries
for scalability reasons. The constraint is in effect for maps
kept at servers, as well as maps propagated in the network.
Maximum map size is orthogonal to how many replicas a
node can get, or how many replicas a server hosts.

New replica advertisement: Servers advertise replicas
created for their hosted nodes. Each server that has repli-
cated one of its hosted nodes keeps entries for the most re-
cent created replicas (up to @ ��� E) in the node’s map. These
entries are advertised with every outgoing message that in-
cludes the node’s map. Traffic in excess will quickly be
diverted to newly created replicas.

Map merging: Maps are merged whenever a server
keeps a map for a node, and an incoming query contains
another map for the same node. Map merging is performed
such that (i) the above conditions are met, and (ii) the rest of
the entries in the resulting map are chosen at random from
the choice left. The same two maps may have to be merged
twice, once for the resulting map kept at the server, and a
second time for the resulting map to be further propagated
with the query currently processed.

Disseminating replica information: Map replica con-
figurations for a node are disseminated along query paths
whenever information about the node is present in for-
warded messages. Additionally, information about newly
created replicas is back-propagated at each forwarding step
if applicable. For instance, if server � � forwards a query
to � � on behalf of node � , and � � has recently created any
replicas for � , then � � will let � � know about such replicas.

Replica selection: Given a node’s map present at a
server, replica selection is performed by the server when-
ever a message needs to be forwarded to one of the node’s
hosts. For lookup messages any data or map replica of the
node can be selected, whereas for data retrieval messages
only data replicas can be selected. In both cases the desti-
nation host is chosen at random from the available choice,
i.e. servers in the node’s map present at the server.

Map filtering: Inverse-mapping digests are used to fil-
ter out stale entries from maps. Map filtering is a best-effort
procedure carried out locally whenever a server updates the
inverse-mapping information of other servers. Our evalu-
ation is based on a more conservative and thus less effi-
cient approach: filtering is performed at replica selection
and map merging, i.e. whenever node maps are used or
modified at a server.

4 Evaluation

We evaluate the presented replication protocol in a Ter-
raDir simulated environment. We focus on adaptivity to
user input, system load balance and global utilization, sta-
bilization, long-term behavior, and finally scalability.

4.1 Methodology

We consider
� ������� servers. Service times are exponen-

tially distributed with a mean of �
	 � &
� milliseconds for
each server. The mean query arrival rate is modeled with a
Poisson distribution and varies from � � &
� � � � requests per
second to �%� &
�
��� � � requests per second, globally. Each
server has a request queue of size � & with queries arriving in
excess being dropped. The application layer network time
is constant at &� milliseconds. We do not model network
contention.

Lookups are initiated uniformly at source servers. Des-
tination nodes are chosen either uniformly at random (����� �
traces), or with locality according to the Zipf [19] law of
popularity vs. ranking (��� � � traces). Our study involved
both synthetic and real-world TerraDir namespaces:

� As example of a synthetic namespace (� �) we con-
sider � & ������� nodes arranged in a perfectly balanced
binary tree. Uniform query streams for this names-
pace are denoted by ����� � � , while streams with locality
are denoted by ��� � ��� � . The order � covers the whole
domain of interest: $��� , � , � $ &� , and � $� for heavily
skewed requests.

� File-systems are the most common hierarchical struc-
tures in use. We consider one of the Coda [14] servers
(barber) logged throughout one month of activity (Jan-
uary 1993). Files accessed during this month together
with their ancestors were included in this namespace
(�!), for a total of "#�
�$�#"�& nodes. Uniform query
streams for �% are denoted by ���&� � , while streams
with locality are denoted by ��� � � � .

Both namespaces considered are mapped uniformly at
random on the

� � ���#� servers. In preparing the ��� � � streams,
node ranking is established by randomly ordering all the
nodes in the namespace. Query streams are combinations of
����� � and ��� � � streams. For instance, we may prepend a se-
quence of ��� � � streams with a ����� � stream to allow a “cold”
system to compensate for hierarchical bottlenecks and repli-
cate the top nodes in the namespace. Thus we limit the inter-
ference between system warmup effects, and those induced
by demand distribution. Some experiments are run with
locality streams that instantly and at random change node
rankings, so that we can quantify how the model adapts to
sudden variations in popularity (i.e. shifting hot-spots).

 0

 0.04

 0.08

 0.12

 0.16

 0.2

 0 25 50 75 100 125 150 175 200 225 250

F
ra

ct
io

n
of

 q
ue

rie
s

dr
op

pe
d

ev
er

y
se

co
nd

Time (seconds)

uzipf1.50

uzipf1.25

uzipf1.00

uzipf0.75

unif

Figure 3. Dropped queries (relative to � �
&
� � � �) over time for namespace � � .

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 25 50 75 100 125 150 175 200 225 250

F
ra

ct
io

n
of

 r
ep

lic
as

 c
re

at
ed

 e
ve

ry
 s

ec
on

d

Time (seconds)

uzipf1.50

uzipf1.25

uzipf1.00

uzipf0.75

unif

Figure 4. Created replicas (relative to � �� � � � �) over time for namespace � .

4.2 Adaptation

We assess the model’s capability to adapt to chang-
ing conditions, in this case locality variations in the query
stream. For each of two namespace we run two types of
streams for &#
� seconds: ���&� � and �#��� � � � . The latter is
given by the sequence �#���&� ����� � � ������� � � � ��� ��� � � � � ��� � � ��� .

Fig. 3 shows the fraction of dropped queries relative
to the query insertion rate for namespace � � . For ease
of presentation we allowed for the ����� � component of the
�#� � � �&� streams to run longer in increments of � � seconds,
for various Zipf order values. The drops in the first sec-
onds are due to hierarchical stabilization when the system
replicates nodes at the top of the namespace hosted by over-
loaded servers. The spikes of the graph correspond to in-
stantaneous and random changes in node popularity (for
�#� � � � ��� ��� such changes occur at seconds ��� � ��&
�
� � �
� , and

un
ifS

uz
ipf

S0.
75

uz
ipf

S1.
00

uz
ipf

S1.
25

uz
ipf

S1.
50

un
ifC

uz
ipf

C0.
75

uz
ipf

C1.
00

uz
ipf

C1.
25

uz
ipf

C1.
50

BCR

B

BC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F
ra

ct
io

n
of

 d
ro

pp
ed

 q
ue

rie
s

Query streams

Figure 5. Fraction of dropped queries with
combinations of the base system (B), caching
(C), and replication (R).

&�& �). Fig. 4 shows the system’s reaction for namespace �
to overloading conditions in terms of the number of repli-
cas created. We doubled the query arrival rate to keep the
system at approximately the same utilization. The replica-
tion model adapts well to both hierarchical bottlenecks and
sudden hot-spot fluctuations. The overall number of query
drops is at most & $ �� when randomly changing highly
skewed input (� � � $) four times in a row over a short
period of time (&� � seconds). A quarter of the &B$�	� are
simulation side-effects due to hierarchical stabilization. The
number of load balancing messages is at least two orders of
magnitude less than the number of queries submitted.

Running the same experiments with replication disabled
causes a large fraction of queries to be dropped to a point
where the system is barely usable. If only caching is used
while replication is still disabled, we see further aggrava-
tion in performance for namespace � � , and slight improve-
ments for namespace �% . These points are made clear by
Fig. 5 where we compare the replication protocol with a
base system, and one which employs only caching.

4.3 Utilization and load balance

Utilization distribution is our main fairness criterion.
We define the computational utilization of a server over
a second as the fraction of that second that the server is
busy processing queries. We target three utilization fac-
tors:
 � � ������& ����� � ��� , and approximate them with
query rates �*� & ��� � �� � � � � �� "
��� � � for namespace � � ,
and �*� � � � � ��� �'� � � � ���&
� � �
� � for namespace � . We
use query streams ����� � and �#��� � � ��� ��� defined previously.

Fig. 6 shows on the left side the mean measured load,
and the load on one of the most heavily loaded servers ev-
ery second, for namespace � � . Periodical peaks are due to

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

S
er

ve
r

lo
ad

 a
s

ut
ili

za
tio

n

Time (seconds)

λ=20000 avrg
λ=10000 avrg

λ=4000 avrg
λ=20000 max
λ=10000 max

λ=4000 max

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

Time (seconds)

λ=20000 max11
λ=10000 max11

λ=4000 max11

Figure 6. Average and maximum server load
for query streams �#��� � � ��� ��� (left). Maximum
server load averaged over ��� seconds (right).

locality changes in the �#��� � � query stream. Note that the
maximum load tends to go below � ����� (� $��� in this case) if
given enough time. With higher query rates the global mean
load is itself approaching the threshold. In such cases it is
proportionately harder to bring the maximum load below a
constant high-water threshold. Note that servers at full uti-
lization stay there only for a few seconds with each Zipf
change, for all query rates shown.

We establish the transiency of highly-loaded server con-
ditions when looking at larger than � -second intervals. At
each second we identify the most heavily loaded servers
and average their load over ��� seconds. We show the load
thus smoothed in the right side of the figure. The load
distribution has improved substantially with the maximum
load approaching the mean, notably for higher � values.
Highly-loaded servers experience transient conditions, and
by defining load balance over larger intervals we get in-
creasingly better results.

In Fig. 7 we show how the system reacts to hierarchical
bottlenecks. For each level of namespace � � we show the
average number of replicas created for nodes on that level,
with ���&� � and �#� � � � � � ��� query streams, and various query
arrival rates. Note that nodes on level & tend to have more
replicas than their ancestors. Pointers to nodes on level &
have a high chance of staying in a server’s cache. Many of
the routes that would normally go all the way up to nodes
on levels � or � are thus using level & shortcuts. Nodes on
level � are less likely to be found in a server’s cache since
there are more nodes on this level than on level & , etc.

4.4 Stabilization and long-term behavior

We are interested in establishing long-term behavior
characteristics: (i) whether with no changes in input pat-

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 2 4 6 8 10 12 14

A
ve

ra
ge

 n
um

be
r

of
 r

ep
lic

as

Namespace tree level

unif, λ=8000
uzipf, λ=8000
unif, λ=4000

uzipf, λ=4000
unif, λ=2000

uzipf, λ=2000

Figure 7. Average number of replicas created
for each level of namespace � � (the root is
on level �) with uniform and Zipf queries.

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100 120 140 160

N
um

be
r

of
 r

ep
lic

as
 c

re
at

ed
 e

ve
ry

 m
in

ut
e

Time (minutes)

unifS
unifC

uzipfS
1.00

uzipfC
1.00

Figure 8. Replicas created over �'�
��� � � second
runs with uniform and Zipf queries.

terns the replication model reaches a quiescent state where
very few or no replicas are being created, and (ii) whether
routing accuracy and efficiency is preserved with extreme
changes in input patterns that will entail many replicas cre-
ations and deletions.

To asses stabilization we present results from runs with
����� � and �#��� � � ��� ��� � �#���&� ����� � � � � � ��� � queries for �'� � � � �
seconds; the uniform component of �#��� � � � � ��� lasted for � � �
seconds. & � million queries were run for namespace � �
(� � &
� � � �), and

� � million for �% (� � � ��� � �).
Fig. 8 shows the number of replicas created every

minute. The replication protocol reaches a rate of &B$� repli-
cas created per minute after �'� � � � � seconds. The rate keeps
decreasing beyond the time frame shown, with the curve for
the whole run resembling an exponentially decaying vari-
able. The replica creation rate is equivalent to one replica

 0

 2

 4

 6

 8

 10

 12

 14

29 210 211 212 213 214A
ve

ra
ge

 la
te

nc
y,

 r
ep

lic
at

io
ns

, a
nd

 d
ro

pp
ed

 q
ue

rie
s

System size (servers)

Latency
log(Replications)

log(Drops)

Figure 9. Scalability of query latency, degree
of replication, and dropped queries.

created every
� "
��� � � queries run for namespace � � , and

���
��� � � queries for � . The replication protocol stabilizes
with time for constant request distributions.

The evaluation conducted so far was based on a repli-
cation factor @BADC�E'F � & , and lead to very few replica dele-
tions. We ran experiments with @BA�C�E'F�� � $ � &# ��� $ &� ��� $�
on query streams �#��� � � ��� � � � �#���&� ��� � ��� � � ��� � � � ��� � . Each
� � � � ��� ��� component lasted for � � � seconds, for an overall of
�'�
��� � � seconds. Low replication factors together with re-
peated shifts of high-order hot-spots (�%��� $�
�) induce ma-
jor changes in replica configurations. For space reasons we
will only summarize the results. Inverse-mapping digests
are good approximations of optimal behavior (i.e. routing
with perfectly accurate information, as if given by an ora-
cle). There is enough opportunity to transitively dissemi-
nate inverse-mapping information in the network, such that
routing accuracy is maintained within the optimal range.

4.5 Scalability

We scale system size exponentially and look at query la-
tency, the number of replica creations events, and the num-
ber of dropped queries. Servers range from & � to & ��� in
incremental powers of & . The number of nodes per server is
kept constant at " , with the overall number of nodes rang-
ing from & � � to & ��� , arranged in a perfectly balanced binary
tree. Cache sizes are logarithmic in system size, ranging in
increments of & , from � " to &�" cache slots per server. @ ADC�E'F
is kept constant & , and @ ��� E varies logarithmically with sys-
tem size, from & to � . Finally, � is proportional to system
size and takes values &� �
� � �#$'$&$ "
��� � � .

Fig. 9 shows the average query latency, the number of
replication events, and the number of dropped queries as
a function of system size. The last two are shown on a
logarithmic scale. Latency scales logarithmically with sys-

tem size, the degree of replication scales linearly, while the
number of dropped queries scales proportionately and ap-
proaches linearity for large systems. The replication proto-
col is scalable.

5 Related work

The Domain Name System (DNS) [10] is a cornerstone
for Internet and one of the most widely deployed directory
service to date. Even though DNS servers are required for
their namespace resolution functionality, the infrastructure
is not provisioned to handle queries for arbitrary resource
records. They key to its success lies in a carefully tuned
caching scheme that enables queries to be resolved in the
local domain. TerraDir caches consist of pointers in the
namespace and provide only routing functionality.

Studies [1, 3] show that both spatial and temporal ref-
erence locality are present in requests submitted to web
servers or proxies, and that such requests follow a Zipf-like
distribution. Distributed caching protocols [8] have been
motivated by the need to balance the load and relieve hot-
spots on the World-Wide-Web. Similar Zipf-like patterns
were found in traces collected from Gnutella. Caching the
results of popular Gnutella queries for a short period of time
proves to be effective [16]. Recent work [9, 5] considers
static replication in combination with a variant of Gnutella
searching using @ random walkers. Replicating objects pro-
portionally to their popularity achieves optimal load bal-
ance; replicating them proportionally to the square-root of
their popularity minimizes the average search latency.

Freenet [4] replicates objects both on insertion and re-
trieval on the path from the initiator to the target mainly for
anonymity and availability purposes. It is not clear how a
system like Freenet would react to query locality and hot-
spots. Chord [17], CAN [11], Pastry [12] and Tapestry [18]
are peer-to-peer systems using the common approach of a
distributed hash table for location. Assignment of objects
to hosts is performed by mapping the object space into a
virtual namespace, which is convenient because of the uni-
form spread of objects. Load balancing is thus automati-
cally achieved for uniformly distributed requests.

CFS [6] is a P2P read-only file system that uses the
Chord lookup service to locate files dispersed throughout
the network. Data placement granularity is very fine and
consists of file blocks. Replication and caching is achieved
on a file block basis which is convenient since (i) select
portions of a large file may be more popular than others,
and (ii) parts of popular files are distributed across differ-
ent servers. CAN allows for different redundancy schemes:
multiple coordinate spaces can be in effect simultaneously,
zones can be overloaded by assigning each of them a set of
peer servers. Replication is achieved by using multiple hash
functions on the same data item. Pastry replicates an object

on the @ servers whose identifiers are closest to the object
key in the namespace. Pastry’s locality properties make it
likely that among the @ replicas of an object, the one that
is closest to the requesting client, as given by IP metrics, is
reached first.

None of the hash-based schemes feature adaptive repli-
cation mechanisms similar to ours. Instead, caches are used
to spread popular objects in the network, and lookups are
considered resolved whenever cache hits occur along the
path. CFS for instance uses @ -replication similar to the
above for data availability, and populates all the caches on
the query path with the destination data after the lookup
completes. A recent analysis [13] of two popular P2P file
sharing systems concludes that the most distinguishing fea-
ture of these systems is their heterogeneity. We believe that
the adaptive nature of our replication model makes it a first-
class candidate for exploiting system heterogeneity.

6 Concluding remarks

We have presented a novel approach to replication in
peer-to-peer systems. Our work stems from the observa-
tion that routing load, incurred by P2P lookup services, is
orthogonal to load incurred by data retrieval, and can be ef-
ficiently managed if approached separately. Routing state is
replicated in an ad-hoc manner, and the replication protocol
can be combined with any data replication mechanism.

The protocol addresses both hierarchical and demand-
induced bottlenecks. Adaptivity is based upon information
profiled online. This enables it to deliver low latencies and
good load balance even when demand is heavily skewed.
Further, it withstands arbitrary and instantaneous changes in
demand distribution. Our approach is lightweight, scalable,
and deals with soft-state in the sense that there is no need
for replica consistency models to be specified.

Two lessons have been learned throughout our study.
First, simple heuristics for estimating server load, node
weights, and replication policies perform well. We did
not see a strong enough case for more sophisticated meth-
ods. Second, there is enough opportunity to transitively
disseminate information in the network by exclusively us-
ing in-band means. Queries are the source of the problem
(host-spots and hierarchical bottlenecks), and the disruption
caused by an individual query can be addressed by piggy-
backing on query messages limited amounts of information
about replica configurations and server loads and digests.

References

[1] V. Almeida, A. Bestavros, M. Crovella, and A. de Oliveira.
Characterizing reference locality in the WWW. In Proceed-
ings of PDIS’96: The IEEE Conference on Parallel and Dis-
tributed Information Systems, Miami Beach, FL, Dec 1996.

[2] B. H. Bloom. Space/time trade-offs in hash coding with al-
lowable errors. CACM, 13(7):422–426, 1970.

[3] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web
caching and Zipf-like distributions: Evidence and implica-
tions. In Proc. of the INFOCOM, pages 126–134, Mar 1999.

[4] I. Clarke, O. Sandberg, B. Wiley, and T. Hong. Freenet:
A distributed anonymous information storage and retrieval
system. In Proc. of the Workshop on Design Issues in
Anonymity and Unobservability, pages 311–320, Berkeley,
CA, Jul 2000.

[5] E. Cohen and S. Shenker. Replication strategies in unstruc-
tured peer-to-peer networks. In SIGCOMM, Aug 2002.

[6] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Sto-
ica. Wide-area cooperative storage with CFS. In Proc. of the
18th SOSP, Chateau Lake Louise, Banff, Canada, Oct 2001.

[7] P. Druschel and A. Rowstron. PAST: a large-scale persistent
peer-to-peer storage utility. In Proc. of the 8th IEEE HotOS,
Schloss Elmau, Germany, May 2001.

[8] D. Karger, E. Lehman, F. Leighton, M. Levine, D. Lewin,
and R. Panigrahy. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the
world wide web. In Proc. of the 29th Annual ACM STOC,
pages 654–663, El Paso, TX, May 1997.

[9] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and
replication in unstructured peer-to-peer networks. In Proc.
of the ICS, New York, NY, Jun 2002.

[10] P. V. Mockapetris and K. J. Dunlap. Development of the
Domain Name System. In Proc. of ACM SIGCOMM, pages
123–133, Stanford, CA, Aug 1988.

[11] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content addressable network. In Proc.
of the ACM SIGCOMM, San Diego, CA, August 2001.

[12] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. In Proc. of the �����

�
Intl. Conf. on Distributed Systems

Platforms, Heidelberg, Germany, Nov 2001.
[13] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measure-

ment study of peer-to-peer file sharing systems. In Proc. of
MMCN, San Jose, CA, Jan 2002.

[14] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki,
E. H. Siegel, and D. C. Steere. Coda: A highly available
file system for a distributed workstation environment. IEEE
Transactions on Computers, 39(4):447–459, 1990.

[15] B. Silaghi, B. Bhattacharjee, and P. Keleher. Query rout-
ing in the TerraDir distributed directory. In Proc. of SPIE
ITCOM, Boston, MA, August 2002.

[16] K. Sripanidkulchai. The popularity of Gnutella queries and
its implications on scalability. February 2001.

[17] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable P2P lookup service for Inter-
net applications. In Proc. of SIGCOMM, San Diego, CA,
Aug 2001.

[18] B. Zhao, K. Kubiatowicz, and A. Joseph. Tapestry: An in-
frastructure for fault-resilient wide-area location and rout-
ing. Technical Report UCB//CSD-01-1141, University of
California at Berkeley, April 2001.

[19] G. K. Zipf. Human Behavior and the Principle of Least
Effort. Addison-Wesley, Cambridge, MA, 1949.

