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ABSTRACT
A consistency protocol can be termed symmetric if all processors
are treated identically when they access common resources. By
contrast, asymmetric protocols usually assign a home or manager
to each resource. Use of the resource by the home incurs less
overhead than use by other processors. The key to good perform-
ance in such systems is to ensure that the asymmetry of the un-
derlying protocol is skewed in the same way as that of the appli-
cation.

This paper presents a comparative evaluation of a symmetric and
an asymmetric DSM protocol. We pay particular attention to
those performance differences caused by symmetric and asym-
metric features of the protocols.

We then present the design and evaluation of an improved
asymmetric writer protocol that dynamically migrates ownership
according to access patterns. We show that the new protocol
outperforms and is more stable than the non-migrating asymmet-
ric protocol, and has much less memory overhead than the sym-
metric protocol.

1. INTRODUCTION
Distributed shared memory (DSM) systems are software systems
that support the abstraction of shared memory across networks of
workstations. Most such systems are page-based, using virtual
memory primitives to trap accesses to shared memory (write
trapping). For such systems, lazy release consistent (LRC) proto-
cols are generally the fastest. The generic LRC protocols [6]
differ from previous protocols in a number of ways, but perhaps
most notably in that they are symmetric. While pages are each
assigned a nominal home, home nodes are used only to satisfy
cold misses. Subsequent misses are satisfied by the “last” proc-
essors to write the page. This symmetry has a number of advan-
tages, including less “hot spot” contention and less reliance on
the original data distribution.

However, recent work [10] has shown that asymmetric ap-
proaches can result in significant savings of runtime overhead
when application-specific sharing behavior is available. “Home-
based” LRC protocols differ from symmetric LRC protocols in
that each page has a statically assigned home. Protocol perform-
ance is asymmetric with respect to each page: the protocol’s per-
formance prefers shared page modifications made by pages’
owners over modifications made by other processors.

Another way of stating this is that if the protocol’s asymmetry
matches the application’s asymmetry, home-based protocols can
execute with very little overhead. Such a correspondence allows

home-based protocols to dispense with consistency actions for a
large chunk of shared memory modifications. The disadvantage
of this approach is that the protocol’s asymmetry becomes a
weakness when it does not closely match that of the application,
such as when the application’s characteristics are difficult to
discern, or change at runtime.

This paper analyzes DSM protocol performance from the per-
spective of this type of symmetry. We argue that many of the
performance differences between protocols can be traced directly
to the degree of symmetry in the protocol design. Symmetric
protocols deal with dynamic conditions better, while asymmetric
protocols can offer the best performance for certain types of ap-
plication behavior.

We cast our discussion in terms of a comparison between sym-
metric LRC protocols and home-based LRC protocols. Both have
advantages, and the case can be made that both are most appro-
priate for different types of applications. As developers might be
unwilling or unable to distinguish between the two situations
themselves, we present a new adaptive protocol that attempts to
strike a balance between the two.

Home-based LRC protocols [10] differ from “homeless” LRC
protocols in that all shared modifications are flushed to the
page’s home at the end of the current synchronization interval.
These protocols benefit from the home effect, the ability to dis-
pense with write trapping for modifications made by the home
node of a given page. This has the obvious advantage of reducing
communication requirements when homes are chosen well. A
less obvious advantage is that the reduction in traffic allows the
protocol to be less lazy. The protocol can require pages to be
made consistent at the end of every synchronization interval be-
cause this often does not require any action to be taken.

By contrast, symmetric protocols must explicitly trap all writes
because processes do not generally have complete information
about page replication. The result is that making a page “consis-
tent” usually implies network communication. This overhead
means that symmetric protocols can only obtain reasonable per-
formance by delaying consistency actions as long as possible.
Hence, symmetric protocols require delays in order to amortize
their expensive write trapping.

While symmetric LRC protocols are usually able to delay con-
sistency actions enough to perform on a par with the best asym-
metric protocols, the down side is that any delay requires state to
be maintained. In the case of LRC, delay in reaching consistency
results in a large amount of memory overhead, and the need to
periodically garbage-collect consistency information. This state



maintenance results in unnecessary overhead. Asymmetric proto-
cols are clearly preferable when the protocol’s characteristics
closely match those of the application.

Nonetheless, we claim that even asymmetric protocols must by
dynamic if good and stable performance is to be achieved. Such
protocols not only mask poor initial page placement, but also
allow adaptation to changing application behavior. This adapt-
ability could potentially be achieved by toggling between distinct
protocols on a page by page basis [1], but we argue for a more
integrated approach.

Note that dynamic application behavior can occur on many dif-
ferent time scales. A gross change may occur across iterations as
molecules or point masses move and interact with different
neighbors. Change can also occur within iterations when differ-
ent phases of individual iterations have distinct sharing patterns.

The rest of the paper is as follows. Section 2 describes lmw,
home, and adapt, our representatives of symmetric, static asym-
metric, and dynamic asymmetric protocols. Section 3 describes
the performance of these protocols and shows how their differ-
ences arise necessarily from their degrees of symmetry. Finally,
Section 5 summarizes our results and relates them to the ques-
tion of consistency maintenance in general.

2. PROTOCOL DESCRIPTION
This section describes lmw, our canonical homeless protocol,
home, our implementation of the home-based algorithm, and
adapt, our migratory asymmetric protocol. All protocols were
implemented inside the same software DSM. Space constraints
and the requirements of anonymity preclude more detailed dis-
cussion here.

2.1 lmw – canonical multi-writer LRC
This section briefly describes the base lazy release consistency
(LRC) memory model and lmw, our protocol implementation.

Lmw is based on the LRC protocol described in Keleher [6].
Lmw is an all-software, page-based protocol. The central idea is
that dissemination of updates to shared pages is delayed as much
as synchronization allows.

Modifications to shared pages are tracked by forcing exceptions
to occur at the first write attempt. The exception handler creates
a copy of the page, or twin, before changing the protection to
allow subsequent writes to proceed at full speed. The changes
made to each page are described in run-length encodings called
diffs at the end of each synchronization interval. Diffs are created
through word-by-word comparisons of the current contents of
pages with “twins” that were made prior to the initial writes.
Each interval is summarized by an interval structure that in-

cludes the local timestamp, and write notices that enumerate the
pages modified during the interval.

Lock grants and barrier releases include interval structures sum-
marizing all intervals seen at the granter, but not at the requester.
Incoming intervals are applied by invalidating each page named
by a write notice in the interval.

Subsequent accesses to an invalidated page cause a page fault.
Faults are handled by requesting all of the page’s diffs from re-
mote processors, and applying them locally in causal order. In the
worst case, page faults can cause O(n) communication because
each diff has to be collected at the processor that created it.
However, the usual case is that one diff dominates (through cau-
sality) the others. This implies that all of the other diffs are pres-
ent at the processor that created the dominating diff, and can be
retrieved with a single remote request.

Lmw has two important advantages over prior protocols. Initial
page faults are handled by retrieving a copy of the page from the
page’s manager. However, all subsequent faults are handled
applying diffs retrieved from the processors that modified the
page. This means that all data traffic for a particular page is be-
tween processors that access the page, rather than with the
pages’s manager (which may or may not be one of the communi-
cating processors).

Second, any processor can modify any locally valid page without
prior negotiation with the current owner. The protocol therefore
necessarily allows multiple concurrent writers. Allowing multiple
concurrent writers is crucial in mitigating the performance effects
of false sharing.

2.2 home
The home protocol implemented in this work is based on the
software-only protocol in Zhou [10]. The home-based multi-
writer protocol statically assigns a home to each page. A page’s
home node can modify the page without creating diffs. Other
processes that modify the page use the diffing mechanism de-
scribed in Section 2.1 to update the home process at the end of
the current interval.

The home-based protocol has two potential advantages: the
“home” effect, and the short lifetimes of many data structures.
“Home-less” protocols summarize all modifications to shared
state as diffs. Aside from the expense of diff creation and appli-
cation, diffs can cause homeless protocols to have voracious ap-
petites for memory [5]. The “home” effect refers to the fact that
home-based protocols allow the owner of a page (i.e. the home)
to dispense with creating diffs describing its own modifications.
Diffs are created only to describe modifications made to a page
by nodes other than the page’s home. Modifications made by the
home are merely noted locally. No network communication is
required.

The second advantage is that home-based diffs have short life-
times. The ugliest aspect of homeless protocols is that the data
structures used to describe shared modifications can not be dis-
carded until they have been explicitly garbage-collected. For
example, consider  Figure 1. The example shows processes P1

through P3 accessing migratory data x. First, P1 modifies x and
releases a synchronization variable. P2 then acquires the synchro-

Figure 1: Diff Exchanges



nization variable, which causes any local copy of the page con-
taining x to be invalidated, and then accesses x. Touching x
causes an access miss that is satisfied by requesting the diff of
w1(x) from P1. However, the diff can not be discarded by P1 even
after it has been supplied to P2, because P1 can not know if or
when some other process (P3, for example) might subsequently
request the diff as well. More generally, the diff can not be dis-
carded until the system can guarantee that it will not be re-
quested by any other process. The situation is complicated even
more by the fact that if and when P3 requests diff1, the diff may
be requested from P2 rather than P1. For performance reasons,
then, P2 can not discard the diff either. The result is that no diff,
nor any of the write notices that name diffs, can be discarded
until they are explicitly garbage-collected.

By contrast, diffs have very short lifetimes under home-based
protocols. Diffs are created at the end of intervals, flushed to the
home nodes, and immediately discarded. This is correct under
home-based protocols because all access misses are serviced via
complete page copies, rather than by applying diffs to pre-
existing page replicas. Consider  Figure 1 again. Assuming that
the manager of the affected page is P3, both P1 and P2 will create
and send diffs to P3 prior to their releases. The advantage is that
both diffs can be immediately discarded. The main disadvantage
is that more messages are sent. The situation can be even worse.
Consider the case where a fourth process, P4, is the home node
for the page. In this case, both P1 and P2 will send diffs to P4.

Both P2 and P3 will request copies of the page from P4, a node
that isn’t involved in the communication.

Nonetheless, the results from the original home-based paper
showed home-based protocols to have a significant scalability
advantage over the generic homeless protocol implementations.
One of the purposes of this paper is to extend these results by
comparing the home-based protocols against a more realistic
homeless protocol, i.e. one with the optimizations described
below. We show that these seeming minor optimizations can
have a large effect on the relative characteristics of homeless and
home-based protocols.

2.3 adapt
The adapt protocol differs from home primarily in that the home
of a node is dynamic, and can migrate in response to either a
read or a write to shared data. The decision of when to migrate
ownership is under the control of a simple heuristic. The protocol
is equivalent to a single-writer LRC protocol [5] if ownership

always migrates on write requests by non-home nodes. It is
equivalent to home if ownership never migrates.

Adapt’s heuristic activates the diffing mechanism rather than
requesting ownership if the use_diff flag is set when a local write
fault occurs. The use_diff flag is set on the home node when
receiving an ownership request for a page that is currently wri-
table, such that the writing began since the last synchronization.
The intuition here is that the old owner is potentially relinquish-
ing ownership before finishing its modifications. Since the new
owner is also modifying the page, a potential page thrashing (or
ping-ponging) situation is set up unless we constrain the old
owner from attempting to regain ownership before the end of the
current interval. Since our programming model prohibits data
races, this situation can only come about because of false sharing.

The use_diff flag is also used when a process servicing a read
request has also serviced a write request on the same page since
the last synchronization. In this instance, a flag is returned to the
reader, which sets its use_diff flag. The intuition here is that a
subsequent write fault by the reader would indicate false sharing
with respect to the earlier writer.

Finally, ownership is preemptively migrated to a process that
makes a read request if the requester has written the page in the
past, and the current owner has not written the page during the
current interval. This mechanism is used to handle migratory
data.

3. EXPERIMENTS
All of our experiments were run on a sixteen-processor IBM SP-
2. Unless otherwise specified, however, our default system size is
eight processors. Each node is a 66.7 MHz POWER2 processor.
The processors are connected by a 40 MByte/sec switch. The
operating system is AIX 4.1.4.

Communication is accomplished using UDP/IP over the switch.
Lock acquires are implemented by sending a request message to
the lock manager, which then forwards the request to the last
requester. This takes only two messages if the manager is also
the last owner of the lock. Two-hop lock acquires take 779 µsecs,
while three-hop lock acquires take 1185 µsecs. Simple page
faults across the network require 1576 µsecs. Page fault times are
highly dependent on the cost of mprotect calls, 15 µsecs, and the
cost of handling signals at the user level, 120 µsecs. Minimal 8-
processor barriers cost 1176 µsecs.

3.1 Application suite
Table 1 shows the nine applications in our application suite.
Barnes, fft, nsq, ray, spatial, and water are all from the
SPLASH2 [9] suite. Water is a largely unmodified form of water-
nsquared, whereas nsq and spatial have both been modified by
researchers at Princeton in order to reduce synchronization re-
quirements. Barnes has been modified in order to eliminate im-
plicit synchronization through shared memory (which does not
work on an LRC system). Sor is a simple jacobi stencil. Qs im-
plements a quicksort with a centralized task queue, and tsp is the
traveling salesman problem, also implemented with a centralized
task queue. All but tsp and qs are iterative scientific applications

App Sync
Kbytes

/ Sec

Sync

/ Sec

Misses

/ Sec

Diffs

/ Miss

barnes Bar 2223 10.1 602.7 4.8
fft Bar 3203 19.7 791.3 1.1

nsq bar, lock 1592 114.4 594.4 2.3
qs lock 1874 451.0 324.3 4.3
ray lock 233 187.4 130.7 4.5
sor bar 713 79.9 176.8 1.0

spatial bar, lock 1787 22.8 2680.5 1.0
tsp lock 187 25.0 198.7 3.6

water bar, lock 1721 1950.5 506.5 2.4
Table 1: Application Characteristics (8-proc, lmw)



typical of much high performance computing work. Qs and tsp
are non-iterative and have much lower locality.

The last four columns of Table 1 show communication and syn-
chronization behavior for eight-processor runs using lmw. All of
our applications use either global barriers, mutually exclusive
locks, or both. The third column shows the rate of communica-
tion in Kbytes/sec. The fourth and fifth columns show the num-
ber of synchronizations (of both types) and remote page faults
per second. The former gives an idea of the synchronization
granularity, while the latter gives an idea of how tightly coupled
the applications are. The last column is the average number of

diffs that needed to be applied to validate a page under lmw.
This number does not directly tell us whether the diffs are con-
current (implying false sharing) or ordered (implying migratory
data). However, migratory data will be guarded by synchroniza-
tion, so we can safely assume that false sharing is implied by a
large number of diffs per miss combined with a low synchroniza-
tion rate. Barnes, for example, has the highest diff per miss rate
combined with the lowest synchronization rate. This application
will be discussed further below.

Our applications were chosen in order to cover a spectrum of
application types. The communication rates and the number of
misses per second both span more than an order of magnitude,
while the synchronization granularity spans more than two orders
of magnitude. The number of diffs per miss varies by almost a
factor of five.

The characteristics of nsq and water are especially interesting, as
both have been described in published studies as minor modifi-
cations of the same program (water-nsquared from SPLASH2).
Clearly “minor” modifications can have major effects on overall
performance.

3.2 Base Performance Comparison
Our overall discussion of relative performance in this paper en-
compasses three categories: raw speedup, performance stability,
and memory overhead.

Figure 2 shows the eight-processor performance of our applica-
tions for all three protocols. Note that the differences tend to be
larger for the more demanding applications, but these differences

Speedup Messages KBytesApp
4 8 16 4 8 16 4 8 16

l 3.0 4.0 3.6 4041 16137 59807 6188 15414 36705
barnes h 3.2 4.9 5.3 1760 4111 9203 7709 16835 34800

a 3.3 5.1 6.6 2160 4556 9646 9141 18231 35713
l 1.7 2.9 4.6 6343 7535 11674 25315 26453 32355

fft h 1.3 2.6 5.0 6018 5911 9012 60440 28251 87674
a 2.1 3.5 5.9 6297 6139 8782 26519 20953 43398
l 3.5 6.2 8.9 6484 12278 23974 12653 27669 64780

nsq h 3.5 6.1 8.6 6667 15766 24798 21578 43215 82077
a 3.5 6.1 8.7 7679 13675 34952 22777 42761 86595
l 2.9 4.2 4.1 3156 5202 8386 8932 15008 18878

qs h 2.5 3.2 2.8 5086 7635 8759 12506 20685 23238
a 2.9 4.3 3.9 5274 6515 12319 12710 10907 22542
l 3.8 7.0 12.3 2202 4635 7866 7391 13333 22872

ray h 3.1 5.2 7.9 3393 5891 9479 8927 15358 27077
a 3.2 5.3 8.0 2666 5285 8928 8269 15367 24794
l 3.9 7.2 12.3 453 1057 2265 975 2288 4955

sor h 3.9 7.3 12.1 452 1057 2265 1127 2329 9634
a 3.9 7.3 12.1 453 1057 2265 958 2264 4974
l 2.6 4.2 4.5 28038 65437 158663 64842 151340 329144

spatial h 2.9 4.5 4.9 22287 59900 129136 100065 251019 526822
a 2.7 4.5 4.9 28067 65486 132994 113256 264352 537215
l 4.0 7.6 13.3 6185 9207 12961 2981 6911 14827

tsp h 4.0 7.6 12.2 6182 10121 12618 16145 27156 39327
a 4.0 7.4 12.7 8407 9452 15154 22932 24986 39652
l 2.9 4.5 5.6 11853 23003 44687 7389 16124 38071

water h 2.5 3.6 4.0 16156 32306 62342 12355 25028 51886
a 2.8 4.4 5.4 12545 23758 45815 11816 22433 45285

Table 2: Scalability
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Figure 2: 8-Processor Speedup



tend to be less visible because of the chart’s scale. Table 2 shows
speedups and overall communication requirements for four, eight
and sixteen processor configurations. Table 6 shows the number
of diffs created, the number of remote page faults, and the total
amount of memory overhead (as a percentage of the application
shared segment sizes).

The factors leading to the differences in speedup will be dis-
cussed in the following subsections. However, the bottom line is
that adapt averages about the same speedup as lmw (within
~1%), and from 10% to 11% higher than home in all three con-
figurations. Table 2 shows that these margins remain relatively
stable in configurations from four to sixteen processors. The
relative performance of lmw and home differs from that pre-
sented in Zhou [10]. We discuss the roots of this difference in
the next subsection.

3.3 Lazy diff and interval creation for lmw
The above results for lmw reflect several optimizations over the
canonical LRC algorithm described in the literature [6]. Chief
among these optimizations is lazy diff creation. Lazy diff crea-
tion refers to creating diffs only on request. The result is that
some diffs are never created, and multiple diffs can often be
consolidated into one. The most direct performance impact of
this reduction is that less time is spent creating twins and diffs.
The costs of both of these actions scale with the size of virtual
memory pages and the number of intervals during which data is
modified, not on the amount of data modified. Creating two diffs
that describe modifications to different portions of the same page
is therefore very nearly twice as costly as creating one. Diff ap-
plication, on the other hand, is dependent only on the number of
distinct words modified. In general, diff application is much

cheaper than diff creation. Note that TreadMarks used lazy diff
creation, but the exact mechanism has not been described or
measured in any detail.

Lazy diff creation has indirect benefits in reduced pressure on
memory (fewer twins and diffs), less bookkeeping, and less fre-
quent garbage collection.

Table 3 shows application performance both with (“l”) and with-
out (“e”) lazy diffing. The table shows runtime in seconds, and
communication and protocol information for each of the applica-
tions. Overall, lazy diffing reduces the number of diffs by an
average of 73%, and communication bandwidth by 23%.
Speedup increases by an average of 24%. Even without including
sor in the average, speedup still improves by more than 12%.
Clearly such a large and widely applicable change could affect
scalability as well.

The performance impact of lazy diff creation is most pronounced
in sor. Since this application is essentially a simple Jacobi sten-
cil, data on the interior of the data assigned to each process is
never requested by other processes. Interior data is effectively
treated as private data, and any diff creations on these pages are
pure overhead. The lazy diffing approach never creates diffs for
these pages because no requests for them are ever received.
While a twin is made for each page the first time it is modified,
the cost of these twin creations is effectively amortized across the
entire application execution. The dormant twins consume virtual
memory space, but are either ignored or paged asynchronously to
disk by the operating system because they are not accessed after
creation. By contrast, the eager diffing approach requires diffs to
be made for each page during each iteration.

3.4 Optimizations for home
The home protocol discussed in this paper differs from the ca-
nonical implementation in at least two ways. The first is a
mechanism similar to the lazy diffing discussed above. This
mechanism eliminates local page faults for pages modified by
their owners. Such faults do not result in network communica-
tion, but do require the OS to deliver a signal to the application.
sor sped up by more than a factor of three with this optimization.

Our second modification to home addresses the most obvious
drawback of statically assigned homes: the initial assignment
must be done well. The original formulation of home-based pro-
tocols addressed the problem of assignments by requiring user
annotations on each section of data, and observed that making
such assignments is easy for the majority of cases. This is espe-
cially true for scientific applications, which tend to distribute
computation among processes as large array slices. Even when
this is the case, however, such annotations are an additional bur-
den on the programmer.

We evaluate three automatic methods of assigning homes. The
three alternatives are round-robin assignment, assignment of
contiguous blocks of pages, and a first-touch runtime method that
performs a single reassignment based on early access behavior.
The round-robin scheme distributes load equally over all proc-
esses, but will only rarely match pages with the processes that
modify them. The “block” scheme is similar, but has a better
chance of making good assignments because the responsibility
for modifying data is often distributed in a chunk-wise fashion by

App Seconds Msgs Diffs Intervals KBytes

l 2.83 16053 3250 41 15407
barnes

e 2.90 16028 3280 65 15423

l 1.68 8123 7296 120 29692
fft

e 2.21 8183 15488 120 29822

l 5.74 12305 5723 120 27674
nsq

e 5.82 12320 6685 874 27875

l 0.95 19673 12700 5065 54270
qs

e 1.12 20976 25580 5831 96603

l 6.70 1502 790 271 682
ray

e 6.72 1492 857 298 724

l 0.58 1057 518 296 2288
sor

e 6.21 1057 75702 296 3317

l 1.48 33277 4836 265 21766
spatial

e 1.62 33332 9084 317 24500

l 7.25 9213 3812 636 6915
tsp

e 7.26 9229 3874 634 6928

l 3.89 22993 2669 1856 16123
water

e 4.17 23015 7807 10785 18411

Table 3: Effect of Lazy Diffing on lmw



scientific codes. The first-touch scheme migrates any pages that
have not been written by their initial owner, but have been writ-
ten by at least one other process. The migration decisions are
distributed on release messages for the sixth barrier.

Table 4 shows statistics for the three schemes on the six applica-
tions that have enough barriers for the migratory scheme to have
an effect. The block, first-touch, and round-robin protocols are
identified by b, f,and r respectively.

Five of the six applications perform at least as well with the
first-touch scheme as either of the others. However, the im-
provement is minor in most cases. With nsq, for example, the
migratory scheme reduces bandwidth and the diff creations, but
also slightly increases the number of remote faults. Overall, first-
touch is only one percent better than the chunk scheme for nsq,
and five percent better than the round-robin scheme.

Most of these applications are relatively insensitive to the choice
of home because a high proportion of the pages are write shared
(over the course of an entire iteration) by many processes. The
exceptions are sor and fft. For sor, little runtime overhead is
incurred if the interior pages are assigned to the process that
modifies them. However, an enormous number of diffs are cre-
ated if the pages are assigned to another process. While this sort
of mistreatment is unlikely to occur on programs as heavily scru-
tinized as the applications in this paper, it could well become
more common as multiprocessor systems become more common
and more complex multiprocessor applications are written.

FFT’S butterfly pattern of data sharing makes simple assign-
ments difficult. However, the migratory scheme is able to elimi-

nate more than 61% of the bandwidth requirements and more
than 91% of the diff creations.

3.5 Dynamic sharing patterns
We evaluate the success of adapt according to three criteria: per-
formance, stability, and memory overhead. Section 3.2 showed
that adapt performs as well as lmw, and significantly better than
home.

Table 5 shows protocol performance for dynamic versions of two
of our applications. We created modified versions of fft and sor
to test protocol response to dynamic sharing patterns. After com-
puting several iterations normally, each process assumes the
responsibilities of the process with the next highest process id.
We started timing after the shift took place in order to capture
steady-state performance after a shift in access patterns.

Relative to the other two protocols, adapt improves performance
by approximately 30%, primarily because of the lack of diff
creations. Home actually performs relatively well even though it
creates a huge number of diffs. After the shift, most pages are
written by processes other than the home, so the protocol essen-
tially turns into an update protocol. This has the advantage of
sending data before it is needed. More importantly, however,
home is able to aggregate updates of nearly ten pages into each
diff message sent. Pure invalidate protocols, on the other hand,
need to fault over modifications one page at a time.

For sor, the comparison is more clear. The majority of modified
pages are read only by the process doing the writing. Hence,
incorrect home assignments cause an enormous number of diffs
to be created, and a similar number of update messages to be
sent. However, most are never used, and performance slows by
an order of magnitude.

Note that the large number of diffs create by home imply an
equal number of twins. Hence, the memory overhead of home in
this case, while temporary, is quite large.

Finally, Table 6 shows that the memory overhead of adapt not
only tracks that of home, but is actually lower for all of our appli-
cations. The reason is that adapt does a better job of ownership
assignment, and therefore creates fewer diffs.

3.6 Causality Representation
Another problem of homeless multi-writer protocols like lmw is
the scalability of internal data structures. TreadMarks includes
complete vector timestamps in all interval notices communicated
between processes. Vector timestamps allow any process to lo-
cally determine the ordering between events or intervals, if any.
However, vectors are large (at least 32 or 64 bytes for a sixteen-
processor system), and scale up in size linearly with respect to

App Seconds Msgs Diffs Misses Kbytes
b 4.67 4003 2883 3652 16715

barnes f 4.95 4115 2678 3793 16781
r 4.67 4003 2883 3652 16716
b 17.72 7704 12677 6512 77524

fft f 8.09 7455 112 7280 29806
r 13.61 8183 13552 6384 80566
b 17.24 12150 4817 8983 40333

nsq f 17.13 12103 3821 9103 38784
r 17.96 15780 6077 9047 43347
b 0.96 1056 276 314 2612

sor f 0.95 1057 0 518 2328
r 4.33 3074 14559 463 61122
b 13.60 30873 6503 29278 121336

spatial f 13.14 33446 216 32588 132741
r 13.52 30334 7812 28571 118885
b 11.44 30896 8531 4270 23392

water f 11.21 30938 8482 4318 23416
r 11.73 32310 10170 4160 25035

Table 4: Impact of Home Assignment Scheme

MessagesApp Time Diffs
diff read write

Segvs Remote
Misses

l 4.29 2832 2940 728 0 4634 2832
h 4.17 4678 445 2502 0 6619 2502fft-r
a 3.43 15 16 2250 1330 4639 3088
l 1.56 126 126 0 0 252 126
h 14.84 18000 2034 63 0 18063 63sor-r
a 1.38 0 0 126 0 252 189

Table 5: Dynamic application performance



the number of processes. Since each processor maintains infor-
mation on all system processors, the total storage space on each
processor for the vectors is O(n2), with potentially large constant
factors. Vectors require cycles to handle, increase the amount of
consistency information passed between processes, and are de-
cidedly inelegant.

By contrast, home-based protocols serialize all updates to pages
at the pages’ home. Furthermore, all page faults are handled by
full page requests. The result is that home-based protocols do not
need vector timestamps, and hence can use more scalable data
structures.

However, vector timestamps are not intrinsic to homeless LRC
protocols. In fact, CVM dispenses with vector timestamps by
inferring ordering information from the relative placement of
interval structures in memory.

Instead, CVM exploits the fact that diffs are learned about in an
order that agrees with the above hb1, assuming that no interval is
“seen” before all intervals ordered before it have been seen. This
property is actually quite easy to maintain. When process P1

communicates with P2, it appends all interval information that it
does not know that P2 has. P2 simply discards any redundant
information. P2 is therefore guaranteed to learn about new inter-
vals in an ordering that agrees with hb1. If this interval informa-
tion is stored in the same order as it is seen, relative local ad-
dresses of consistency information give an ordering consistent
with happens-before, and the vector timestamp is not needed.
Note that the addresses of interval information form a global
ordering, whereas happens-before is only a partial ordering.
Therefore, the addresses do not maintain enough information to

determine whether two intervals are truly ordered, or are concur-
rent.

The result is that the savings in both bandwidth and per-
processor storage could potentially be offset by the cost of send-
ing information that vector timestamps would allow us to identify
as redundant. This is only a problem for barrier arrivals. The
consistency information appended by TreadMarks to each barrier
arrival only includes intervals of the arriving processor. The bar-
rier master can infer the causal context of each interval from the
vector timestamps. Each processor under CVM, by contrast, must
potentially send intervals from all processors in order to establish
the intervals’ context. This means that much of the consistency
data sent is redundant.

We instrumented CVM in order to measure the cost of this re-
dundant information. At the same time, we computed the cost of
adding vector timestamps to all communicated intervals. Table 7
shows these costs as a percentage of the total amount of consis-
tency-related information currently transmitted. The three col-
umns labeled “Barrier Context” show the overhead of the extra
intervals sent by CVM’s scheme. The columns labeled “Vector
Timestamp” show the overhead of using vector timestamps, as in
TreadMarks, both for four, eight, and sixteen processes. The
extra information sent by CVM never amounts to 5% of the total
consistency information, while vector timestamp information can
amount to 8% for four processes, 15% for eight, and 28% for
sixteen.  The bandwidth overhead for the TreadMarks case is
already significant at sixteen processors for many of the applica-
tions, and might become prohibitive at larger system sizes. Note
that the vector timestamp overheads assume two-byte values for
each entry in the vector timestamp. Four-byte values are more
realistic, so these percentages could be doubled.

Since all updates to a given page are serialized at the home, we
track page versions with a scalar counter. The home maintains a
version number for each page that it owns. Each diff application
causes the version number to be incremented. This version num-
ber is returned to the diffing process on the diff reply, and in-
cluded in the write notice for that page. The version number is
also incremented when the home process modifies the page. Any
local page whose version is less than a version named by an in-
coming write notice is invalidated.

4. RELATED WORK
Concurrent with this work, Cox et al. published a second com-
parison of home-based and homeless protocols [3]. Their conclu-
sions were similar to ours: the differences between well-tuned

App Memory Diffs Remote
h 25% 2675 4205

barnes a 8% 2738 3788
l 94% 3250 4177
h 37% 36 7282

fft a 0% 112 7272
l 8% 7296 7296
h 17% 123 11465

nsq a 9% 6070 9022
l 281% 5723 10330
h 31% 367 3079

qs a 3% 419 4827
l 47% 2575 2163
h 0% 622 3823

ray a 2% 1697 3642
l 3% 818 528
h 0% 0 518

sor a 0% 0 518
l 1% 518 518
h 7% 17 64898

spatial a 5% 13078 57986
l 90% 9432 64891
h 18% 350 7879

tsp a 6% 3447 6458
l 62% 3814 7335
h 78% 55 5382

water a 12% 10170 4160
l 304% 2639 4746

Table 6: Protocol Comparisons

Barrier Context Vector Timestamps
#procs 4 8 16 4 8 16

barnes 0% 0% 0% 0% 0% 0%
fft 0% 0% 0% 0% 1% 4%
nsq 1% 4% 5% 3% 8% 14%
qs 0% 0% 2% 8% 15% 24%
ray 0% 1% 5% 3% 8% 15%
sor 0% 0% 0% 5% 15% 28%
spatial 1% 1% 2% 1% 1% 3%
tsp 0% 0% 2% 3% 5% 7%
Water 0% 2% 4% 3% 8% 17%

Table 7: Consistency Overhead



protocols are minor, depending more on the relative costs of
communication and memory copying than anything intrinsic to
the protocols. Home-based protocols use more bandwidth and
benefit more from fast communication protocols. Homeless pro-
tocols are preferable when communication bandwidth is at a
premium.

Amza et al. [1] have published work on DSM protocols that
adapt between different protcols. In their case, the protocols were
Keleher’s single-writer protocol [5] and the default multi-writer
LRC protocol. Although the dimension in which their protocols
differ is different than the protocols discussed in this paper, they
reached similar conclusions about the value of adaptive proto-
cols. Their study showed that simple runtime information could
be used to build an adaptive protocol that performed as well as
the best of the two alternatives for all applications that they ex-
amined.

5. CONCLUSIONS
Symmetric protocols treat all processors identically when they
access shared resources. By contrast, asymmetric protocols com-
monly assign a specific manager to each resource. Use of the
resource by the manager usually incurs less overhead than use by
other processors.

This paper has presented quantitative and qualitative evaluations
of three consistency protocols: lmw, home, and adapt. The ad-
vantages of lmw are runtime performance and stability in the
face of changing or unknown access patterns. The advantages of
home are good performance when resource managers (homes) are
well assigned, and low memory overhead. We have argued that
these characteristics are not specific to just these protocols, but
to symmetric and asymmetric consistency protocols in general.
Finally, we show that that asymmetric protocols can match the
performance of symmetric protocols by analyzing the perform-
ance of adapt, an asymmetric protocol that dynamically adapts
protocol asymmetry to that of the application. The performance
results in Section 3 show that adapt matches lmw’s runtime per-
formance and stability, and home’s low memory overhead.

We argue that the tradeoffs between symmetric and non-
symmetric approaches exist in other domains as well. For in-
stance, consider a symmetric sequentially consistent (SC) [7]
protocol. SC protocols require all prior writes to be performed
globally before subsequent writes can be started. With an asym-
metric protocol, a page’s owner has exact knowledge of the copy-
set, and may know that no other processor caches the page.
Hence, the write’s performance may require no coherence ac-
tions. With a truly symmetric protocol, by contrast, potential
writers will not have exact copyset information, and therefore all
writes would require coherence transactions.

Somewhat further afield, Bayou’s [8] anti-entropy protocols are
nominally symmetric and enforce a relaxed consistency model.
The result is that large amounts of state need to be maintained in
order to ensure that modifications are performed at all sites.
Bayou limits this state explosion by resorting to an ownership
scheme for committing updates. Similar problems exist with
distributed object stores [2] and distributed simulation [4].
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