
An Evaluation of
Software-Based Release Consistent Protocols

Pete Keleher

Department of Computer Science
The University of Maryland
College Park, MD 20742

Alan L. Cox, Sandhya Dwarkadas, Willy Zwaenepoel

Department of Computer Science
Rice University

Houston, TX 77251-1892

This research was supported in part by the National Science Foundation under Grants CCR-9116343,

CCR-9211004, CDA-9222911, and CDA-9310073, by the Texas Advanced Technology Program under Grant

003604014, and by a NASA Graduate Fellowship.

1

\Software-Based Release Consistent Protocols"

Pete Keleher

Computer Science Department
A. V. Williams Bldg.
University of Maryland
College Park, MD 20742

(301) 405-2701

Abstract

This paper presents an evaluation of three software implementations of release
consistency. Release consistent protocols allow data communication to be aggre-
gated, and multiple writers to simultaneously modify a single page. We evalu-
ated an eager invalidate protocol that enforces consistency when synchronization
variables are released, a lazy invalidate protocol that enforces consistency when
synchronization variables are acquired, and a lazy hybrid protocol that selectively
uses update to reduce access misses.

Our evaluation is based on implementations running on DECstation-5000/240s
connected by an ATM LAN, and an execution-driven simulator that allows us to
vary network parameters. Our results show that the lazy protocols consistently
outperform the eager protocol for all but one application, and that the lazy hybrid
performs the best overall. However, the relative performance of the implementa-
tions is highly dependent on the relative speeds of the network, processor, and
communication software. Lower bandwidths and high per byte communication
costs favor the lazy invalidate protocol, while high bandwidths and low per byte
costs favor the hybrid. Performance of the eager protocol approaches that of the
lazy protocols only when communication becomes essentially free.

2

1 Introduction

Software distributed shared memory (DSM) [13] enables processes on di�erent machines

to share memory, even though the machines physically do not share memory. DSM is an

appealing approach for parallel programming on networks of workstations, because most

programmers �nd it easier to use than message passing, which requires them to explicitly

partition data and manage communication.

Early DSM systems su�ered from performance problems because they required large

amounts of communication. These early designs implemented the shared memory abstraction

by imitating consistency protocols used by bus-based hardware shared memory multiproces-

sors. The low latencies on these bus-based machines allowed them to implement sequential

consistency (SC) [11], but with the much higher latencies present on networks sequential

consistency causes serious ine�ciencies. Furthermore, given the large consistency units in

DSM (virtual memory pages), false sharing was a serious problem for many applications.

In order to address the performance problems with earlier DSM systems, relaxed memory

models, such as release consistency (RC) [8], were introduced into DSM systems [5]. With

very little change to the programming model, RC permits several runtime optimizations that

reduce the amount of communication. In particular, it allows the protocol to aggregate the

transmission of shared memory writes until a later synchronization point. Furthermore, it

permits the use of multiple-writer protocols [5], allowing multiple, simultaneous writes by

di�erent processors to the same page, thereby reducing the impact of false sharing.

This paper evaluates three di�erent software implementations of RC on a network of

workstations: an eager invalidate(EI) protocol, a lazy invalidate(LI) protocol, and a lazy

hybrid(LH) protocol. Eager protocols enforce RC when a synchronization variable is released.

Lazy protocols enforce RC when a synchronization variable is acquired. Both EI and LI

invalidate remote copies of modi�ed data, while LH uses a combination of invalidate and

update. We do not consider eager update or pure lazy update protocols, because earlier

work [6] has shown that eager update performs comparably to EI, and lazy update performs

3

substantially worse than LI or LH.

We explore the trade-o�s between these three protocols by measurement and simulation.

EI involves less computational overhead, but for most applications it sends more messages

and data than LI and LH. Comparing the two lazy protocols, LI is more e�cient in terms

of computation and the amount of data moved, but it sends more messages than LH.

Our measurement results were obtained using TreadMarks, an e�cient user-level DSM

system for standard Unix systems. By default, TreadMarks uses LI, but we modi�ed the

implementation to also include the other two protocols. Our hardware is a network of 8

DECstation-5000/240's that are connected by a 100-Mbps switch-based ATM LAN. Overall,

the results show that a software DSM has good performance for a variety of programs. LH

achieves speedups of 7.5 for SOR, 7.2 for TSP, 5.8 for ILINK, 5.7 for IS, 5.7 for MIP, 4.5 for

Water, 3.6 for FFT, and 3.3 for Barnes. The performance of LI is comparable. EI generally

performs worse. The di�erences are largest for Barnes-Hut, IS, TSP, and Water. EI performs

better for FFT than either LI or LH.

We then vary the communication overhead and the bandwidth using a parallel, execution-

driven simulator. In order to accurately compare the di�erent protocols, our simulations

include the execution of the actual TreadMarks code. This simulator was validated against

the implementation and was found to be accurate to within 10%. With the exception of

FFT, the lazy protocols consistently outperform EI. At low bandwidth, regardless of the per

byte cost, LI protocol outperforms the others because it sends less data. LH performs better

in cases of relatively static sharing behavior where runtime predictions of access patterns are

possible, especially at a high bandwidth or a low per byte message cost. In this case, the

elimination of access miss messages outweighs the cost of transferring some unused data, the

cost of which is decreased at the higher bandwidths.

The outline of the rest of this paper is as follows. Section 2 elaborates on the de�nition

of RC and the three protocols, EI, LI, and LH. Section 3 summarizes some of the implemen-

tation aspects. The resulting performance is discussed in Section 4. In Section 5, we present

4

a simulation-based analysis of the trade-o�s among the protocols as the ratio of network to

processor speed, as well as the cost of communication are varied. We discuss related work

in Section 6, and conclude in Section 7.

2 Release Consistency Protocols

Release consistency requires less communication than the canonical memory model, sequen-

tial consistency [11], but provides a very similar programming interface. An eager imple-

mentation [5] of release consistency enforces consistency when a synchronization variable is

released. In contrast, lazy implementations of release consistency enforce consistency when

synchronization variables are acquired. Strictly speaking, lazy protocols implement a slight

weaker memory model than EI. However, the di�erence is irrelevant for all of the programs

in this study except TSP, where EI's memory model is slightly favored. False sharing is

another source of frequent communication in DSM systems. The use of multiple-writer pro-

tocols addresses this problem. Multiple-writer protocols require the creation of di�s, data

structures that record updates to parts of a page.

2.1 Release Consistency

RC permits a processor to delay making its changes to shared data visible to other processors

until certain synchronization accesses occur. Shared memory accesses are categorized either

as ordinary or synchronization accesses, with the latter category further divided into acquire

and release accesses. In order for an RC protocol to guarantee correctness, all synchronization

must go through system-visible synchronization operations. Acquires and releases roughly

correspond to synchronization operations on a lock, but other synchronization mechanisms

can be implemented on top of this model as well. For instance, arrival at a barrier is

represented as a release, and departure from a barrier as an acquire. Essentially, RC requires

ordinary shared memory updates by a processor p to become visible at another processor q,

5

no later than the time when a subsequent release by p becomes visible at q.

In contrast, in SC memory, the conventional model implemented by most snoopy-cache,

bus-based multiprocessors, modi�cations to shared memory must become visible to other

processors immediately. Programs written for SC memory produce the same results on an

RC memory, provided that (i) all synchronization operations use system-supplied primitives,

and (ii) there is a release-acquire pair between con
icting ordinary accesses to the same

memory location on di�erent processors [8]. In practice, most shared memory programs

require little or no modi�cations to meet these requirements.

Although execution on an RC memory produces the same results as on an SC memory for

the overwhelming majority of the programs, RC can be implemented more e�ciently than

SC. In the latter, the requirement that shared memory updates become visible immediately

implies communication on each write to a shared data item for which other cached copies

exist. No such requirement exists under RC. The propagation of the modi�cations can be

postponed until the next synchronization operation takes e�ect.

2.2 Multiple-Writer Protocols

To address the problem of false sharing | concurrent accesses to unrelated items in the

same page | all of the protocols described in this paper are multiple-writer protocols. In a

multiple-writer protocol two or more processors can simultaneously modify their local copies

of the same shared page. The concurrent modi�cations are merged at synchronization points,

in accordance with the de�nition of RC.

Modi�cations are summarized as di�s. Figure 1 shows how di�s are created and applied.

Shared pages are initially write-protected, causing a protection violation to occur when a

page is �rst written. The DSM software makes a copy of the page (a twin), and removes

the write protection so that further writes to the page can occur without DSM intervention.

Di�erences between the twin and a later copy of the page can then be used to create a di�,

a runlength encoded record of the modi�cations made to the page.

6

Write(x)

x:

Create twin

x:

Twin:

x:

Release:

Diff

Encode
Changes

If replicated,
write protect

Make x
writable

Diff

Figure 1 Di� Creation

2.3 The Eager Invalidate Protocol

In an eager protocol, modi�cations to shared data are made visible globally at the time

of a release. The EI protocol, in particular, attempts to invalidate remote copies of any

page that has been modi�ed locally. If the remote copy of the page is READ ONLY, then

it is simply invalidated. If it is in a READ WRITE state, the remote site appends a di�

describing its modi�cations to the reply message and then invalidates the page. Di�s received

in the replies from invalidates are applied to the local copy. If an invalidate is received for

a page that is currently being
ushed, each of the processors performing the
ush creates

a di� describing its local modi�cations. These di�s, together with any di�s received from

replies (from processors that are not concurrently
ushing the page), are then sent to all

other processors in the system. More e�cient solutions could be designed for the case of

concurrent
ushes, but this situation arises rarely.

7

The EI protocol uses an approximate copyset to determine the remote locations to be

invalidated. A copyset is a bitmask indicating which processors have a copy of the page.

Since this local copyset may not be up to date, the acknowledgement to an invalidate message

also contains the remote site's version of the page's copyset. If the local site thereby learns

of other processors caching a modi�ed page, additional protocol rounds are used to ensure

that all remote copies are invalidated. In practice,
ushes rarely take more than a single

round.

On an access miss, the faulting processor fetches the entire page from the processor that

last modi�ed the page.

2.4 The Lazy Invalidate Protocol

With a lazy protocol, the propagation of modi�cations is postponed until the time of the

acquire. At this time, the acquiring processor determines which modi�cations it needs to see

according to the de�nition of RC. The execution of each process is divided into intervals,

each denoted by an interval index. Every time a process executes a release or an acquire,

a new interval begins and the interval index is incremented. Intervals of di�erent processes

are partially ordered [1]: (i) intervals on a single processor are totally ordered by program

order, and (ii) an interval on processor p precedes an interval on processor q if the interval

of q begins with the acquire corresponding to the release that concluded the interval of p.

This partial order can be represented concisely by assigning a vector timestamp to each

interval. A vector timestamp contains an entry for each processor. The entry for processor

p in the vector timestamp of interval i of processor p is equal to i. The entry for processor

q 6= p denotes the most recent interval of processor q that precedes the current interval of

processor p according to the partial order. A processor computes a new vector timestamp

at an acquire according to the pair-wise maximum of its previous vector timestamp and the

releaser's vector timestamp.

RC requires that before a processor p may continue past an acquire from q, the updates

8

of all intervals with a smaller vector timestamp than q's current vector timestamp must be

visible at p. Therefore, at an acquire, p sends its current vector timestamp to the previous

releaser, q. Processor q then piggybacks on the release-acquire message to p, write notices

for all intervals named in q's current vector timestamp but not in the vector timestamp it

received from p. A write notice is an indication that a page has been modi�ed in a particular

interval, but it does not contain the actual modi�cations. In LI, arrival of a write notice

causes the corresponding page to be invalidated.

Di�s are created when a processor requests the modi�cations to a page, or a write notice

from another processor arrives for a dirty page. In the latter case, it is essential to make a

di� in order to distinguish the modi�cations made by the di�erent processors.

Access to an invalidated page causes a access miss. At this point, the faulting processor

must retrieve and apply to the page all di�s that were created during intervals that precede

the faulting interval in the partial order. The following optimization minimizes the number of

messages necessary to get the di�s. If processor p has modi�ed a page during interval i, then

p must have all the di�s of all intervals (including those from processors other than p) that

have a smaller vector timestamp than i. It therefore su�ces to look at the largest interval of

each processor for which we have a write notice but no di�. Of that subset of the processors,

a message needs to be sent only to those processors for which the vector timestamp of their

most recent interval is not dominated by the vector timestamp of another processor's most

recent interval.

After the set of necessary di�s and the set of processors to query have been determined,

the faulting processor requests the di�s in parallel. When all necessary di�s have been

received, they are applied in increasing vector timestamp order.

2.5 The Lazy Hybrid Protocol

LH is a lazy protocol similar to LI, but instead of invalidating the modi�ed pages, it updates

some of the pages at the time of an acquire. LH attempts to exploit temporal locality by

9

assuming that any page accessed by a processor in the past will probably be accessed by

that processor again in the future. All pages that are known to have been accessed by the

acquiring processor are therefore updated. Thus, for applications with fairly static sharing

patterns, the communication required can be optimized with the help of this protocol.

Each processor uses a copyset to track accesses to pages by other processors. The copyset

is used to determine whether a given di� must be sent to a remote location. However,

we also need to determine the set of di�s to be examined. There are several possibilities

for determining this set, from only those di�s created during the previous interval by the

releasing processor to some notion of every possible di�. We investigated several variations,

but found that the heuristic that works best is to look at every di� pertaining to a write

notice that is sent. For each such write notice, if the releasing processor has the di� and

the acquiring processor is in the local copyset for that page, the di� is appended to the lock

grant message.

Di�s are created as in LI, but di�s also may need to be created when it is decided that

they need to be appended on a lock grant message.

On arrival at a barrier, each processor creates a list describing local write notices that

may not have been seen by other processors. A list for processor pj at processor pi consists

of processor pi's notion of all local write notices that have not been seen by pj . pi sends

an update message(s) to pj containing all the di�s corresponding to write notices in this

list. Unlike eager
ushes, the barrier updates do not have to be acknowledged because lost

updates will simply result in access misses.

2.6 Protocol Trade-O�s

LI and LH generally require fewer messages than EI, especially for programs that use locks.

The primary advantage of the lazy protocols during lock transfers is that communication

is limited to the two synchronizing processes. A release in an eager system often requires

invalidations to be sent to processes otherwise uninvolved in the synchronization. EI's inval-

10

idations can also result in a larger number of remote access misses due to false sharing. Since

LI and LH usually exchange data in the form of di�s, the total amount of data exchanged is

usually less than for EI, because EI moves entire pages in the common case. Comparing LI

and LH, LI experiences more access misses, and therefore sends more messages. LI sends,

however, less data, because LH may send unnecessary data at the time of an acquire.

EI's invalidations may also increase lock acquisition latency because releases cannot take

place until the invalidations have been sent and acknowledged. Lock transfer in LI and LH,

in contrast, only involves communication between the releasing and the acquiring processor.

LH often appends updates to lock grant messages, and the extra time required to generate

and process this data can slow down the lock acquisition.

EI is substantially less complex than LI and LH. As soon as a release has been completed,

all state concerning the modi�ed page in EI (twin, di�, etc.) can be discarded. There is also

no need to move information transitively, as all information is immediately made globally

visible. Finally, EI creates far fewer di�s than LI, which in turn creates fewer di�s than LH.

The choice between these three protocols thus involves a complex trade-o� between the

number of access misses, the number of messages, the amount of data, the lock acquisition

times, and the protocol overhead. Table 1 summarizes these trade-o�s.

Lock Remote Msgs Data Di�s Protocol
Latency Access Complexity

Misses

Eager-Inv (EI) Low High High High Low Low
Lazy-Inv (LI) Low Medium Medium Low Medium Medium
Lazy-Hyb (LH) Medium Low Low Medium High Medium

Table 1 Protocol Trade-o�s

11

3 Implementation

3.1 TreadMarks

The three protocols described in Section 2 were implemented in the TreadMarks DSM sys-

tem. TreadMarks programs follow a conventional shared memory style, using threads to

express parallelism and locks and barriers to synchronize. TreadMarks is entirely imple-

mented as a C library, using an interface similar to the parmacs macros from Argonne

National Laboratory [14] for thread and synchronization support.

To provide for a fair comparison, the three protocols share as much code as possible. In

particular, the same primitives are used for communication (sockets and SIGIO signals) and

for memory management (mprotect and SIGSEGV signals). The di� creation mechanism,

and the lock and barrier implementations are identical.

None of the protocols is overly complex to implement. The entire system takes about

4000 lines of code. Approximately 1200 lines are speci�c to the lazy protocols, and an

additional 300 lines are speci�c to LH. EI is fully implemented in only 800 lines of code. For

a more detailed discussion of the implementation of the three protocol, we refer the reader

to Keleher's Ph.D. dissertation [9].

3.2 Experimental Environment

Our experimental environment consists of 8 DECstation-5000/240's running Ultrix V4.3.

Each machine has a Fore ATM interface connected to a Fore ATM switch. The connection

between the interface boards and the switch operates at 100-Mbps; the switch has an ag-

gregate throughput of 1.2 Gbps. The interface board does programmed I/O into transmit

and receive FIFOs, and requires messages to be assembled and disassembled from ATM cells

by software. Interrupts are raised at the end of a message or a (nearly) full receive FIFO.

All of the machines are also connected by a 10-Mbps Ethernet. Unless otherwise noted, the

performance numbers describe 8-processor executions on the ATM LAN using the low-level

12

adaptation layer protocol AAL3/4.

3.3 Basic Operation Costs

The minimum round-trip time using send and receive for the smallest possible message is

500 �seconds. Sending a minimal message takes 80 �seconds, receiving it takes a further

80 �seconds, and the remaining 180 �seconds are divided between wire time, interrupt

processing and resuming the processor that blocked in receive. Using a signal handler to

receive the message at both processors, the round-trip time increases to 670 �seconds.

The minimum time to remotely acquire a free lock is 827 �seconds if the manager was

the last processor to hold the lock, and 1149 �seconds otherwise. In both cases, the reply

message from the last processor to hold the lock does not contain any write notices (or di�s).

The time to acquire a lock increases in proportion to the number of write notices that must

be included in the reply message. The minimum time to perform an 8 processor barrier is

2186 �seconds. A remote access miss, to obtain a 4096 byte page from another processor,

takes 2792 �seconds.

3.4 Applications

The eight programs used in this study vary considerably in size and complexity. SOR (Succes-

sive Over-Relaxation) and TSP (Traveling Salesman Problem) are small programs, developed

locally. Water and Barnes-Hut come from the Stanford Parallel Applications for Shared

Memory (SPLASH) benchmark suite [15]. FFT (Fast Fourier Transform) and IS (Integer

Sort) are taken from the NAS benchmark suite [2]. Finally, ILINK (genetic linkage) [7] and

MIP (mixed integer programming) are large programs, each more than ten thousand lines of

code. Parallel versions of both programs were developed locally.

Table 2 summarizes the applications and their input sets. Syncs per second is the

synchronization rate for an eight processor run under LI.

13

Program Input
Sync. Syncs.
Type Per Second

SOR 2000 x 1000
oats barriers 51
TSP 19 cities locks 16
Water 343 molecules locks, barriers 661
Barnes 4096 bodies barriers 2
FFT 64 x 64 x 64 barriers 13
IS N = 220; Bmax = 27 locks, barriers 228
ILINK CLP locks 3
MIP misc05.mps locks 531

Table 2 Application Suite

4 Performance Measurements

We �rst compare the speedups of the programs in our application suite for EI, LI, and

LH. We then present a breakdown of the execution times into component costs in order to

distinguish between costs due to the protocol and those due to the underlying operating

system and hardware.

4.1 Speedup Comparison

Figure 2 presents the speedups on 8 processors for the eight applications for each of the

three protocols. In all cases, speedup was calculated with reference to the same code run

single-threaded with the TreadMarks library calls removed. Table 3 shows rate statistics for

the three protocols. We use rate statistics rather than totals in order to make meaningful

comparisons between applications that vary widely in running times. Total Msgs is the

overall rate at which messages are sent. Data is the amount of data sent per second, in

kilobytes. Access Misses is the number of access misses per second that required remote

communication. Finally, Diffs Created is the rate at which di�s were created in the system.

14

EI LI LH

SOR TSP Water Barnes FFT IS ILINK MIP

S
pe

ed
up

0

1

2

3

4

5

6

7

8

Figure 2 8-processor Speedups for EI, LI, and LH

15

Run Time
Total Data Access Di�s

Program Prot
(secs)

Msgs (Kbytes Misses Created
(per sec) per sec) (per sec) (per sec)

EI 6.45 966.0 1419.2 66.9 0.0
SOR LI 6.24 790.9 1130.2 66.4 67.3

LH 6.19 773.7 1170.7 0.0 93.1
EI 49.12 689.6 947.0 238.5 0.5

TSP LI 44.09 436.5 127.7 185.3 100.5
LH 42.61 413.1 135.0 167.9 104.4
EI 12.84 3822.0 1491.3 273.4 6.5

Water LI 10.63 3127.4 836.0 313.2 224.1
LH 10.86 2843.6 837.2 162.3 244.4
EI 27.91 1063.1 295.9 435.4 212.0

Barnes LI 22.56 2481.1 167.2 304.5 50.5
LH 20.54 1051.1 187.0 237.5 54.4
EI 10.10 1011.7 3429.9 422.9 0.0

FFT LI 11.95 844.7 3375.7 355.4 528.7
LH 11.86 876.7 4660.2 320.6 960.2
EI 2.19 837.9 280.8 283.1 0.0

IS LI 1.75 674.9 213.1 85.1 46.3
LH 1.73 853.8 215.6 8.1 51.4
EI 1030.8 472.4 571.7 118.3 16.9

ILINK LI 1021.4 308.4 180.9 115.0 35.6
LH 1027.5 134.6 201.4 79.5 38.2
EI 26.10 1781.0 1118.2 267.4 7.5

MIP LI 23.91 989.1 92.4 168.5 100.6
LH 19.09 988.8 107.0 109.7 139.3

Table 3 Lazy and Eager Rate Statistics

16

4.1.1 SOR

Our Successive Over-Relaxation (SOR) uses a simple iterative relaxation algorithm. The

input is a two-dimensional grid. During each iteration, every matrix element is updated

to the average of the four neighboring elements. To avoid overwriting an element before

neighbors use it for their computations, we use a \red-black" approach, wherein every other

element is updated during the �rst half-iteration, and the rest of the elements are updated

during the second half-iteration. The work is parallelized by assigning a contiguous chunk

of rows to each processor. Exchange of data between processors is therefore limited to

those pages containing rows on the edge of the chunks. Barriers are used to synchronize all

processors at the end of each half-iteration.

LI creates 25% fewer di�s than the other protocols because of an advantageous data

layout and the fact that di�s are only created upon request. Under LH, neighboring processes

exchange di�s via updates sent before arriving at a barrier. The primary advantage of the

early updates is that they are unreliable, and so require only a single message. The access

misses that occur in the absence of hybrid updates require at least two messages to handle.

However, the gain in message handling overhead is partially o�set by the cost of creating

more di�s than LI.

LH's performance is also occasionally reduced by access misses that occur when updates

messages are either lost or delayed. The resulting message exchange not only slows down the

processors involved, but also slows down the entire computation at the next barrier because

of load imbalance.

EI requires more messages than the lazy protocols because each processor sends invali-

dates directly to other processors rather than appending them to barrier messages.

4.1.2 TSP

The Traveling Salesman Problem uses a branch-and-bound algorithm to �nd the minimum

cost path that starts at a designated city, passes through every other city exactly once, and

17

returns to the original city. Such a path is termed a tour . We assume a fully connected map

of cities, and passage between each pair of cities has an associated weight. The cost of a

tour is the sum of the weights of each leg of the tour. We solve a 19-city tour.

TSP processes synchronize entirely through locks. Like SOR, TSP has a very high compu-

tation to communication ratio, resulting in near-linear speedup. Therefore the lazy protocol's

reduction in message tra�c does not greatly a�ect overall performance.

The vast majority of messages in TSP are di� request and response messages, some of

which are unnecessary given su�cient semantic information. The data accessed is the set of

tour records used to hold path information while recursing. Tour records are often reused for

di�erent computations, and hence the previous contents are often not needed when a tour

record is retrieved from the tour heap. The DSM system obliviously reconstructs the last

contents of each accessed tour record even if application semantics do not require it.

A second source of overhead in TSP is contention for the centralized tour queue. Each

thread performs a fairly extensive computation before releasing the tour queue, resulting in

a average latency of acquiring the tour lock of over 22 milliseconds (Table 3).

Despite these impediments, both of the lazy protocols achieve near-linear speedups, ap-

proximately 15% better than EI. Two factors cause the disparity between the lazy and eager

protocols. First, EI su�ers approximately one third more access misses because invalidates

are propagated globally at release time, whereas invalidates propagate more slowly under

the lazy protocols. Second, EI transfers nearly eight times as much data because invalidates

always require complete pages to be fetched, while the lazy protocols usually require only a

small number of di�s.

TSP performs only marginally better under LH than under LI. TSP has poor data locality,

and therefore past behavior is not a good indicator of future access patterns. Nevertheless,

LH sends approximately 9% fewer messages than LI for the 19 city problem, while sending

only slightly more data.

18

4.1.3 Water

Water is a molecular dynamics simulation. Each time-step, the intra- and inter-molecular

forces incident on a molecule are computed. In order to avoid an n
2

2
behavior, only molecules

within half the box length of a given molecule are assumed to a�ect the molecule. We

simulated 343 molecules for 5 steps.

The main shared data structure in Water is a large, one-dimensional array of molecules.

Equal contiguous chunks of the array are partitioned to each processor. Each molecule is

represented by a 600-byte data element that includes data describing the molecule's displace-

ment, the �rst six derivatives, and computed forces.

Water has far higher communication requirements than the other applications, and under

the lazy protocols almost 70% of this communication is lock requests and responses.

LI performs slightly better than LH because it creates fewer di�s. There is considerable

false sharing because almost seven molecules �t on a single page. Since di�s are created very

late under LI, the frequency of multiple molecule interactions being summarized by a single

di� is higher than with LH.

EI again performs approximately 15% worse than the lazy protocols because of the need

to fetch entire pages on access misses. While incurring a similar number of access misses, EI

moves more than twice as much data.

4.1.4 Barnes-Hut

Barnes-Hut simulates the evolution of a system of bodies under the in
uence of gravitational

forces. It is a classical gravitational N-body simulation, in which every body is modeled as

a point mass and exerts forces on all other bodies in the system. If all pairwise forces

are calculated directly, this has a complexity of O(n2) in the number of bodies, which is

impractical for simulating large systems. Barnes-Hut is a hierarchical tree-based method

that reduces the complexity to O(n log n). The program uses both locks and barriers for

synchronization. We present results for a run using 4096 bodies.

19

The performance of this application is poor for all protocols because of the high syn-

chronization rate and degree of false sharing. Nearly 98% of the messages under LI are

di� messages. Not only does the high rate of access misses create overhead directly, but it

contributes to load imbalance at barriers. From one barrier to the next, access misses and

di� requests served vary signi�cantly by process, and the number of access misses taken and

di� requests served by a process correlates highly with the amount of time other processes

have to wait at barriers. Overall, an average barrier takes almost 400 milliseconds for this

application, while a null eight processor barrier takes slightly more than two milliseconds.

The use of LH's updates reduces the overall number of di�s requested by more than half.

However, Table 3 shows that LH reduces access misses by only 22% from LI. Many of Barnes'

access misses require more than a single di� in order to bring the page up to date. LH often

eliminates some, but not all, of the di� requests for a given miss. Since misses requiring

a single di� cost only marginally less than misses requiring multiple di�s, LH's impact on

overall performance is less than might be expected. Nevertheless, it performs 10% better

than LI, and nearly 35% better than EI.

EI's performance is seemingly an anomaly in that it uses less than half as many messages

as LI and creates �ve times as many di�s. The explanation for this behavior is that our

implementation resorts to updates, occasionally even global updates, to arbitrate multiple

simultaneous invalidations of the same page. This complexity arrives from the need to ensure

that at least one valid copy of each page always survives. For Barnes, the result is that the

EI's arbitration mechanism mimics LH's update mechanism at least part of the time.

4.1.5 FFT

This benchmark numerically solves a partial di�erential equation using forward and inverse

FFT's. Assuming the input array is a n1 � n2 � n3 array, A, organized in row-major order,

we distribute the array elements along the �rst dimension of A, that is for any i, all elements

of A[i; �; �] are contained within a single processor. A 1-D FFT is �rst performed on the

20

n1 � n2 n3-point vectors, and then on the n2 � n3 n2-point vectors and each processor can

work on its part of the array without any communication. Only when a processor is ready

to work on the n1 � point vectors in the �rst dimension does it need to get the data from

other processors. This means that only one transpose is needed for each iteration of the 3-D

FFT.

When N processors are working in parallel, for every transpose each processor needs to

send 1/N of its data to every other processor and receive 1/N of its data from each of the

other processors. The array is often 1MB or larger, so the time spent doing the transpose is

very large. The program uses only barriers for synchronization. We ran the tests with array

dimensions of 64x64x32.

FFT is trivially parallelizable, but gets relatively poor speedup because of the low

(O(log n)) computation to communication ratio. Processes running FFT communicate more

than twice as much data per second than any other application.

This application illustrates a weakness of the lazy protocols. LI and LH create di�s

describing each modi�cation because every page of data is replicated over the course of

the execution. However, in FFT a page is completely overwritten almost every time it is

touched. Therefore, creating and applying a di� describing a changed page is less e�cient

for this application than merely sending the new page.

A more serious problem is that in some cases several of these full-page di�s are applied

consecutively to the same page. This occurs because data in FFT is migratory. During each

iteration, a complete transpose is done on the FFT data, and processes are assigned new

portions of the array to compute. Before accessing a newly assigned portion of the array

after a transpose, processes must �rst apply di�s describing all previous modi�cations to

that portion. If \ownership" of page p has cycled through three di�erent processes prior to

p being assigned to process P4, P4 must �rst apply di�s describing the modi�cations to p

performed by P1, P2, and P3, even if each di� completely overwrites the previous di�s.

Under EI, access misses are handled by merely retrieving a copy of the page from another

21

process, adding no additional di� creation/application overhead and not sending any extra

data.

4.1.6 IS

This benchmark ranks an unsorted sequence of N keys. The rank of a key in a sequence is

the index value i that the key would have if the sequence of keys were sorted. All the keys

are integers in the range [0, Bmax] and the method used is counting, or bucket sort. The

amount of computation required for this benchmark is relatively small { linear in the size

of the array N . The amount of communication is proportional to the size of the key range,

since an array of size Bmax has to be passed around between processors. In the original

benchmark speci�cation, values for N and Bmax are 223 and 219 respectively. Since this

exceeds the amount of memory that we had available, we reduced these parameters to 220

and 27 respectively.

During a ranking, processes use a lock to acquire write permission to shared data. How-

ever, some of the shared memory is also read outside the locks. These reads often cause access

misses for EI because each time a lock is released, invalidations are performed globally, even

to those processes that only falsely share the modi�ed pages. These extra access misses do

not occur under the lazy protocols because invalidations are only carried by synchronization

messages, and the processes that are reading the shared data are doing so outside of any

synchronization.

Table 3 shows that LH sends signi�cantly more messages than LI. The extra messages are

barrier
ushes that, like in FFT, are often useless because many of the di�s communicated

by the
ushes have already been received via lock grant messages.

4.1.7 ILINK

Genetic linkage analysis is a statistical technique that uses family pedigree information to

map human genes and locate disease genes in the human genome.

22

Our program is a parallel version of ILINK, which is part of the standard LINKAGE

package for carrying out linkage analysis. ILINK searches for a maximum likelihood estimate

of the multi-locus vector of recombination probabilities of several genes [12]. Given a �xed

value of the recombination vector, the outer loops of the likelihood evaluation iterate over all

the pedigrees and each nuclear family (consisting of parents and child) within each pedigree

to update the probabilities of each genotype (see [7]) for each individual, which is stored in

an array genarray.

A straightforward method of parallelizing this program is to split the iteration space

among the processes and surround each addition with a lock to do it in place. This approach

was deemed far too expensive either on a shared memory multiprocessor or on a DSM. Our

version therefore uses a local copy of genarray to temporarily hold updates to the global array.

They are eventuallymerged into the �nal copy after a barrier synchronization. ILINK's input

consists of data on 12 families with autosomal dominant nonsyndromic cleft lip and palate

(CLP).

LH is once again able to reduce the number of remote misses, thereby improving perfor-

mance despite sending more data. The eager protocol does the worst because of the larger

number of messages and data (entire pages are sent instead of di�s).

ILINK achieves less than linear speedup because of a combination of poor load balanc-

ing (this problem is inherent to the algorithm [7]) and sections of code that are executed

serially. Consequently, speedups are somewhat lower than one would expect based on the

communication and synchronization rates.

4.1.8 MIP

Mixed integer programming (MIP) is a version of linear programming where some or all of

the variables are constrained to have an integer value, or sometimes to just the value 0 or

1. A wide variety of real-life problems can be expressed as MIP models, e.g., airline crew

scheduling, network con�guration, and plant design. MIP is hard not only in the standard

23

technical sense, that is, \NP-hard," but it is also hard in the practical sense: real models

regularly produce problem instances that cannot currently be solved.

The MIP code we use takes a branch-and-cut approach. The integer problem is �rst

relaxed to a linear programming problem. This will in general lead to a solution in which

some of the integer variables take on non-integer values. The next step is to pick one of

these variables, and branch o� two new linear programming problems, one with the added

constraint that xi = bxic (the down branch) and another with the added constraint that

xi = dxie (the up branch). Over time, the algorithm generates a tree of such branches. As

soon as a solution is found, this solution establishes a bound on the solution. Nodes in the

branch tree for which the solution of the LP problem generates a result that is inferior to

this bound need not be explored any further. Additional techniques are used to speed up

the algorithm, such as cutting planes, tighter linear constraints derived from the original

constraints, and plunging, a depth-�rst search down the tree to �nd an integer solution and

establish a bound as quickly as possible.

MIP is a work-queue based program implemented using locks. Hence, this program

performs better on the lazy protocols, which are able to signi�cantly reduce the number of

messages and amount of data communicated. LH performs the best because of its ability

to reduce the number of remote misses without signi�cantly increasing the amount of data

sent across the network.

4.2 Execution Time Breakdown

We used qpt [3] to break the execution time into several categories. Figure 3 shows the

breakdown for each of our applications running on 8 processors under each of the protocols.

The \Computation" category is the time spent executing application code; \Unix" is the

time spent executing Unix system calls and library code (almost entirely time spent in

Unix communication primitives); and \TreadMarks" is the time spent executing code in

the TreadMarks library. \Idle Time" consists of several components, primarily time spent

24

w
aitin

g
for

rem
ote

com
m
u
n
ication

to
com

p
lete

an
d
tim

e
w
asted

at
b
arriers

d
u
e
to

load

im
b
alan

ce.

T
h
e
largest

overh
ead

com
p
on
en
ts

are
th
e
U
n
ix

an
d
id
le

tim
es.

W
ith

th
e
ex
cep

tion
of

IL
IN

K
,
w
h
ich

h
as

sign
i�
can

t
load

im
b
alan

ce,
id
le
tim

e
is
p
rim

arily
tim

e
sp
en
t
w
aitin

g
for

com
m
u
n
ication

p
rim

itiv
es
to

b
e
ex
ecu

ted
b
y
oth

er
p
rocesses.

H
en
ce,

for
all

p
rogram

s
ex
cep

t

IL
IN

K
,
th
e
su
m
of
U
n
ix
an
d
id
le
tim

es
is
alm

ost
p
u
re
com

m
u
n
ication

overh
ead

.
T
read

M
ark

s

overh
ead

,
w
h
ich

in
clu

d
es
tim

e
sp
en
t
con

stru
ctin

g
tw
in
s
an
d
d
i�
s,
as

w
ellas

ap
p
ly
in
g
th
e
d
i�
s,

is
m
u
ch

sm
aller

th
an

th
e
com

m
u
n
ication

overh
ead

.
W
e
con

clu
d
e
th
at,

fo
r
th
is
en
viro

n
m
en
t,

th
e
com

p
lex

ity
of
th
e
p
rotocol

m
atters

far
less

th
an

th
e
n
u
m
b
er
an
d
size

of
m
essages

req
u
ired

to
su
p
p
ort

th
e
D
S
M

en
v
iron

m
en
t.

F
igu

re
4
sh
ow

s
a
b
reak

d
ow

n
of

th
e
U
n
ix

overh
ead

.
W
e
d
iv
id
e
U
n
ix

overh
ead

in
to

tw
o

categories:
com

m
u
n
ication

an
d
m
em

ory
m
an
agem

en
t.
C
om

m
u
n
ication

overh
ead

is
th
e
tim

e

C
o

m
p

u
ta

tio
n

T
re

a
d

M
a

rk
s

U
n

ix
Id

le

SOR-EI
SOR-LI

SOR-LH
TSP-EI
TSP-LI

TSP-LH
Water-EI
Water-LI

Water-LH
Barnes-EI
Barnes-LI

Barnes-LH
FFT-EI
FFT-LI

FFT-LH
IS-EI
IS-LI

IS-LH
ILINK-EI
ILINK-LI

ILINK-LH
MIP-EI
MIP-LI

MIP-LH

% Total Execution Time

0

2
0

4
0

6
0

8
0

1
0

0

F
ig
u
r
e
3

T
read

M
ark

s
E
x
ecu

tion
T
im

e
B
reak

d
ow

n

25

sp
en
t
ex
ecu

tin
g
ke
rn
e
l
op
eration

s
to

su
p
p
ort

com
m
u
n
ication

.
M
em

ory
m
an
agem

en
t
over-

h
ead

is
th
e
tim

e
sp
en
t
ex
ecu

tin
g
k
ern

el
op
eration

s
to

su
p
p
ort

th
e
u
ser-level

m
em

ory
m
an
-

agem
en
t,p

rim
arily

p
age

p
rotection

ch
an
ges.

In
all

cases,
at

least
80%

of
th
e
kern

elex
ecu

tion

tim
e
is
sp
en
t
in

th
e
com

m
u
n
ication

rou
tin

es,
su
ggestin

g
th
at

ch
eap

com
m
u
n
ication

is
th
e

p
rim

ary
serv

ice
a
softw

are
D
S
M

n
eed

s
from

th
e
op
eratin

g
sy
stem

.
F
or

m
ost

of
th
e
p
rogram

s,

th
e
eager

p
rotocol

h
as

th
e
largest

U
n
ix

com
m
u
n
ication

overh
ead

.

F
igu

re
5
sh
ow

s
a
b
reak

d
ow

n
of
T
read

M
ark

s
overh

ead
.
W
e
h
ave

d
iv
id
ed

th
e
overh

ead
in
to

th
ree

categories:
m
em

ory
m
an
agem

en
t,
con

sisten
cy,

an
d
\oth

er".
\M

em
ory

m
an
agem

en
t"

overh
ead

is
th
e
tim

e
sp
en
t
b
y
u
ser

lev
el
rou

tin
es

to
d
etect

an
d
cap

tu
re

ch
an
ges

to
sh
ared

p
ages.

T
h
is
in
clu

d
es

tw
in

an
d
d
i�

creation
an
d
d
i�

ap
p
lication

.
\C

on
sisten

cy
"
is
th
e
tim

e

sp
en
t
p
rop

agatin
g
an
d
h
an
d
lin

g
con

sisten
cy

in
form

ation
.
\O

th
er"

con
sists

p
rim

arily
of
tim

e

sp
en
t
h
an
d
lin

g
com

m
u
n
ication

an
d
sy
n
ch
ron

ization
.
T
read

M
ark

s
overh

ead
is
d
om

in
ated

b
y

C
o

m
m

u
n

ic
a

tio
n

M
e

m
o

ry

SOR-EI
SOR-LI

SOR-LH
TSP-EI
TSP-LI

TSP-LH
Water-EI
Water-LI

Water-LH
Barnes-EI
Barnes-LI

Barnes-LH
FFT-EI
FFT-LI

FFT-LH
IS-EI
IS-LI

IS-LH
ILINK-EI
ILINK-LI

ILINK-LH
MIP-EI
MIP-LI

MIP-LH

% Total Execution Time

0 5

1
0

1
5

2
0

2
5

F
ig
u
r
e
4

U
n
ix

O
verh

ead
B
reak

d
ow

n

26

th
e
m
em

ory
m
an
agem

en
t
op
eration

s.
T
h
e
eager

p
rotocol

h
as

th
e
least

p
rotocol

overh
ead

for

all
of
th
e
ap
p
lication

s,
in
d
icatin

g
a
trad

e-o�
b
etw

een
com

m
u
n
ication

an
d
p
rotocol

overh
ead

.

H
ow

ev
er,

m
ain

tain
in
g
th
e
rath

er
com

p
lex

p
artial

ord
erin

g
b
etw

een
in
tervals

req
u
ired

b
y
th
e

lazy
p
rotocols

ad
d
s
on
ly

a
sm

all
am

ou
n
t
to

th
e
ex
ecu

tion
tim

e.

4
.3

M
e
m
o
r
y
O
v
e
r
h
e
a
d

A
llsoftw

are
D
S
M
s
trad

e
m
em

ory
for

ru
n
tim

e
overh

ead
b
y
rep

licatin
g
sh
ared

p
ages.

H
ow

ever,

lazy
R
C
p
rotocols

also
req

u
ire

sign
i�
can

t
am

ou
n
ts
of

m
em

ory
to

store
d
i�
s
an
d
con

sisten
cy

in
form

ation
.
D
i�
s
m
u
st

b
e
retain

ed
u
n
til

th
ey

h
ave

b
een

ap
p
lied

to
every

ex
istin

g
cop

y

of
th
e
corresp

on
d
in
g
p
age.

R
ath

er
th
an

con
tin

u
ou
sly

evalu
ate

th
is
relativ

ely
com

p
licated

p
red

icate,
ou
r
im

p
lem

en
tation

s
garb

age-collect
d
i�

an
d
con

sisten
cy

in
form

ation
on
ly

w
h
en

in
tern

al
b
u
�
ers

reach
h
igh

-w
ater

m
ark

s.

M
e

m
o

ry

C
o

n
s
is

te
n

c
y

O
th

e
r

SOR-EI
SOR-LI

SOR-LH
TSP-EI
TSP-LI

TSP-LH
Water-EI
Water-LI

Water-LH
Barnes-EI
Barnes-LI

Barnes-LH
FFT-EI
FFT-LI

FFT-LH
IS-EI
IS-LI

IS-LH
ILINK-EI
ILINK-LI

ILINK-LH
MIP-EI
MIP-LI

MIP-LH

% Total Execution Time

0 1 2 3 4 5

F
ig
u
r
e
5

T
read

M
ark

s
O
v
erh

ead
B
reak

d
ow

n

27

Program
Shared Size Twin Space Di� Rate % Time
(Kbytes) (Kbytes) (Kbytes/sec) GC

SOR
LI 8040 7004 7.6 0
LH 8040 7004 19.3 0

TSP
LI 3204 1096 8.0 0
LH 3204 1068 8.7 0

Water
LI 238 392 180.6 0
LH 238 432 446.9 0

Barnes
LI 690 2240 488.7 3.2
LH 690 2236 615.2 1.2

FFT
LI 6291 5600 1304.0 0.4
LH 6291 4060 1905.3 0.8

IS
LI 0.5 32 25.7 0
LH 0.5 32 195.1 0

ILINK
LI 14670 1088 131.2 0.3
LH 14670 1088 134.2 0.1

MIP
LI 150 316 3.3 0
LH 150 352 3.6 0

Table 4 Memory Usage and GC Overhead

Table 4 presents memory and garbage-collection overheads for the application suite with

each of the lazy protocols. \Shared Size" is the size of the shared memory space, \Twin

Space" is the maximum memory used by twins at any given time, and \Di� Rate" is the

rate at which di� storage is consumed. Nodes in our system each allocate approximately 4.5

MBytes of memory for di� and consistency information storage. \% Time GC" represents

the percent of execution time spent garbage collecting. Since our algorithms re-validate each

touched page rather than ensuring only that a single copy of each page survives, this column

captures the entire e�ect of garbage collection on the computation.

None of the applications spend more than 3.2% of their time garbage collecting, and most

spend far less. The applications produce di�s at widely varying rates, with FFT creating

enough di�s to completely overwrite its shared address space every three seconds.

EI discards di�s as soon as they are created because updates are performed globally,

rather than locally as in the lazy protocols. \Twin Space" overhead for EI is similar to that

28

of LI.

5 Simulation

Both networking hardware and operating system software a�ect the performance of applica-

tion programs. A limitation of our empirical comparison is that the hardware and operating

system costs are �xed. This section explores the relationship between the di�erent con-

sistency algorithms and protocols as the processor, network and operating system vary in

speed.

5.1 Simulation Methodology

Our primary concern in selecting a simulation methodology was the ability to model accu-

rately the software costs incurred by the di�erent protocols. Therefore, we chose a method

that allowed the execution of the actual protocol code on the simulator.

To meet our objectives, we use vt [3], a pro�ling tool that rewrites executable programs

to incorporate instrumentation code that produces an estimated processor cycle count. To

account for the time spent in the operating system handling page faults or passing messages,

for example, we link the program to a library that intercepts system calls, and adds a speci�ed

number of cycles to the processor's counter. For message passing system calls, the library

additionally computes the wire time for the message, based on the network speed and the

message size. To arrive at the execution time on multiple processors, the library piggybacks

a processor's cycle count on its synchronization messages, and adjusts the synchronizing

processors' clocks according to the following rules: For a lock, the processor acquiring the

lock must have a cycle count greater than that when the lock was released by the last

processor to hold it; and, for a barrier, the processors departing from the barrier must have

cycle counts greater than the highest cycle count among the processors arriving at the barrier.

In all cases, we simulate a switched LAN similar to an ATM LAN. We account for

29

contention for each point-to-point link, that is, we simulate the serialization of messages

requiring access to the same link, but we do not model contention for switch resources.

To validate the simulator, we compared our model's simulated speedups to actual speedups

for 8 processors on the di�erent applications. In all cases, simulated speedup, the number of

messages, and the total amount of data communicated came to within 10% of the measured

counts.

Again, speedups were calculated with reference to single-threaded executions with Tread-

Marks library calls removed.

5.2 E�ect of Communication Software Speed

The results of Section 4.2 suggest that reducing the cost of the communication software

should improve performance. The cost has two components: a �xed, per message cost, and

a per byte cost that accounts for the handling of di�erent size messages. Figure 6 shows

the simulated performance of an ATM network varying the �xed cost software overhead in

the 8 processor case. All the applications presented have speedups between 6 and 8 with a

zero �xed cost per message. The large speedups indicate the performance potential for the

protocols, and the potential gains to be had from hardware support for message passing.

Low �xed costs favor protocols that send less data over those that send fewer messages.

Therefore, LH, which reduces the number of access misses at the expense of sending slightly

more data, loses ground to the other protocols as the �xed cost drops. EI also gain ground

relative to LI because it sends many small update messages at synchronization releases,

whereas the lazy protocols send large messages at access misses. Overall, however, LI per-

forms better than the other protocols because it sends less data.

Figure 7 presents the e�ect on speedup of varying the per byte software cost. The increase

in performance as per byte cost decreases is not as dramatic as when the per message cost

drops because per message costs tend to dominate overall communication costs. The primary

exception is FFT, which sends far more data than the other programs.

30

0 cyles 5k cycles 10k cycles

S
O

R

0

1

2

3

4

5

6

7

8

0 cyles 5k cycles 10k cycles

T
S

P

0

1

2

3

4

5

6

7

8

0 cyles 5k cycles 10k cycles

W
at

er

0

1

2

3

4

5

6

7

8

0 cyles 5k cycles 10k cycles

B
ar

ne
s

0

1

2

3

4

5

6

7

8

0 cyles 5k cycles 10k cycles

F
F

T

0

1

2

3

4

5

6

7

8

0 cyles 5k cycles 10k cycles

IS

0

1

2

3

4

5

6

7

8

0 cyles 5k cycles 10k cycles

IL
IN

K

0

1

2

3

4

5

6

7

8

0 cyles 5k cycles 10k cycles

M
IP

0

1

2

3

4

5

6

7

8

Figure 6 8-Processor Speedup Varying Fixed Message Cost (EI - black, LI - light
gray, LH - dark gray)

31

7 cycles/byte 2 cycles/byte 0 cycles/byte

S
O

R

1

2

3

4

5

6

7

8

7 cycles/byte 2 cycles/byte 0 cycles/byte

T
S

P

1

2

3

4

5

6

7

8

7 cycles/byte 2 cycles/byte 0 cycles/byte

W
at

er

1

2

3

4

5

6

7

8

7 cycles/byte 2 cycles/byte 0 cycles/byte

B
ar

ne
s

1

2

3

4

5

6

7

8

7 cycles/byte 2 cycles/byte 0 cycles/byte

F
F

T

1

2

3

4

5

6

7

8

7 cycles/byte 2 cycles/byte 0 cycles/byte

IS

1

2

3

4

5

6

7

8

7 cycles/byte 2 cycles/byte 0 cycles/byte

IL
IN

K

1

2

3

4

5

6

7

8

7 cycles/byte 2 cycles/byte 0 cycles/byte

M
IP

1

2

3

4

5

6

7

8

Figure 7 8-Processor Speedup Varying Per Byte Cost (EI - black, LI - light gray,
LH - dark gray)

32

With two exceptions, the relative performance of the protocols changes only slightly. For

Barnes, LI sends several times as many messages as the other protocols because it takes a

large number of access misses. Both of the other protocols eliminatemost of the access misses

through updates. As per byte costs decrease, per message cost becomes more important,

and LI's performance decreases with respect to the other protocols.

EI gains on the lazy protocols for MIP because the di�erence in data rates between EI

and the other protocols is much larger than the di�erence in message rates.

5.3 E�ect of Network Speed

Access to the communicationmedium is a prime candidate for a bottleneck in any distributed

system. Therefore, this section examines the e�ects of bandwidth variation.

Figure 8 summarizes changes in speedup for the programs when we vary bandwidth

per link from 10 Mbits/sec to 1 Gigabit/sec. The performance di�erence between the

programs from 10 to 100 Mbits/sec per link is much larger than the di�erence between

100 Mbits/secs and 1 Gigabit/sec. This is because many of the programs are bandwidth-

limited at 10 Mbits/sec, but not at the higher speeds. Software overhead dominates at the

higher data rates.

At a bandwidth of 10 Mbits/sec, LI outperforms the other protocols for nearly all of the

applications because it sends less data than the other protocols. Since EI sends more data

than either of the others, its performance is reduced proportionately.

FFT is an exception to the above generalized results. EI performs the best for FFT

regardless of bandwidth or per message costs. The reason is that EI does not create di�s or

twins at barriers, but instead migrates entire pages. Since pages are completely overwritten

in each phase, the lazy protocols send at least as much data as EI, while still paying the

overhead of creating and applying the di�s.

33

10Mbit 100Mbit 1Gbit

S
O

R

1

2

3

4

5

6

7

8

10Mbit 100Mbit 1Gbit

T
S

P

1

2

3

4

5

6

7

8

10Mbit 100Mbit 1Gbit

W
at

er

1

2

3

4

5

6

7

8

10Mbit 100Mbit 1Gbit

B
ar

ne
s

1

2

3

4

5

6

7

8

10Mbit 100Mbit 1Gbit

F
F

T

1

2

3

4

5

6

7

8

10Mbit 100Mbit 1Gbit

IS

1

2

3

4

5

6

7

8

10Mbit 100Mbit 1Gbit

IL
IN

K

1

2

3

4

5

6

7

8

10Mbit 100Mbit 1Gbit

M
IP

1

2

3

4

5

6

7

8

Figure 8 8-Processor Speedup Varying Bandwidth (EI - black, LI - light gray, LH
- dark gray)

34

6 Related Work

RC was �rst proposed in the context of the DASH project [8]. In DASH, RC is implemented

in hardware, using an invalidate protocol on a cache line basis. Given the small size of the

cache line, false sharing is less of an issue, and a single-writer protocol is used.

The �rst software implementation of RC was carried out in the Munin systems [5]. Munin

also introduced the notion of a multiple-writer protocol to combat false sharing. Munin

allowed a number of protocols to be used, but the primary protocol was an eager update

implementation of release consistency. Later work [6] has shown that the performance of EI

and eager update are comparable.

Lazy release consistency was introduced in the TreadMarks system [10]. The default

protocol in TreadMarks is LI, although Dwarkadas et al. [6] present simulation results for

LH. Our work improves on earlier comparisons of various software implementations of RC by

comparing actual implementations on the same platform, and by using measurements from

these systems to validate simulation results that vary various environment parameters.

An interesting alternative to RC is entry consistency (EC) [4]. EC di�ers from RC

in that it requires all shared data to be explicitly associated with some synchronization

variable. On a lock acquisition EC only propagates the shared data associated with that

lock. EC, however, requires the programmer to insert additional synchronization in shared

memory programs to execute correctly on an EC memory. Typically, RC does not require

additional synchronization. Bershad et al. [4] also use a di�erent strategy to implement EC

in the Midway DSM system. Instead of relying on the VM system to detect shared memory

updates, they modify the compiler to update software dirty bits.

7 Conclusions

In this paper, we have assessed the performance trade-o�s between three di�erent imple-

mentations of release consistency - an eager invalidate protocol, a lazy invalidate protocol,

35

and a lazy hybrid protocol.

The protocols each have di�erent strengths. The eager invalidate is less complex, but

sends more messages and su�ers more remote misses. At the cost of somewhat increased

protocol complexity and overhead, the lazy invalidate protocol reduces remote misses and

uses fewer messages. The hybrid protocol reduces remote misses even further, but sends

more data and has the largest lock acquisition latency of any of the protocols.

We implemented each of these protocols in TreadMarks, a distributed shared memory

(DSM) system for standard Unix systems. Our hardware is a network of 8 DECstation-

5000/240's that are connected by a 100-Mbps switch-based ATM LAN.

Our evaluation shows that the reduction in communication costs for the lazy protocols

normally outweighs the decreased protocol complexity of EI on our experimental platform.

The primary cause is the high per message and per byte communication cost of Unix software,

which dominates the memory management and consistency overhead for all three protocols

evaluated. No application spent more than 5% of its time executing protocol code, and in

most cases much less time was spent. On average, the lazy hybrid protocol performs the

best of the three protocols. On the 100-Mbps ATM LAN, the lazy hybrid achieves speedups

of 7.5 for SOR, 7.2 for TSP, 5.8 for ILINK, 5.7 for IS, 5.7 for MIP, 4.5 for Water, 3.6 for

FFT, and 3.3 for Barnes.

The relative performance of the protocols is dependent on the performance of the network,

processor, and communication software. The gap between EI and the lazy protocols becomes

larger as bandwidth decreases or software overhead increases. The relative performance of

the two lazy protocols is more stable, but LI is favored as per message cost or bandwidth

decreases, and LH is favored when applications are not bandwidth limited and per message

costs increase.

36

References

[1] S. Adve and M. Hill. Weak ordering: A new de�nition. In Proceedings of the 17th

Annual International Symposium on Computer Architecture, pages 2{14, May 1990.

[2] D. Bailey, J. Barton, T. Lasinski, and H. Simon. The NAS parallel benchmarks. Tech-

nical Report TR RNR-91-002, NASA Ames, August 1991.

[3] T. Ball and J. Larus. Optimally pro�ling and tracing programs. In POPL92, pages

59{70, January 1992.

[4] B.N. Bershad, M.J. Zekauskas, and W.A. Sawdon. The Midway distributed shared mem-

ory system. In Proceedings of the '93 CompCon Conference, pages 528{537, February

1993.

[5] J.B. Carter, J.K. Bennett, and W. Zwaenepoel. Implementation and performance of

Munin. In Proceedings of the 13th ACM Symposium on Operating Systems Principles,

pages 152{164, October 1991.

[6] S. Dwarkadas, P. Keleher, A.L. Cox, and W. Zwaenepoel. Evaluation of release con-

sistent software distributed shared memory on emerging network technology. In Pro-

ceedings of the 20th Annual International Symposium on Computer Architecture, pages

244{255, May 1993.

[7] S. Dwarkadas, A.A. Sch�a�er, R.W. Cottingham Jr., A.L. Cox, P. Keleher, and

W. Zwaenepoel. Parallelization of general linkage analysis problems. Human Hered-

ity, 44:127{141, 1994.

[8] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy.

Memory consistency and event ordering in scalable shared-memory multiprocessors. In

Proceedings of the 17th Annual International Symposium on Computer Architecture,

pages 15{26, May 1990.

37

[9] P. Keleher. Distributed Shared Memory Using Lazy Release Consistency. PhD thesis,

Rice University, December 1994.

[10] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy release consistency for software

distributed shared memory. In Proceedings of the 19th Annual International Symposium

on Computer Architecture, pages 13{21, May 1992.

[11] L. Lamport. How to make a multiprocessor computer that correctly executes multipro-

cess programs. IEEE Transactions on Computers, C-28(9):690{691, September 1979.

[12] G.M. Lathrop, J.M. Lalouel, C. Julier, and J. Ott. Strategies for multilocus linkage

analysis in humans. Proceedings of National Academy of Science, 81:3443{3446, June

1984.

[13] K. Li and P. Hudak. Memory coherence in shared virtual memory systems. ACM

Transactions on Computer Systems, 7(4):321{359, November 1989.

[14] E. L. Lusk and R. A. Overbeek et al. Portable Programs for Parallel Processors. Holt,

Rinehart and Winston, Inc, 1987.

[15] J.P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford parallel applications for

shared-memory. Technical Report CSL-TR-91-469, Stanford University, April 1991.

Pete Keleher received the B.S., M.S., and Ph.D. degrees from Rice University in 1986,

1992, and 1995, respectively. He is currently on the faculty at the University of Maryland,

College Park. His research interests include parallel and distributed systems, computer

networks and architecture, and parallel languages. e-mail: keleher@cs.umd.edu.

Alan Cox received the B.S. degree from Carnegie Mellon University in 1986 and the

M.S. and Ph.D. degrees from the University of Rochester in 1988 and 1992, respectively.

He is currently on the faculty at Rice University. His research interests include parallel

and distributed systems, distributed garbage collection, and multi-computer architectures.

e-mail: alc@cs.rice.edu

38

Sandhya Dwarkadas received the B.Tech. degree from the Indian Institute of Technol-

ogy, Madras, India, in 1986, and the M.S. and Ph.D. degrees from Rice University in 1989

and 1993. She is currently a research scientist at Rice University. Her research interests in-

clude parallel and distributed systems, parallel computer architecture, parallel computation,

simulation methodology, and performance evaluation. e-mail: sandhya@cs.rice.edu

Willy Zwaenepoel received the B.S. degree from the University of Gent, Belgium, in

1979, and the M.S. and Ph.D. degrees from Stanford University in 1980 and 1984. Since 1984,

he has been on the faculty at Rice University. His research interests are in distributed oper-

ating systems and in parallel computation. While at Stanford, he worked on the �rst version

of the V kernel, including work on group communication and remote �le access performance.

At Rice, he has worked on fault tolerance, protocol performance, optimistic computations,

distributed shared memory, and nonvolatile memory. e-mail: willy@cs.rice.edu

39

