

1

Consistency Management in Deno

Peter J. Keleher and Ugur Cetintemel

Department of Computer Science
University of Maryland

College Park, Maryland 20742
{keleher,ugur}@cs.umd.edu

We describe a new replicated-object protocol designed for use in mobile and weakly-connected envi-

ronments. The protocol differs from previous protocols in combining epidemic information propaga-

tion with voting, and in using fixed per-object currencies for voting. The advantage of epidemic proto-

cols is that data movement only requires pair-wise communication. Hence, there is no need for a ma-

jority quorum to be available and simultaneously connected at any single time. The protocols increase

availability by using voting, rather than primary-copy or primary-commit schemes. Finally, the use of

per-object currencies allows voting to take place in an entirely decentralized fashion, without any

server having complete knowledge of group membership.

We show that currency allocation can be used to implement diverse policies. For example, uniform

currency distributions emulate traditional voting schemes, while allocating all currency to a single

server emulates a primary-copy scheme. We present simulation results showing both schemes, as well

as the performance advantages of using currency proxies to temporarily reallocate currency during

planned disconnections. Furthermore we discuss an initial design of the underlying replicated-object

system and present a basic API.

1. Introduction
We describe the use of currency-based epidemic algorithms in improving the performance of replication proto-

cols in weakly-connected and mobile environments. Our algorithm description will be presented in the context

of Deno [13], a replicated-object system intended for use with mobile and or weakly-connected hosts. Deno is

designed to support a wide variety of applications ranging from simple shared calendars to domain-specific da-

tabases. More specifically, Deno’s target application domain includes all types of asynchronous collaborative

applications, including groupware (e.g., Lotus Notes [12]), mail and bibliographic databases, document editing,

CAD, and program development environments for disconnected workgroups.

We assume a system that consists of a series of peer shared-object servers, each capable of caching repli-

cas of any object in the system. The protocols discussed in this work assume peer servers with no designated

primary copy [22] for any object. By default, all replicas of a given object are equally able to create new updates

for the object, and to have them committed.

2

Replicas are useful for many reasons, including efficiency, availability, and fault tolerance. Replicas in-

crease efficiency by allowing a local rather than a remote copy to be accessed, much in the same way that ac-

cessing a processor’s memory cache is much faster than accessing memory over the computer’s I/O bus. Repli-

cas improve availability by making it possible for applications to make progress even when one or more replicas

become temporarily unavailable. Fault tolerance is achieved by ensuring that object data is kept consistent. Loss

of any one replica does not result in committed updates being lost if other replicas have copies of the same up-

dates.

The problem with replicas is that they must be kept consistent. Consistency is problematic in distributed

systems because updates of multiple sites are generally non-atomic operations. Different sites usually take dif-

fering amounts of time to access, meaning that competing tentative updates may be seen in different orders at

different sites. However, consistency requires that any competing updates to the same shared object be commit-

ted in the same serial order at every replica [4].

A canonical primary-copy scheme [22] orders updates by when they arrive at the primary copy’s server.

This is designated as the only correct order, and updates are required to be applied in this order at every replica.

This approach has two drawbacks. First, the primary copy can become a performance bottleneck for updates to

the object. More importantly in the context of a distributed environment, no updates can be committed, and no

application progress made, without contacting the primary copy. Unavailability of the primary copy brings the

entire system to a halt. Administrators often try to minimize the possibility of this occurrence by ensuring that

the primary copy resides on a trusted server, protected by a firewall and safeguarded by elaborate battery-

backup systems. Any other copy connected to the corporate intranet can communicate with the primary copy.

Unfortunately, progress often needs to be made outside of the corporate boundaries. For example, IBM

sales staff have traditionally been expected to be on the road so much that they did not even have offices. If

salespeople Frank, Joe, and Nancy collectively cover the state of Texas, they might expect to be able to consoli-

date their sales data when they meet in Austin. Off-the-shelf hardware like WaveLAN would allow them to open

their laptops in a conference room and instantly establish a local network between their machines. Unfortu-

nately, even though all interested parties are present, no updates to shared data can be committed if the primary

copy resides in a mainframe in New York. Consider the other alternative: locating the primary copy on one of

their machines, such as Nancy’s. Problems arise if Nancy then heads to California for a regional sales meeting.

Even if Frank and Joe immediately proceed back to New York to update the corporate database, they can not

commit any new data until Nancy returns from California.

This area has been the subject of a great deal of recent interest [1, 2, 10, 15, 20, 25]. Protocols with widely

varying properties have been proposed and implemented in a variety of systems. Many of these systems use a

primary-copy or commit scheme [22], also called a monarchy [3]. This approach relies on a single distinguished

replica to serialize all commits of object updates, effectively holding forward progress in the system hostage to

3

the availability of a single server. One can make the claim that progress is still possible while the primary copy

is disconnected because new updates can be generated, just not committed. Various session control guarantees

[24] allow such tentative updates to be seen by the application or user even before commitment. However, no

progress can be made in such cases for applications that wish only to see committed data, which is probably the

common case.

Voting schemes [2, 7, 11, 18, 26] eliminate the single point of failure by allowing a quorum of all replicas

to commit an update. Quorums are distinct sets that can each commit an update, provided that all replicas of the

quorum agree. Serialization of updates is accomplished by requiring that any two potential quorums must share

at least one replica. Hence, competing updates can not both be committed without first being serialized by the

replicas in the intersection of the quorums that commit them. Voting has been shown to provide optimal avail-

ability when all replicas have the same independent failure probability of less than ½ [19].

This paper has two central contributions. First, we describe how to extend voting schemes through the use

of fixed per-object currencies [23, 27, 28]. We say that the currency is fixed because there is a fixed amount of

currency that is divided among all replicas of a single object. The amount of currency held by a given replica is

used as that replica’s weight during voting rounds. Replicas do not necessarily have complete information on the

amount of currency allocated to other replicas, and currency allocation is not static. Nonetheless, updates can be

committed without complete knowledge of the votes of all replicas because the amount of currency remains

fixed during failure-free operations. Currencies therefore allow votes to take place in a decentralized fashion,

without any server having complete knowledge of group membership. Furthermore, currencies allow the behav-

ior of the protocol to be fine-tuned to match expected system and application behavior. For example, appropriate

currency allocation can cause the protocol’s behavior to approximate that of a primary-copy system.

Second, we use these currencies to allow voting to take place asynchronously through a pair-wise epi-

demic protocol. Our currency-based epidemic protocol can make progress and eventually commit object updates

even if there is never a majority of replicas connected to each other simultaneously. Epidemic protocols [6, 21,

22] are appropriate for situations in which all replicas need to eventually be made consistent, and where discon-

nections are frequent.

The rest of the paper is organized as follows. Section 2 describes the epidemic weighted-voting scheme

used by Deno in detail. Section 3 discusses some important implementation-level issues such as currency alloca-

tion, planned disconnections, and anti-entropy mechanisms. Section 4 provides simulation results showing that

currency allocation can be used to implement diverse policies. For example, uniform currency distributions

emulate traditional voting schemes, while allocating all currency to a single server emulates a primary-copy

scheme. Section 5 presents an initial design of Deno along with its basic API and Section 6 briefly discusses

related work. Finally, Section 7 concludes the paper with directions for future research.

4

2. Theory
We assume a model in which the shared state consists of a set of objects that are replicated across multiple serv-

ers. Objects do not need to be replicated at all servers (i.e., selective replication is allowed), and servers may

replicate multiple objects. For simplicity of presentation, however, we limit our discussion to single objects that

are cached at all servers. Our discussion is easily extended to include the more general case.

Objects are modified by updates, which are issued by servers. An update consists of either a code fragment

or a run-length encoding of binary changes. Updates can be transmitted to other servers and are assumed to exe-

cute atomically at remote sites. Given a consistent initial state, application of the same updates in the same order

on multiple replicas of the same object result in the same final object state.

Updates do not commit globally in one atomic phase because we assume epidemic information flow and

poor connectivity. Instead, each server commits updates based on local information. However, we show below

that any update that commits at any server eventually commits everywhere, and in the same order with respect

to other committed updates.

2.1 Elections
A clean way of thinking about update commitment is as a series of elections. A server is analogous to a voter,

creating an update is analogous to a voter deciding to run for office, and a committed update is analogous to a

candidate winning the election. Voters (and hence candidates) have indexes 0 through n-1, where n is the total

number of voters. We use vi to refer to the voter with index i, and ci to refer to the candidate with index i. Candi-

dates win elections by cornering a plurality of the votes. Each election begins with an underlying agreement of

the winners of all previous elections. Once an election is over, a new election commences. Any given election

may have multiple candidates (logically concurrent tentative updates), and candidates from different elections

might be alive in the system at the same time. In the latter case, however, uncommitted candidates for any but

the most recent election have already lost, but this information has not yet made it to all voters.

Because of the style of information flow, there is no centralized vote-counting. Instead, each voter inde-

pendently collects votes from other voters and deduces outcomes. This method creates situations in which the

current election of distinct servers is temporarily out of sync. Voter vi’s current election is the election for which

vi is collecting votes. In order to implement this protocol, each voter maintains three pieces of state:

1. vi.completed – the number of elections completed locally.

2. vi.[j] – is either the index of the candidate voted for by vj in vi’s current election, or ⊥ , which means

that vi has not yet seen a vote from vj. The size of the array is bounded by the total number of voters.

3. vi.curr [j] – The amount of currency voted by vj in vi’s current election or ⊥ , which means that vi has

not yet seen a vote from vj.

5

Note that although total amount of currency in any election is 1.0, the allocation of this currency may change

with each election.

Figure 1 presents some important definitions used in this section. Definition 3 essentially says that a can-

didate wins with a voter if it has a majority or plurality of the vote. Ties are broken with a simple deterministic

comparison between the indexes of the servers that created the competing updates. The winner of the jth vote at

vi is denoted vi.commit(j). When an election is won at vi, all votes vi[j] are reset to ⊥ .

It follows naturally from the above definitions that candidates can win without all the votes being known.

Similarly, updates can be committed by a server without complete knowledge of which servers have seen the

update, or even complete knowledge of which servers cache the object.

2.2 Anti-entropy
Election information flows from voter to voter through anti-entropy sessions. In terms of elections, an anti-

entropy session is a uni-directional flow of information specifying elections that have been won, and votes in the

current election. Figure 2 describes the steps to be executed (as a single atomic unit) during an anti-entropy ses-

sion from vi to vj.

Rule 1 states that if vi is aware of the outcome of more elections than vj, vj accepts these results as a given, with-

out waiting to find out the specific votes that caused these outcomes to occur. Rule 2 says that if both voters are

holding the same election, then vj will copy all of the votes known to vi that it does not yet know itself. Rule 3

says that if vj has not yet voted, it will vote the same as vi. In both of these last two rules, the vote being copied

may be ⊥ . However, as this value only overwrites ⊥ , no consistency problems occur.

Definition 1: Define uncommitted(vi) as: ∑
=

n

j
i jcurrv

1

][. , s.t. vi[j] is equal to ⊥ .

Definition 2: Define votes(vi, k) as ∑
=

n

j
i jcurrv

1

][. , s.t. vi[j] is equal to k.

Definition 3: A candidate cj wins vi’s current election when:

1. votes(vi, j) > 0.5, or // cj gathers majority of votes
2. ∀ k ≠ j, votes(vi, k) + uncommitted(vi) < votes(vi, j) or // cj gathers plurality of votes

 ((votes(vi, k) + uncommitted(vi)) = votes(vi, j) and (j < k)) // tie-break case

Figure 1: Definitions

6

2.3 Becoming a Candidate
Voters may become candidates (i.e., new updates may be created) in any election at any time, provided that:

1. the election has not been decided for that voter yet, and

2. the voter has not yet voted in the election (i.e., vi[i]=⊥).

Becoming a candidate merely consists of setting vi[i] to i.

2.4 Correctness
Given the above definitions, we can show that distinct voters arrive at the same election results.

Theorem 1: After all elections have been completed by all voters:

∀ i,j,k: vi.commit(k) = vj.commit(k).

Sketch of Proof: For reasons of brevity, we present only a proof outline. The proof proceeds along the follow-

ing lines. Restrict the discussion to a single election. If vi[j] = k, for any i,j,and k, then vl[j] will be either k or ⊥

for all other voters l. Assume vi commits update k. Let S be the set of servers that vi records voting for k. For all

servers l, vl[j] must be either k or ⊥ , for all j in S. Therefore, the currency represented by these servers either has

to be recorded as voting for x or as uncommitted. In either case, this amount of currency prevents Definition 3 in

Figure 1 from allowing any other update to be committed. Therefore, all servers must eventually deduce the

same outcome, or be told of the common outcome by other voters (Step 1 in Figure 2), and will come to the

same conclusions.

2.5 Commutativity Tables
Most databases, Deno included, expect a single ordering of all updates to a single object. However, Deno will

also allow application-specific functions to modify the system’s consistency requirements. The first way in

which Deno will allow consistency to be relaxed is through commutativity tables. Operations in typical database

systems are not commutable, but many operations in collaborative and groupware applications are. We can take

advantage of this by allowing applications to define operation templates, lacking only the instantiation of the

1. If vi.completed > vj.completed, then vj.completed ← vi.completed and ∀ k, vj[k] ← ⊥ , and:

)(.)(.

.

1.
kcommitivkcommitjv

commitiv

commitjvk
←

+=
∀ .

2. If vj.completed = vi.completed, then ∀ k s.t. vj[k] = ⊥ , vj[k] ← vi[k].

3. If vj[j] = ⊥ , then vj[j] ← vi[i].

Figure 2: Steps to be executed during an anti-entropy session

7

template parameters. Applications can then record information on which operations are commutative through

two-dimensional grids called commutativity tables, which indicate commutability for each possible pair of op-

eration types.

As an example, consider a scalar object representing the balance of a checking account, shown at the right

in Table 1 in which the marked entries identify the operation pairs that commute. Simple credits and debits can

be executed in any order without changing the final balance. However, calculating and crediting the account for

earned interest based on the current balance does not commute with respect to credits and debits.

Operation templates must be defined in advance in order to be included in the tables. However, the data

used by these operations need not be static. For example, the specific amounts credited or debited to an account

in Table 1 are irrelevant1. Moreover, all operations do not need to be defined in advance. By default, Deno as-

sumes that operations not defined in advance are not commutative with respect to any other operation.

More specifically, we can think of each update being generated in a given context, where a context is the

current election number of a given object. Without commutativity tables, all except the winning update created

during in a given context are aborted. With commutativity tables, all losing updates are compared against the

winning update to check for commutativity, and the commutative updates are reborn in the next election. As

commutativity tables are created at object creation time, this process can be repeated deterministically at each

server.

We can generalize the commutativity table into general-purpose commutativity procedures in order to ex-

ploit more sophisticated inter-relationships. An update-specific commutativity procedure can be supplied with

each update. Analogously to the above, each losing update with a commutativity procedure has the procedure

run against the contents of all local data objects after the winning update has been applied. Allowing all objects

to be inspected opens the possibility of the procedures returning different results at different sites. This does not

affect correctness, but can be difficult to reason with. As an optimization, procedures can be limited to inspect-

ing only the current object.

3. Practice
This section discusses our approach to issues that will arise when implementing this protocol in a real system.

The first issue is whether or not to let applications see uncommitted updates. Newly created updates are tenta-

1 Ignoring error conditions for the moment. It is certainly possible that processing all debits before credits might result in a bank shutting
down an account unnecessarily.

 Credits Debits Interest

Credits x x

Debits x x

Interest x

Table 1: Commutativity Table

8

tive, and may be rolled back without ever being committed. Tentative updates may or may not be visible to the

application, depending on the type of session guarantees needed by the application. Updates are committed when

servers holding a plurality of the object’s currency agree that they are acceptable.

Consider Figure 3(a). Objects x and y are replicated at sites v1 through v4. Each site has currency of 0.25 for

both objects. Server v1 creates a tentative update to x at time t0. At time t1, v1 sends information to v2, and at time

t2, v2 sends to v3. At this point, three of the four replicas know of the tentative update and have ordered it before

any other tentative updates to x. These replicas can commit u1,1 because they control 75% of the object x’s cur-

rency. However, only v3 knows this. Not knowing of the first election’s outcome, v4 naively creates a new up-

date, u4,1 at time t3. This update will be aborted at t4 when v4 learns that a quorum has already determined that

u1,1 should be committed.

Figure 3(b) shows an example of two competing updates being started at time t5. Each synchronizes with

one other replica at t6, leading to a potential stalemate in which each competing update has 50% of the currency.

While currency allocation schemes could be rigged to prevent this from occurring in the case of two competing

updates, three or more competing updates could still lead to the same problem. The lexicographic tie-breaker

will favor u1,2 over u4,2.

v1 v2 v3 v4

u1,1(x)t0

t1

u1,2(y) u4,2(y)

t2

??

t3

t4

t5

(a)

(b) t6

x=0.25, y=0.25 x=0.25, y=0.25 x=0.25, y=0.25 x=0.25, y=0.25

u4,1(x)

t7

Figure 3: Four replicas each of objects x and y. ui,j is the update created by vi in election

j. Currency is divided evenly for both replicas. (a) shows the progress of update u1,1 from

v1. The update is committed because a majority of the object’s currency “sees” it before

any competing update. (b) shows two competing updates to y. At time t6, both u1,2 and u4,2

have been seen by replicas with a combined currency of 0.50.

9

3.1 Voting
Deno’s replication protocol makes few assumptions on the completeness of available replica information. For

example, Deno propagates updates to shared objects in the absence of knowledge of the complete set of replicas,

or even of a primary copy that has pointers to all extent replicas. This problem, and many others, is greatly com-

plicated by the peer-to-peer communication. This communication pattern results in data moving slowly through

the system, one step at a time.

Objects are initially created with a total currency of 1.0, which is held by the creating server. New replicas

are created by sending requests to servers that have existing replicas. The response to such requests contains

both the object's data and some amount of currency. This amount is subtracted from the currency held by the

existing replica. The total amount of currency in the system remains constant during failure-free operation.

Going back to the example discussed in Section 1, assume that each replica has an equal amount of cur-

rency. Any three replicas control 75% of the currency, and can conclude that no other set of replicas is concur-

rently committing updates to the same object. Hence, they can commit updates and application progress can be

achieved.

Progress is achieved in the above examples because one set of replicas had more than half of the currency.

What happens if two disjoint sets of replicas each have exactly half of the currency? More generally, consider

the case where multiple tentative updates each gain currency support of less than 50%, but all currency is con-

sumed.

We handle conflicts by generalizing the quorum-voting scheme to commit updates that fail to achieve a

majority. An update can be committed if no other update can garner more currency, and the update is chosen by

the tie-breaking procedure. Deno breaks ties through a lexicographic comparison between the server ID’s of the

servers that created the updates. This procedure does not require the participation of all replicas, but it does re-

quire that the amount of unaccounted-for currency not be enough to change the update chosen to be committed.

Conflicting updates can therefore slow the process of committing updates because more complete information is

needed.

It is also worth noting that the primary copy and voting approaches to update commitment are not neces-

sarily mutually exclusive. Currencies can be allocated in ways that prefer quorums containing specific replicas,

or more than half of the currency can be retained by a given replica. The latter situation reduces to a primary

copy scheme.

3.2 Currency Allocation
Timely update commitment depends on being able to assemble a quorum to vote on updates. The cost of assem-

bling a quorum is highly dependent on the availability and currency distribution of the object replicas. There are

a number of different strategies that could be pursued in currency allocation. The best choice can depend on ap-

10

plication semantics, expected availability of individual servers, and network topology. A peer-to-peer applica-

tion might work best with currency evenly distributed among the replicas, while a client-server application

might work better if any one client and the server together constitute a quorum. Note that a uniform distribution

of currency is not necessarily easy to achieve unless the number of replicas is known. Even if the number of rep-

licas is known a priori, poor distributions can result when replicas are created by other than the first replica. The

problem is that currency is split between any new replica and the replica that created it. Unless the existing rep-

lica has twice the eventually desired average currency, both will have only half the desired values.

Deno applications can direct currency allocation by providing a hint at object creation as to how many rep-

licas are expected to be created. This hint allows Deno to allocate currency to replica requests in a way that pro-

vides a uniform level of currency for the expected number of replicas. For this to work, new replicas must be

created from the original replica. If initial allocations are not ideal, Deno servers can perform peer-to-peer cur-

rency exchanges to incrementally improve existing currency distributions.

3.3 Proxies
Proxies are often used to represent unavailable devices in distributed systems. A primary can engage a proxy to

vote in its place in commit quorums. The use of proxies can prevent degradation in the overall commit rate when

devices have expected, planned-for disconnections. In fact, proxies can even improve commit latency because

currency is concentrated in fewer servers, and fewer rounds of communication are required to establish a quo-

rum. An example where proxies would be useful is when a laptop is taken on a trip where no other servers will

be available. The laptop’s currency can be transferred to a desktop machine for the trip’s duration.

There are two obvious approaches to including proxies in currency-based replication protocols. The first is

to explicitly transfer currency to the proxy. The proxy’s weight in subsequent votes temporarily increases to en-

compass both its own currency and that of the proxy’s primary. One drawback is that proxies become visible to

all servers. Problems can arise from race conditions between the information about a proxy being engaged or

disengaged, and tentative updates.

A less intrusive approach is to have the proxy tell other servers that the primary’s vote is the same as it’s

own while the proxy is engaged. A proxy vote is then indistinguishable to other servers from the situation where

a server votes and then disconnects. When a primary reconnects, it updates its own information to match that of

the proxy, including votes on prior and current tentative updates. The primary treats any votes cast in its behalf

as if they had been cast directly. In particular, any votes cast for tentative updates remain cast. The result is that

there are no race conditions, and the entire proxy engagement is transparent to the rest of the system.

Proxies whose primaries fail can permanently vote the primary’s currency. The advantage of this approach

is that even the failure is transparent to the other servers. The orphaned data structures will continue to collect in

11

long-running computations as more servers fail. A garbage-collection mechanism could periodically reclaim

data structures pertaining to failed servers.

The default behavior can be used to deal with proxies that fail. Consider a primary that reconnects, only to

find that its proxy has failed. If a failure update for the proxy has been committed, but no such update has been

committed for primary, the primary can immediately resume voting without further mechanism. If failure up-

dates have been committed for both, the normal mechanism for reconstituting failed servers is used.

3.4 Failure Detection and Handling
In this section, we present an overview of the failure detection and handling protocol used by Deno. The details

of the protocol are beyond the scope of this paper and will appear elsewhere.

Failure detection in the domain of mobile applications is difficult because servers may be out of contact ei-

ther temporarily or permanently. Simple timeouts are not workable in the domain of mobile computing because

disconnection is the rule rather than the exception. Disconnections are not only potentially frequent, but might

also be quite lengthy. A second approach is to count the updates that commit without a vote from the server in

question. Note that votes will be seen from disconnected servers with proxies, so this method will only identify

servers that disconnected or failed unexpectedly.

Servers can individually detect failures and remove failed servers from their tables. However, currency is

lost when servers fail without designating proxies. Loss of this currency can either slow or completely prevent

updates from being committed. The protocol can compensate for lost replicas via proxy elections.

The main idea is to collectively elect a server to act as a proxy for the failed server(s). Proxy elections are

performed similarly to coordinator election protocols widely used by many distributed protocols [4]. After de-

tecting a failure, a server initiates a proxy election update that indicates the server’s intention to become the

proxy for the failed server. As with other changes to objects, a proxy election update is a special type of opera-

tion on an object. The election update, therefore, must be committed before it can take effect. Deno treats all

updates, including proxy election updates, uniformly and uses its voting scheme to commit them. One implica-

tion is that a proxy election can occur if a majority of the current currency is available. Such a restriction is nec-

essary to prevent parallel proxy elections in multiple partitions after a network failure. When a failed server re-

joins the computation and learns about the proxy election, the server resets its currency to zero. The server may

then request its currency back from its currency or obtain currency from other servers through peer-to-peer cur-

rency exchanges.

3.5 Anti-entropy Mechanisms
The pair-wise communication between servers in epidemic protocols is called anti-entropy because each such

session reduces differences between servers, thereby decreasing total entropy. A Deno anti-entropy session con-

sists of one server, s1, picking a second server, s2 to pull information from. The selections of s2 will initially be

12

made at random among other servers known to s1. However, this choice could be skewed according to some

scheme that eliminates redundancy in highly-available environments. A server votes for the first update for an

object that it “sees” after the last was committed.

The initiating server pulls information from the responding server. This is in contrast to a server pushing

information to another server. Pushing information is inexpensive, and allows a number of non-traditional

transmission mediums, such as floppies, email, or satellite transmission.

However, pulling information allows the initiating server to summarize its state to the responding server.

This summary allows the responding server to respond with only new information. By contrast, push transmis-

sions have to be conservative about underlying assumptions of the data that has been seen by the destination.

Without any knowledge of the destination, the initiator of a push would have to send all updates in order to en-

sure that any of the information can be used. Consider the alternative. If the initiator of a push transfer knows of

20 updates to object x and assumes that the destination must know of at least 10 of the updates, it will only

transmit updates 11 through 20. However, if the destination had only seen the first 9 updates, it can not use any

of the later updates because updates must be applied in order. The result is that push transfers tend to be conser-

vative, and result in wasted resources.

Another advantage of pull transfers is that tend to commit updates more quickly than push transfers [6].

Let pi be the probability that a server has not seen a new update after the ith interval after the creation. Then the

probability that the server has not seen the update after the i+1th iteration is just:

2
1 ii pp =+

which converges rapidly. The corresponding recurrence for pushes is:

)1(
)

1
1(1

ipn

n
pp ii

−−=+

This second recurrence converges (commits updates) more slowly than the first. Deno supports push transfers as

well as pull, but uses pulls by default.

Note also that servers can transparently gift other servers with currency, allowing the system to stabilize in

a state with uniform currency distribution regardless of the initial configuration. However, care must be taken to

ensure that knowledge about the currency transaction moves with at least as fast as knowledge of any vote. In

other words, changing currency requires each “vote” to be accompanied by the amount of currency held by the

server when the vote was made. Additionally, care needs to be taken to avoid transferring currency from a server

that has voted on a given update to one that has not.

4. Experimental Study
The primary goal of our protocols will be to improve the ability of the system to make progress during times of

low connectivity. This includes improving read availability, and the ability to commit updates. However, poor

performance and speed at committing could make a system unusable during periods of good connectivity. We

13

built a simple simulator in order to gain an intuitive into the protocol’s behavior in our expected environments.

We simulate a system in which time is broken into uniform intervals. Each server initiates a randomly-directed

anti-entropy session during each interval. The initial metric of interest is commit speed versus the number of

servers.

Figure 4(a) shows a plot of the average number of intervals needed to commit an update versus the number

of servers. We assume uniform distribution of currency and a completely available, fully-connected system. We

show three protocols: “primary” is a simple primary copy scheme with a randomly chosen primary copy, “vot-

ing” is Deno’s default voting scheme, and “voting-2” is this same scheme assuming a reliable underlying com-

munication protocol. Reliable communication allows the responding server to accurately predict when the initi-

ating server will vote for an update based on the responding server’s information. This results in slightly faster

information propagation, but the resulting performance is still short of the primary-copy scheme. This is to be

expected, as a primary-copy scheme can potentially commit updates with much less communication.

However, the time at which the first server commits an update is not necessarily the quantity that best pre-

dicts application performance. Since all servers have an equal chance of being read, a second interesting metric

would be the time at which the last server commits an update. Figure 4(b) shows that the rate at which the

Deno’s protocol commits updates everywhere in the system is virtually identical to that of the primary copy. The

metric of most use to applications probably lies somewhere between the two.

Deno’s currency mechanism allows currency allocation to be used in tuning protocol performance. Figure

5 shows commit costs (first commit) versus the degree to which object currency is skewed towards a single rep-

lica. A skew of 0% results in the default uniform distribution of currency. A skew of 100% emulates a primary-

copy scheme. The plot suggests that a sophisticated replication protocol might benefit from skewing currency

0
2
4
6
8

10
12
14
16
18
20

0 200 400 600 800 1000

voting

voting-2

primary 0

5

10

15

20

25

30

0 200 400 600 800 1000

voting

primary

(a) (b)

Figure 4: Commit rates: (a) shows the average number of intervals needed for the first replica to commit

an update versus the number of replicas for the default voting scheme, voting assuming reliable communica-

tion, and a primary-copy scheme. (b) shows the number of intervals for last replica to commit updates.

14

towards a single copy in times of high connectivity, and from smoothing out the distribution during times of low

connectivity.

Measuring the availability of an epidemic protocol is not necessarily well defined. The availability of a

typical quorum protocol is the percentage of time that a quorum is simultaneously connected and able to com-

municate. However, epidemic protocols do not require any server to be able to talk to more than one other server

in order to make progress. While this implies that availability might be a poor metric, we can capture the affects

of disconnections by looking at its effect on commit rates.

Figure 6 shows plots of commit rates versus the probability that a server will disconnect in any given in-

terval. The commit rates are from 2000-interval runs, with new updates created every 20 intervals if previous

updates have been committed. Disconnection probabilities are assumed to be uniform. We show curves for two

different disconnection durations, and both with and without proxies. Section 3.3 alluded to the fact that the use

of proxies can actually improve performance by effectively concentrating the currency in fewer replicas. This

can be seen in the line for duration 10 with proxies. Proxies dramatically improve commit rates for both dura-

tions.

5. Deno Design
Deno is a library that can be linked directly with application instances, such as bibliographic databases, chat

servers, or collaborative groupware applications. Objects can be of any size, although our current mechanisms

will work best with relatively small numbers of objects. Any process that is linked to a copy of the Deno library

is considered to be a Deno server. However, servers do not replicate all objects. Object replication is only on

demand, and entire databases do not need to be replicated as a unit.

0

2

4

6

8

10

12

14

0% 20% 40% 60% 80% 100%

 1

10

100

1000

0% 20% 40% 60% 80% 100%

10

100

10 (proxy)

100 (proxy)

Figure 5: Commit cost (in intervals) versus per-

centage of currency given to single replica (200

replicas).

Figure 6: Committed updates in 2000 intervals

versus unavailability: The x axis is the probability

that a server will disconnect in any given interval.

15

The overriding goal of the Deno project is to investigate replica consistency protocols. We are therefore

not motivated to build large and complicated interfaces to the object system. By the same token, we feel that

lightweight interfaces are the appropriate choice for many applications, and that more complex services can be

efficiently built on top of Deno services if needed.

The basic Deno API consists of the calls listed in Table 2. These calls allow new servers, objects, and rep-

licas to be created, and replicas to be updated and destroyed. Servers use proxy calls to delegate voting rights

before planned disconnections. Notification calls are used to learn about the termination status of the updates.

The sparse interface avoids burdening applications with unwanted or unneeded abstractions and functionality.

For example, we provide no means of backing up objects to stable storage. Some applications will have no need

for stable storage, while others can provide their own solutions by accessing the objects directly through the ob-

ject pointers. Deno does provide support for transparent fault tolerance via the replication mechanism.

Likewise, our interface does not include any sort of query interface, even over the namespace of local ob-

jects. In other words, there is no way for an application to query a server to list local replicas that are replicated

locally. Such interfaces are not needed for applications that have only a few, statically-defined objects. More

dynamic or complex applications could build directory services on top of Deno’s mechanisms through a well-

known directory object.

Interface Call Semantics

deno_server_create([server name]) Creates server with optional name.

deno_object_create(<name> <initial Obj> [exp. #])
Creates new object. Optional third argument gives the ex-

pected number of eventual replicas.

Obj deno_replica_create(<name> [<server hint>])
Creates local replica of named object. The optional server

hint tells Deno where to look for an existing replica.

deno_object_resize(Obj, int sz) New size for binary Deno object.

int deno_replica_update(<name> <update>)
Updates an object replica. Updates are specified as Tcl

scripts.

deno_replica_proxy(<object name> [<server hint>]) Delegates authority while disconnected.

deno_replica_unproxy(<object name>) Retrieves delegated authority.

deno_replica_delete(<name> [<proxy hint>]) Deletes local replica and transfer currency.

int deno_update_status(<update id>)
Identifies current status of an update. An update can be

committed, aborted, or tentative.

int deno_wait_update(<update id>)
Waits for an update to be terminated (i..e., either commit-

ted or aborted).

Table 2: Basic Deno API

16

We currently expect applications to provide the name of a machine that is running a Deno server with an

existing replica. With name in hand, the new server can talk to a well-known port and obtain object replicas by

calling deno_replica_create(). As an example, consider a chat application based on Deno mechanisms.

The database will consist of a single object, the chat log. The first chat process that starts will create a new log

object. Subsequent chat processes can start up and obtain replicas of the log object by connecting with any exist-

ing server. There are no distinguished servers, any server is capable of creating new objects and providing object

replicas to other servers. As discussed before, there is also no notion of a primary server for any object. Servers

are all peers, differing only in the amount of per-object currency that they hold.

Our initial system will support two types of objects: binary objects and Tcl [16] strings. Binary objects are

arbitrary byte-streams. The Obj structure used by several of the API calls is a union that contains a pointer and

length for binary objects. Calls to deno_replica_update() are made on either side of the actual updates

in order to delimit the update interval to the underlying system. The actual updates consist of simple writes

and/or calls to deno_object_resize(). Modifications to the object are detected through simple byte com-

parisons between before and after versions of the object.

Tcl objects are simple strings, and are not modified directly by the application. Instead, a Tcl code frag-

ment is passed to the deno_replica_update()call. This fragment is atomically applied to the object by

Deno. The deno_object_resize()call is not used for Tcl objects.

A server that plans to disconnect can use the call deno_replica_proxy()to transfer its currency and

voting rights to a proxy server. The optional argument specifies where to look for a proxy. When the server re-

connects, it calls deno_replica_unproxy()in order to regain its currency and voting rights from its

proxy.

The calls deno_update_status()and deno_wait_update()are used by applications to gain in-

formation regarding the termination status of updates. The former call returns the current status of a given up-

date, indicating whether the update is committed, aborted, or still tentative. The latter call blocks the application

till a given update is either committed or aborted. Using these calls and maintaining enough information to back

out of either type of update, Deno can provide any type of session guarantees [24]. By default, however, only

committed values are visible.

6. Related Work
We discuss related systems below. Related work on voting and transaction semantics is referenced in the text

where appropriate.

Coda [14] and Ficus [17] share many of the goals of our work in the more limited domain of distributed

file systems. This choice in domain allows the use of strong assumptions on the relative scarcity of contention.

Additionally, reconciliation can be automated for many types of files. Hence, these systems both use replication

17

that is optimistic in the sense of allowing conflicting transactions to commit. Our work makes stronger consis-

tency guarantees at the expense of committing fewer updates.

Bayou [25] also uses epidemic information flow via anti-entropy sessions. However, Bayou objects are

committed through a primary-copy rather than a voting scheme. Rather than making guarantees that an update

commits only in the context in which it was created, Bayou allows all updates to compete and be committed.

Conflicts are detected through dependency-check procedures (similar to our commutativity procedures) that are

supplied with each update. These procedures are run at each server in order to decide whether an update can be

committed there. Note that these procedures need to be deterministic with respect to the sites that they execute

on, while non-determinism of commutativity procedures only affects the rate at which updates commit, not cor-

rectness.

Dan [5] pointed out several shortcomings of the traditional ACID transactional model [9] when applied to

Internet environments. Primarily, entities are less concerned with the consistency of local databases with respect

to partner databases than they are about ensuring that transactions, including legal obligations, are durably re-

corded. Coyote applications can describe compensating transactions that can be used to recover from transac-

tions that need to be retracted. This approach assumes more optimism than ours. However, a similar approach

could be used to extend Deno’s mechanisms in order to allow more updates to commit, at the cost of the corre-

sponding compensating transactions.

Gray et al. [8] categorized replication protocols along two dimensions: ‘master/group’ object ownership

and ‘lazy/eager’ update propagation. They argued that eager schemes are not suitable for mobile environments

due to frequent disconnections and proposed a two-tier lazy protocol for scalable data replication. Under their

categorization, Deno can be classified as a lazy group protocol since all replicas are peers and updates are

propagated asynchronously. Our pessimistic voting scheme, however, guarantees that conflicting updates are not

committed. Deno, therefore, does not require reconciliation, or suffer from system delusion [8].

We note that recent work [29] has investigated why quorum systems have yet to become widespread in

real-world applications. One of the conclusions is that quorums do not enhance availability because either fail-

ures are positively correlated (when servers are on a single LAN) or network partitions occur (when servers are

distributed across multiple LANs). In the latter case, a quorum constructed on a single LAN has higher

availability than quorums constructed across multiple LANs. However, the weakly-connected environments dis-

cussed in this work fit neither category. Disconnections are likely to be independent, and network partitions,

while possible, are not the dominant cause of unavailability.

7. Conclusions and Future Work
Mobility and weakly-connectivity pose special problems to object replication systems. We have described a new

protocol that uses a combination of voting with fixed currencies and epidemic information flow to allow updates

to commit in such environments. This approach is well-suited to weakly-connected environments specifically

18

because it is highly decentralized. However, this decentralization could make the protocol unwieldy in times of

high connectivity. For example, users of interactive groupware applications are likely to tolerate slow response

times when intermittently connected, but will expect low response times when connected to the corporate back-

bone. This type of behavior can be built on top of the protocol described above by increasing the frequency of

and directing the destinations of the anti-entropy sessions, somewhat similarly to rumor-mongering [6]. We are

currently building the Deno prototype to investigate these and other issues.

8. References
[1] D. Agrawal, A. E. Abbadi, and R. Steinke. Epidemic Algorithms in Replicated Databases. In Proc. of

the Symposium on Principles of Database Systems, Tucson, Arizona, May 1997.

[2] Y. Amir and A. Wool. Evaluating Quorum Systems over the Internet. In Fault-Tolerant Computing

Symposium (FTCS), June 1996.

[3] Y. Amir and A. Wool. Optimal Availability Quorum Systems: Theory and Practice. Information Proc-

essing Letters, vol. 65, pp. 223-228, April 1998.

[4] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database Sys-

tems: Addison-Wesley, 1987.

[5] A. Dan and F. Parr. The Coyote approach for Network Centric Service Applications: Conversational

Service Transactions, a Monitor and an Application Style. In High Performance Transaction Systems

Workshop (HPTS), 1997.

[6] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart, and D.

Terry. Epidemic Algorithms for Replicated Database Maintenance. In Proc. of the Symposium on Prin-

ciples of Distributed Computing, August 1987.

[7] D. K. Gifford. Weighted Voting for Replicated Data. In Proceedings of the ACM Symposium on Operat-

ing Systems Principles, 1979.

[8] J. Gray, P. Helland, P. O'Neil, and D. Shasha. The Dangers of Replications and a Solution. In Proc. of

the ACM SIGMOD Int. Conf. on Management of Data, Montreal, Canada, June 1996.

[9] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques: Morgan Kaufmann, 1992.

[10] M. Herlihy. A Quorum-Consensus Replication Method for Abstract Data Types. ACM Transactions on

Computing Systems, vol. 4, pp. 32-53, February 1986.

[11] S. Jajodia and D. Mutchler. Dynamic Voting Algorithms for Maintaining the Consistency of a Repli-

cated Database. ACM Transactions on Database Systems, vol. 15, pp. 230-280, 1990.

[12] L. Kawell, S. Beckhardt, T. Halvorsen, R. Ozie, and L. Greif. Replicated Document Management in a

Group Communication System. In Proceedings of the 2nd Conference on Computer Supported Coop-

erative Work, 1988.

19

[13] P. J. Keleher. Decentralized Replicated-Object Protocols. In Proc. of the Symposium on Principles of

Distributed Computing, May 1999.

[14] J. J. Kistler and M. Satyanarayanan. Disconnected Operation in the Coda File System. In Proc. of the

ACM Symposium on Operating Systems Principles, October 1991.

[15] E. Y. Lotem, I. Keidar, and D. Dolev. Dynamic Voting for Consistent Primary Components. In 17th

ACM Symposium on Principles of Distributed Computing, June 1997.

[16] J. K. Osterhout. Tcl: An Embeddable Command Language. In USENIX Winter Conf., 1990.

[17] T. W. Page, R. G. Guy, J. S. Heidemann, D. Ratner, P. Reiher, A. Goel, G. H. Kuenning, and G. J.

Popek. Perspectives on Optimistically Replicated Peer-to-Peer Filing. Software--Practice and Experi-

ence, vol. 28, pp. 155-180, February 1998.

[18] J.-F. Pâris and D. Long. Efficient Dynamic Voting Algorithms. In Proc. of the Int. Conf. on Data Engi-

neering, Los Angeles, California, February 1988.

[19] D. Peleg and A. Wool. The availability of quorum systems. Information and Computation, vol. 123, pp.

210-223, 1995.

[20] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and A. J. Demers. Flexible Update Propaga-

tion for Weakly Consistent Replication. In Proc. of the ACM Symposium on Operating System Princi-

ples, Saint-Milo France, October 1997.

[21] M. Rabinovich, N. H. Gehani, and A. Kononov. Scalable Update Propagation in Epidemic Replicated

Databases. In Proc. of the Int.Conf. on Extending Database Technology, Avignon, France, March 1996.

[22] M. Stonebraker. Concurrency Control and Consistency of Multiple Copies of Data in Distributed

INGRES. IEEE Transactions on Software Engineering, vol. 3, pp. 188-194, May 1979.

[23] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell, C. Staelin, and A. Yu. Mariposa: A

Wide-Area Distributed Database System. VLDB Journal, vol. 5, pp. 48-63, 1996.

[24] D. B. Terry, A. J. Demers, K. Petersen, M. Spreitzer, M. Theimer, and B. W. Welch. Session Guaran-

tees for Weakly Consistent Replicated Data. In Int. Conf. on Parallel and Distributed Information Sys-

tems, September 1994.

[25] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer, and C. H. Hauser. Managing

Update Conflicts in a Weakly Connected Replicated Storage System. In Proc. of the ACM Symposium

on Operating Systems Principles, December 1995.

[26] R. H. Thomas. A Majority Consensus Approach to Concurrency Control for Multiple Copy Databases.

ACM Transactions on Database Systems, vol. 4, pp. 180-209, 1979.

[27] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart, and W. S. Stornetta. Spawn: A distributed

Computational Economy. IEEE Transactions on Software Engineering, vol. 18, pp. 103-117, February

1992.

20

[28] C. A. Waldspurger and W. E. Weihl. Lottery Scheduling: Flexible Proportional-Share Resource Man-

agement. In Proceedings of the First Symposium on Operating Systems Design and Implementation,

Monterey, CA, November 1994.

[29] A. Wool. Quorum Systems in Replicated Databases: Science or Fiction? Bulletin of the Technical

Committee on Data Engineering, vol. 21, pp. 3-11, 1998.

Ugur Cetintemel is a Ph.D. candidate at the Computer Science
Department, University of Maryland, College Park. His current research
interests include replication and data dissemination in distributed
systems, and systems performance evaluation. He received B.Sc. and
M.S. degrees in Computer Science from Bilkent University, Turkey in
1994 and 1996, respectively.

Dr. Keleher received a PhD in computer science from Rice University in 1995. He is currently an assistant pro-
fessor in the Computer Science Department at the University of Maryland, College Park. Professor Keleher's
primary interests are in the design and analysis of distributed computing infrastructure, including global re-
source management, distributed shared memory, and communication performance. He is currently leading the
Deno project, an infrastructure for replicated storage in mobile environments, and Active Harmony, a new
framework for global resource management in dynamic, heterogeneous environments. Professor Keleher re-
ceived the National Science Foundation CAREER award in 1996. Member, ACM.

