
The Relative Importance of Concurrent Writers and Weak Consistency Models

Peter J. Keleher
Department of Computer Science

University of Maryland
College Park, MD 20742-3255

keleher@cs.umd.edu

Abstract

This paper presents a detailed comparison of the rela-
tive importance of allowing concurrent writers versus the
choice of the underlying consistency model. Our compari-
son is based on single- and multiple-writerversions of a lazy
release consistent (LRC) protocol, and a single-writer se-
quentially consistent protocol, all implemented in the CVM
software distributed shared memory system.

We find that in our environment, which we believe to be
representative of distributed systems today and in the near
future, the consistency model has a much higher impact on
overall performance than the choice of whether to allow
concurrent writers. The multiple writer LRC protocol per-
forms an average of 9% better than the single writer LRC
protocol, but 34% better than the single-writer sequentially
consistent protocol. Set against this, MW-LRC required an
average of 72% memory overhead, compared to 10% over-
head for the single-writer protocols.

1 Introduction

Sophisticated page-based distributed shared memory
(DSM) systems achieve high performance through a combi-
nation of weak memory models and multiple-writer proto-
cols. Although these techniques are often cited as co-equal
factors in good performance, no study has quantified their
individual contributions to overall performance.

Hardware shared memory systems typically use single-
writer protocols to keep caches coherent. These protocols
allow multiple readers to access a given datum simultane-
ously, but require a writer to gain ownership and exclusive
access to a page before modifying it. Such protocols are
relatively straightforward to implement because all copies
of a given datum are identical. Faults can be satisfied by re-
trieving a new copy of the data from any other processor that
has a copy. Unfortunately, simplicity comes at the expense
of message traffic. Before a datum can be modified, all

other copies must typically be invalidated, requiring those
processors to take access faults and retrieve new copies of
the page if they are still accessing it.

The unit of sharing in a page-based DSM is a virtual
memory page; much larger than the cache lines used in
hardware shared memory systems. The larger coherence
granularities used by DSMs cause them to suffer increased
coherence traffic because of false sharing, or simultaneous
accesses by different processors to unrelated parts of the
datum.

Software DSMs such as TreadMarks [9] Munin[2], and
CarlOS [12], alleviate the effects of false sharing by sup-
porting multiple-writer protocols. These protocols allow
multiple nodes to simultaneously modify different sections
of the same page. The modifications are later reconciled
by creating summaries of each of the modifications, called
diffs [2], and applying the diffs to all copies of the page.

The advantages of multiple-writer protocols for software
DSMs are clear: the effects of false sharing are minimized
because processors can make local decisions to write valid
page without communicating with other processors. The
disadvantages are also clear: protocols are more complex, a
diffing mechanism must be used to merge multiple modifi-
cations to the same page, and the memory overhead is high.
To date, however, there has not been a careful analysis of
this tradeoff.

This paper presents such an analysis in the context of
the Coherent Virtual Machine (CVM)[10] software DSM.
CVM is a portable, user-level follow-on to the TreadMarks
DSM. CVM was specifically written in a modular fashion
in order to allow fair comparisons to be made between dif-
ferent protocols. CVM provides a set of basic classes that
implement a generic protocol, lightweight threads, and net-
work communication, complete with efficient end-to-end
protocols that add reliability to the base UDP protocol. Ad-
ditional protocols are created by deriving new classes from
the base protocol class.

For the comparison described in this paper, we imple-
mented three protocols: a multiple-writer LRC protocol



(MW-LRC), a single-writer LRC protocol (SW-LRC), and
a single-writer SC protocol (SW-SC). SW-LRC and MW-
LRC are single- and multiple-writer protocols that imple-
ment the lazy release consistent (LRC) [8] memory model.
While SW-LRC requires processors to gain ownership of a
page before modifying it, the lazy protocol allows any num-
ber of readers to co-exist with a single writer. We compare
the performance of the two protocols in order to gauge the
importance of allowing multiple simultaneous writers. LRC
was chosen as the consistency model because it allows false
sharing to be hidden more effectively than other memory
models.

We then compare the performance of SW-LRC to that of
a carefully tuned sequentially consistent protocol (SW-SC)
in order to gauge the importance of the consistency model
relative to the choice of single or multiple-writer protocols.
Other that the fact that the weaker memory semantics allow
SW-LRC to delay coherency actions longer than SW-SC,
the protocols are quite similar, and in fact share much code.

Our comparisons show that the performance of SW-LRC
trails MW-LRC’s by nine percent overall, but SW-LRC ac-
tually averages three percent better than MW-LRC for six
of the eight applications in our study. This result has sev-
eral root causes. First, write-write false sharing is much
less common than read-write[4] sharing. Second, the weak
memory model allows even SW-LRC to hide most of the ef-
fects of read-write false sharing by allowing multiple read-
ers to co-exist with a single writer. Finally, communication
in this environment has a high startup cost for each mes-
sage, while the per-byte cost is relatively low. The single-
writer protocol has higher bandwidth requirements than the
multiple-writer protocol because it transfers entire pages in-
stead of diffs. However, the high startup cost on messages
means that the number of messages is usually more impor-
tant than the total amount of data sent.

The aggregate effect of these differences is to slightly
favor the single-writer protocol for those applications that do
not write-share pages. However, SW-LRC’s performance,
and indeed the performance of any single-writer protocol,
can drop drastically in the presence of write-sharing.

The performance gap between the two single-writer pro-
tocols averages 34%, much larger than between the two LRC
protocols. We conclude from this result that the choice of
memory model has a larger effect on performance than the
choice of a single- or multiple-writer protocol.

While this study presents data on only a single point in
the spectrum of possible system characteristics, our testbed
is typical of current systems. We also expect future technol-
ogy trends to favor the single-writer protocol. The widening
disparity between memory bandwidth and processor speed
will increase the cost of diff creation relative to network
communication. The latter is quickly growing less costly as
current architecture research has focused on the creation of

zero-copy, memory-mapped network interfaces that make
communication latency independent of the memory hierar-
chy.

Section 2 describes the CVM system and the two proto-
cols in detail. Section 3.1 describes our experimental setup
and presents detailed cost breakdowns of the component
parts of both protocols. Section 3 describes the overall per-
formance of both protocols on a suite of shared memory
programs, and relates their performance back to the appli-
cation characteristics. Finally, in Section 4, we present our
conclusions.

2 CVM and Protocols

This section provides a brief overview of lazy release
consistency, a description of the CVM system in which the
protocols are implemented, and a description of the proto-
cols themselves.

2.1 Lazy Release Consistency

Lazy Release Consistency [8] is a variant of eager re-
lease consistency (ERC) [6], a relaxed memory consistency
that allows the effects of shared memory accesses to be
delayed until selected synchronization accesses occur. Sim-
plifying matters somewhat, shared memory accesses are
labeled either as ordinary or as synchronization accesses,
with the latter category further divided into acquire and re-
lease accesses. Acquires and releases may be thought of
as conventional synchronization operations on a lock, but
other synchronization mechanisms can be mapped on to this
model as well. Essentially, ERC requires ordinary shared
memory accesses to be performed only when a subsequent
release by the same processor is performed. ERC imple-
mentations can delay the effects of shared memory accesses
as long as they meet this constraint.

Under LRC protocols, processors further delay perform-
ing modifications remotely until subsequent acquires by
other processors, and the modifications are only performed
at the other processor that performed the acquire. The cen-
tral intuition of LRC is that competing accesses to shared
locations in correct programs will be separated by synchro-
nization. By deferring coherence operations until synchro-
nization is acquired, we can piggyback consistency informa-
tion on existing synchronization messages. In comparison
to ERC, LRC generally improves performance by eliminat-
ing consistency messages, further hiding the effects of false
sharing, and enabling new optimizations, such as piggy-
backing data movement on synchronization.

We use lazy release consistent protocols for this study
because they delay consistency actions longer than other
protocols, and therefore are more successful at hiding the
effects of false sharing as well.



2.2 CVM

The Coherent Virtual Machine (CVM)[10] system is a
software DSM that supports multiple protocols and consis-
tency models. Like commercially available systems such
as TreadMarks [9], CVM is written entirely as a user-level
library and runs on most UNIX-like systems. Unlike Tread-
Marks, CVM was created specifically as a platform for pro-
tocol experimentation.

The system is written in C++, and opaque interfaces are
strictly enforced between different functional units of the
system whenever possible. The base system provides a set
of classes that implement a generic protocol, lightweight
threads, and network communication. The latter function-
ality consists of efficient, end-to-end protocols built on top
of UDP.

New shared memory protocols are created by deriving
classes from the base Page and Protocol classes. Only
those methods that differ from the base class’s methods need
to be defined in the derived class. The underlying system
calls protocol hooks before and after page faults, synchro-
nization, and I/O events take place. Since many of the
methods are inlined, the resulting system is able to perform
within a few percent of a severely optimized system, Tread-
Marks [9], running a nearly identical protocol. However,
CVM was designed to take advantage of generalized syn-
chronization interfaces, as well as to use multi-threading
for latency toleration. We therefore expect the performance
of the fully functional system to improve over the existing
base. In order to simplify the comparison process, however,
we do not use either of these techniques in this study.

2.3 Protocols

2.3.1 SW-SC

SW-SC is an implementation of a page-based, single-writer
protocol. Either a single writer or multiple readers may have
copies of a given page at any one time. Page ownership is
migrated to each processor as a copy of the page is requested,
regardless of whether the request was for a write or a read
copy. Ownership could be retained by the current owner
while servicing read faults, but the status of the owner’s
page still needs to be downgraded to read-only. We chose
to migrate ownership as an optimization favoring migratory
data.

Like Mirage [5], we address the ping-pong problem by
guaranteeing a processor a minimum quantum of time with
any newly retrieved page before it can be invalidated by an-
other processor. The ping-pong problem occurs when mul-
tiple processors simultaneously attempt to write the same
page. A processor may request and gain ownership of a
page, but receive an ownership request for the page from
another processor before the fault handler exits. In this case,

the modification (however minor), is not completed before
ownership is lost, and ownership must be re-requested.

Since modifications are often small, even a very small
quantum completely hides the problem in most cases. We
found that a quantum of two microseconds sufficed for both
single writer protocols. Execution times for SW-SC when
the guaranteed quantum was not used went up by a factor of
four or five for some applications.

2.3.2 SW-LRC

SW-LRC differs from SW-SC in that a single owner can
co-exist with multiple readers. Pages only need to be inval-
idated when a processor receives a write notice via synchro-
nization.

The other major difference is a consequence of this
choice. Since servicing read faults does not require the
owner to downgrade its writable copy to a read-only copy,
we do not migrate ownership on read misses, and writable
pages are not downgraded to read-only copies. This opti-
mization improves performance for all the applications that
we tested.

2.3.3 MW-LRC

MW-LRC differs from SW-LRC in that multiple writers are
allowed to concurrently modify the same page. These con-
current modifications are merged using diffs to summarize
the updates. A diff is created by performing a page-length
comparison between the current contents of the page and a
twin of the page that was created at the first write access.
If each concurrent writer summarizes its modifications as a
diff, the system can create a copy that reflects all modifi-
cations by applying the concurrent diffs to the same copy.
Concurrent diffs only overlap if the same location is written
by multiple processors without intervening synchronization,
which is probably a data race. All of our applications are
free of data-races.

The cost of creating a diff is substantial (approximately
three fourths of the cost of an RPC in our system), and will
probably grow relative to processor speed as memory la-
tency falls further behind processor speed. Systems such as
Midway [1] avoid the page-length copies and comparison by
using a modified compiler to annotate all shared writes with
code that tracks accesses by using software dirty bits [17].
When the diff needs to be created, the software dirty bits are
used to determine exactly which words have been modified.
While the copy and comparison are avoided, the software
dirty bit approach requires language support and adds over-
head to every shared write. Recent work [3] shows that
well-implemented diffing mechanism can outperform soft-
ware dirty bits in object-based systems, but the tradeoff is
less clear for page-based systems.



2.3.4 Tradeoffs

The most obvious advantage of the multiple-writer protocol
is that it allows concurrent modifications of the same page
without network communication. However, write-sharing
is less common than other forms of sharing, so this aspect
of the multiple-writer protocol’s performance is likely to be
insignificant for many applications.

A less obvious advantage of MWP is that the decision
to modify a page that is present in read-only state is purely
a local decision. Any page that is readable locally may be
written with undertaking any arbitration with other proces-
sors. Single-writer protocols,by contrast, require ownership
of the page to be gained before a page can be modified. If
ownership is not gained with the read fault in the above
example, a further network RPC must be performed in or-
der to get it. Furthermore, once ownership is achieved, it
inevitablymigrates away withina short time. Therefore, un-
less single-writer protocols are carefully crafted, producer-
consumer interactions will require two network RPCs, each
of which can consist of up to three messages.

Note that this is the case for any single-writer protocol,
including the sequentially consistent protocol implemented
in IVY [13] and the eager release consistent protocol imple-
mented in Munin [2].

The obvious disadvantage of multiple-writer protocols
is that they must use diffs to merge concurrent updates to
the same page. While the use of diffs also decreases the
amount of data transmitted across the network, the number
of messages sent is generally more important than the overall
amount of data sent because of the high message startup cost
in our environment.

Only improved CPU speed or dedicated hardware sup-
port will improve diff creation cost, but improved network
interfaces and OS communications systems are likely to de-
crease the cost of network communication at a significantly
faster pace in the near future. Furthermore, byte-copying
continues to get more expensive relative to floating point
operations as the pace of CPU clock rate improvement con-
tinues to outpace memory access time improvements. These
trends imply that the cost of diffing, already high, is likely
to rise in the future.

2.3.5 Page Location

The means of locating valid pages under the single-writer
protocols needs to be explained a bit further. An access miss
is serviced by sending a page request to the page’s man-
ager, which forwards the request to the current owner. This
method requires three messages to satisfy a request in the
usual case, or two when the manager is also the owner. Both
IVY and Munin use a scheme based on following chains of
probable owners until the real owner is located, collapsing
the probable owner pointers as a request is forwarded.

Li and Hudac [13] showed that in the worst case, k faults
of a page in an n-processor system can result in a worst case
of O(n + k logn) hops. Since k is in practice much larger
than n for the system we are looking at, we can neglect
the first term and see that k faults can require k logn hops,
for an average of log hops per fault. An algorithm based
on static-ownership has better worst-case performance even
for a system of only 8 nodes, and the advantage grows larger
as the size of the system increases.

We confirmed that the static ownership case performs
better in practice by driving a simple simulation with a trace
of faults incurred by the applications discussed in the next
section. Our simulation shows that in the eight processor
case, our static ownership scheme requires an average of
1.83 messages per page miss, while the probable owner
version required 1.86.

3 Results

3.1 Environment

Our experimental environment consists of a 16-node
IBM SP-2, although all performance numbers reflect eight-
processor executions. The SP-2 has a high-performance
Omega switch in which each bi-directional link is capable
of a sustained bandwidth of approximately forty megabytes
per second. Each processor is a 66MHz RS/6000 Power2.

The applications were run on a version of CVM ported
to MPI [14]. MPI does not yet allow handlers to be called
asynchronously on receipt of messages, so the system polls
for incoming messages when outgoing messages are sent.
Unfortunately, two of the applications,TSP and QS, get poor
performance using automatic polling because they each have
phases where the sharing is very coarse-grained. Explicit
polls were inserted into these programs.

Simple RPC’s in our environment require 160 �secs. A
one-hop lock, the case where the lock manager is also the
owner, requires two messages and 228�secs. Two-hop locks
require three messages and 329 �secs. One and two-hop
page faults are defined similarly, and require 939 and 1376
�secs. In the best case, AIX requires 128 �secs to call user-
level handlers for page faults, and mprotect system calls
require 12 �secs. However, virtual memory primitive costs
in the current system are location-dependent, occasionally
increasing these costs to a millesecond or more.

3.2 Applications

The applications used in this study include four appli-
cations from the SPLASH-2 [16] suite of shared-memory
programs: Water-Nsquared (Water), Water-spatial (SPA),
FMM, and LU. The other four programs were locally writ-
ten: FFT, SOR, Quicksort (QS), and Traveling Salesman



Problem (TSP). Table 1 summarizes the inputs and char-

Input Set
Sync Data NS Runs
Type (kbytes) (msecs)

FFT 64x64x16 b 3146 143.6
FMM 2048 l, b, c 929 2.1
LU 512x512 b 2139 10.1
QS 256k l, c 4196 27.7
SOR 2048x2048 b 8056 75.3
SPA 512 mols. l, b 349 460.1
TSP 19 cities l 1604 554.0
Water 512 mols l, b 351 122.9

Table 1. Application Characteristics

acteristics for the applications. Six of the applications use
barriers, five use locks, and two use condition variables.
“Data” shows that the data segments used by the applica-
tions vary in size from 349 kilobytes, for SPA, up to nearly
eight megabytes for SOR. “NS Runs” gives the average time
between synchronizations for the single processor case. The
single processor case is used so that the numbers to not re-
flect a rate statistic affected by the underlying protocol.

3.3 Performance

Figure 1 shows speedup for the eight applications under
each of the three protocols. Four of the applications, QS,
SOR, TSP, and Water, get at least a speedup of five for MW-
LRC. The other applications perform less well, with FMM
actually slowing down for all three protocols.

Figure 2 shows the percentage of running time spent on
read faults, write faults, locks, pause flags, and barriers. For
MW-LRC, the “read” category corresponds to diff requests
and there is no “write” category. SW-LRC performs better
than MW-LRC for FFT and LU, nearly as well in four others,
and significantly worse for QS and SPA. SW-SC performs

0

1

2

3

4

5

6

7

8

FFT FMM LU QS SOR TSP Water Spa

MW-LRC

SW-LRC

SW-SC

Figure 1. 8-Proc Speedup

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Pause
Barrier
Write
Read
Lock

FFT FMM LU QS SOR TSP Wat Spa

L
M

W

L
SW SS

W

L
M

W

L
SW SS

W

L
M

W

L
SW SS

W

L
M

W

L
SW SS

W

L
M

W

L
SW SS

W

L
M

W

L
SW SS

W

L
M

W

L
SW SS

W

L
M

W

L
SW SS

W

Figure 2. Latency Contribution

well relative to the other protocols only for the three most
coarse-grained applications. Overall, MW-LRC performs
9% better than SW-LRC, and 34% better than SW-SC.

A common expectation is that relaxed-consistency-
model DSMs are tightly limited by synchronization, while
batching and pipelining of data movement largely limits the
effects of data movement. Over all applications and pro-
tocols, however, 28% of running time was spent handling
access faults, and only 15% of the time was spent waiting on
synchronization. Applications spent 22% of their time han-
dling access faults under MW-LRC, 28% under SW-LRC,
and 41% under SW-SC. Furthermore, two of the applica-
tions with the highest non-sync runs, FFT and SPA, perform
poorly, suggesting that run time heuristics which predict and
initiate data movement before requests could be very use-
ful. As the applications average a processor efficiency of
41% and total recorded time in CVM is 48%, a further 11%
of running time was presumably lost to operating system
interactions while application code executed, such as TLB
misses and context switches. No paging occurred during
any of the runs.

Figure 3 shows message totals for the protocols. MW-
LRC has lower message requirements because of the ab-
sence of write faults. In all but two cases, however, the
difference is not major. The two exceptions are FMM and
SPA, two applications with fine-grained sharing. While di-
rect evidence of sharing granularity is difficult to obtain
without detailed simulation, FMM has more than double the
fault rate of any other application, and the two applications
create smaller diffs than all applications other except TSP.
TSP performs well despite fine-grained sharing because it
synchronizes infrequently (see Table 1).



0

2000

4000

6000

8000

10000

12000

14000

FFT FMM LU QS SOR TSP Water Spa

M
sg

s/
S

ec
o

n
d

MW-LRC

SW-LRC

SW-SC

Figure 3. Messages Per Second

3.3.1 Sharing

We used our run-time system to generate traces show-
ing all page protection changes during executions. These
traces, timestamped by the globally synchronous clock on
the switch of the SP-2 [15], drive a post-mortem analyzer
that tracks how long individual pages are shared in various
modes. Table 2 shows the results.

Several items are of interest. First, two applications, SPA
and QS, have substantial write sharing under MW-LRC.
Pages are write-shared an average of 6% of the time in QS,
and 61% of the time in SPA. While the other applications
spend 12% of their running time on write faults under SW-
LRC, these two applications spend 39%. Unsurprisingly,
MW-LRC performs markedly better than the single-writer
protocols for these two applications, even though it performs
an average of 3% worse than SW-LRC for the other six.

An average of 68% of all write faults under SW-LRC
are to pages that are already valid, and hence would not
require any network communication under a multiple-writer
protocol. Overall, these promotions account for 40% of the
total message count and 10% of running time.

Several other numbers are worth explaining. Under MW-
LRC, thirty-two percent of the pages in QS are not valid
anywhere in the system. Pages may become completely in-
valid under multiple-writer protocols when concurrent writ-
ers exchange invalidations at synchronization points. The
pages are not re-validated in this specific implementation of
QuickSort because the sorted array is never read.

One of the most interesting trends in the table is that not
only is write-sharing converted to read-write sharing under
SW-LRC, but write-only sharing is converted to read-write
sharing as well. The latter situation occurs because read
faults are more likely to be serviced by an up-to-date copy
of the page under SW-LRC than under MW-LRC. Hence,
a subsequent synchronization between the read faulter and
other processors is less likely to invalidate the page.

w-w w-o r-w r-r r-o inv

FFT
MW 0.7 59.7 7.0 32.4 0.1 0.3
SW 0.0 47.9 23.0 29.1 0.0 0.0

FMM
MW 0.0 0.0 0.0 0.0 0.0 0.0
SW 0.0 84.7 7.2 7.7 0.3 0.0

LU
MW 0.1 63.7 6.0 30.0 0.2 0.0
SW 0.0 34.4 36.0 29.6 0.1 0.0

QS
MW 5.9 77.2 9.9 5.4 1.6 32.5
SW 0.5 76.1 18.3 3.7 1.4 0.0

SOR
MW 0.0 92.2 0.5 0.6 6.7 0.0
SW 0.0 69.2 7.6 0.6 22.5 0.0

SPA
MW 61.0 9.4 11.9 16.7 1.0 1.1
SW 0.0 10.1 78.3 11.6 0.0 0.0

TSP
MW 0.4 20.0 28.9 50.6 0.1 0.0
SW 0.0 7.4 28.6 63.9 0.1 0.0

Wat
MW 0.1 11.8 5.9 82.0 0.2 0.0
SW 0.0 19.1 8.1 72.7 0.0 0.0

Table 2. Sharing Statistics for 8-Processor
LRC Runs: r-read, w-write, o-only

3.3.2 Diff Costs

The use of diffs adds four types of overhead: creation,
application, handling, and garbage collection. The average
diff creation cost during our tests was 125�seconds. Diff
creation consumed between 0.2% and 2.2% of total run time
for our applications. Diff application and handling both
consume only a small fraction of this time. As discussed in
Section 3.3.3, garbage collection usually consumes between
1% and 4%, although the actual number is highly dependent
on application behavior and system parameters.

3.3.3 Space Overhead

Comm Twin Diff Total
Buffer Space Space Ohead

FFT 100 390 680 1082
FMM 100 591 564 1168
LU 100 485 565 1063
QS 100 287 514 814
SOR 100 1008 99 1120
SPA 100 126 45 184
TSP 100 59 799 870
Water 100 99 227 339

Table 3. Memory Overhead for 8-Processor
Runs Under MW-LRC (kbytes)



Table 3 shows the memory overhead cost of communi-
cation buffers, twins, and diffs for each application under
MW-LRC. MW-LRC’s space overhead for twins varies be-
tween 7% and 28% of the total amount of application data,
between 1% and 227% for diffs, and 15% and 273% for
all overhead combined. By comparison, the average space
overhead for the other two protocols is 10%.

Note that diff space requirements can be arbitrarily re-
duced by garbage collecting, at the cost of increased CPU
overhead.

Garbage collection is initiated whenever any process no-
tices that diff or write notice buffers are becoming exhausted.
The initiatingprocessor adds a garbage collection request to
its next barrier arrival message, and the master re-distributes
this request to all processors with the barrier release.

The request requires each of the processors to re-validate
every page that had at one point been valid on that processor,
and then to inform the barrier master. The barrier master
waits for validation acknowledgments, and then distributes
collection-release messages. Upon receipt of a collection-
release message, each processor releases all resources used
to hold diffs, write notices, or twins.

This mechanism validates more pages than strictly neces-
sary, but spatial locality ensures that most of the re-validated
pages will be accessed again. Despite the two extra rounds
of communication required to validate the pages, garbage
collection never reduced performance by more than 4%, and
usually less than 1%.

Neither of the other protocols use either diffs or twins,
but SW-LRC does use write notices. However, the notices
use a trivial amount of space (one word per notice) and
can be garbage collected at each barrier without global co-
ordination.

4 Conclusions

The primary contribution of this paper is a better under-
standing of the tradeoffs involved in allowing concurrent
writers to the same page in DSM systems. We have imple-
mented and compared the performance of three DSM proto-
cols in the context of the CVM distributed shared memory
system. The protocols are MW-LRC, a multiple-writerLRC
protocol, SW-LRC, a single-writer LRC protocol, and SW-
SC, a single-writerSC protocol. Overall, the multiple-writer
version of LRC performed 9% better than the single-writer
variant and 34% better than the sequentially consistent pro-
tocol. Stated another way, the performance impact of the
choice in consistency models is approximately three times
greater than the choice of whether to allow concurrent writ-
ers.

The primary performance difference between the two
LRC protocols is in their handling of write sharing. Contrary
to our expectations, two of our eight applications exhibited

significant write-sharing. Pages were write-shared 6% of
the time in QS, and 61% of the time in SPA. Write sharing
in the other applications was at least an order of magnitude
less. While MW-LRC performed an average of 3% worse
than SW-LRC for the other six applications, it performed an
average of 43% better for these two applications.

Set against this, MW-LRC required an average of 72%
memory overhead, compared to 10% overhead for the
single-writer protocols. Two thirds of this extra overhead
is used for diff storage. Diff storage requirements can be
greatly reduced by garbage collecting, but only at the cost
of increased CPU overhead.

The primary effect of MW-LRC’s appetite for memory
in future systems may be in cache and TLB pollution. Such
effects are becoming more important as memory hierarchies
deepen. Additionally, the diffing and twinning mechanisms
needed by multiple-writer protocols make heavy demands
on the memory system because of the large block compar-
isons and copies. Fortunately, these are exactly the types of
memory accesses that non-blocking caches are designed to
address.

We also found that applications spent much more time
waiting on data than on synchronization, suggesting that
run-time mechanisms that automatically prefetch data could
be of significant benefit.

Our final contribution is the design and evaluation of
SW-LRC. SW-LRC achieves performance comparable to
MW-LRC in most cases, but has less space overhead and is
less complex. The down side is that SW-LRC’s performance
is more sensitive to write-sharing and has higher bandwidth
requirements. Nonetheless, we feel that the simplicity and
space advantages make SW-LRC a natural choice for the
current generation of DSM systems that is even now making
its way into the marketplace.

References

[1] B.N. Bershad, M.J. Zekauskas, and W.A. Sawdon. The
Midway distributed shared memory system. In Proceedings
of the ’93 CompCon Conference, pages 528–537, February
1993.

[2] J.B. Carter, J.K. Bennett, and W. Zwaenepoel. Implementa-
tion and performance of Munin. In Proceedings of the 13th
ACM Symposium on Operating Systems Principles, pages
152–164, October 1991.

[3] Alan Cox, Sandhya Dwarkadas, and Willy Zwaenepoel. A
comparison of entry consistency and lazy release consis-
tency implementations. DRAFT: submitted for publication,
August 1995.

[4] S.J. Eggers and R.H. Katz. A characterization of sharing in
parallel programs and its application to coherency protocol
evaluation. In Proceedings of the 15th Annual International



Symposium on Computer Architecture, pages 373–383, May
1988.

[5] B. Fleisch and G. Popek. Mirage: A coherent distributed
shared memory design. In Proceedings of the 12th ACM
Symposium on Operating Systems Principles, pages 211–
223, December 1989.

[6] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,
A. Gupta, and J. Hennessy. Memory consistency and event
ordering in scalable shared-memorymultiprocessors. In Pro-
ceedings of the 17th Annual International Symposium on
Computer Architecture, pages 15–26, May 1990.

[7] P. Keleher. Distributed Shared Memory Using Lazy Release
Consistency. PhD thesis, Rice University, 1994.

[8] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy release
consistency for software distributed shared memory. In Pro-
ceedings of the 19th Annual International Symposium on
Computer Architecture, pages 13–21, May 1992.

[9] P. Keleher, S. Dwarkadas, A. Cox, and W. Zwaenepoel.
Treadmarks: Distributed shared memory on standard work-
stations and operating systems. In Proceedings of the 1994
Winter Usenix Conference, pages 115–131, January 1994.

[10] Pete Keleher. The Coherent Virtual Machine. Technical Re-
port Maryland TR93-215, Department of Computer Science,
University of Maryland, September 1995.

[11] Pete Keleher, Alan L. Cox, Sandhya Dwarkadas, and Willy
Zwaenepoel. An evaluation of software-based release con-
sistent protocols. Journal of Parallel and Distributed Com-
puting, 29(2):126–141, September 1995.

[12] PovlT. Koch, Robert J. Fowler, and Eric Jul. Message-driven
relaxed consistency in a software distributed shared mem-
ory. In Proc. of the First Symposium on Operating Systems
Design and Implementation, pages 75–85, Monterey, CA,
November 1994. USENIX Assoc.

[13] K. Li and P. Hudak. Memory coherence in shared virtual
memory systems. ACM Transactions on Computer Systems,
7(4):321–359, November 1989.

[14] MessagePassing Interface Forum. MPI: A Message-Passing
Interface, 1994.

[15] C. B. Stunkel, D. G. Shea, B. Abali, M. M. Denneau, P. H.
Hochschild, D. J. Joseph, B. J. Nathanson, M. Tsao, and
P. R. Varker. Architecture and implementation of vulcan.
In Proceedings of the 8th International parallel Processing
Symposium, pages 268–274, April 1994.

[16] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 programs: Characterization and method-
ological considerations. In Proceedings of the 22nd Annual
International Symposium on Computer Architecture, pages
24–37, June 1995.

[17] Mathew J. Zekauskas, Wayne A. Sawdon, and Brian N. Ber-
shad. Software write detection for distributed shared mem-
ory. In Proceedings of the First USENIX Symposium on Op-
erating System Design and Implementation, pages 87–100,
November 1994.


