
Are Virtualized Overlay Networks Too Much of a Good Thing?

Pete Keleher, Bobby Bhattacharjee, Bujor Silaghi
Department of Computer Science

University of Maryland, College Park
keleher@cs.umd.edu

1 Introduction

Peer-to-peer (P2P) networks have recently be-
come one of the hottest topics in OS research [3,
2, 10, 5, 9, 4, 8]. Starting with the explosion of
popularity of Napster, researchers have become
interested because of the unparalleled chance to
do relevant research (people might use it!), and
the brain-dead approach of many of the first P2P
protocols.

The majority of most recent high-profile work
has described middleware that performs a single
task: distributed lookup. This seemingly sim-
ple function can be used as the basic building
block of more complex systems that perform a
variety of sophisticated functions (file systems,
event notification system, etc.).

P2P networks differ from more conventional
infrastructure in that the load (whether CPU cy-
cles or packet routing/forwarding) is distributed
across participating peers. This load should ide-
ally be balanced, as the load is in some sense
the “payment” for participating in the network.
Overloading some peers while letting others off
without performing any work towards the com-
mon good is clearly unfair.

The approach many recent systems [9, 10, 4, 5]
have taken towards ensuring load balance is to
virtualize data item keys by creating the keys
from one-way hashes (SHA-1, etc.) of the item
labels. The peer node ID’s are similarly encoded,
and data items are mapped to “closest” nodes
by comparing keys and hashed node ID’s. We
refer to this as virtualization of the namespace.
By contrast, a “non-virtualized” system is one
where data items are served by the same nodes
that export them.

A virtualized approach helps load balance be-
cause data items from one very hot site will

be served by different nodes; they will be dis-
tributed randomly among participating peers.
Similarly, routing load is distributed because
paths to items exported by the same site are usu-
ally quite different.

Just as importantly, virtualization of the
namespace provides a clean, elegant abstraction
of routing, with provable bounds on routing la-
tency.

The contention of this position paper is that
this virtualization comes at a significant cost, as
described below:

1. Virtualization destroys locality - By virtual-
izing keys, data items from a single site are
not usually co-located, meaning that oppor-
tunities for enhancing browsing, prefetch-
ing, and efficient searching are lost.

2. Virtualization discards useful application-
specific information - The data used by
many applications (file systems, auctions,
resource discovery) is naturally described
using hierarchies. A hierarchy exposes
relationships between items near to each
other in the hierarchy; virtualization of the
namespace discards this information.

The rest of this paper elaborates on these
points and outlines an alternative approach.

To be clear, the environment assumed in this
paper is that of a set of cooperating, widely-
separated peers, running as user-level processes
on ordinary PC’s or workstations. Peers “ex-
port” data, and keys are “mapped” onto overlay
servers. The set of peer nodes that export data
is also the set of overlay servers. A “node” is a
process participating in the system.

1



2 Locality is a Good Thing

The first form of locality with which we are con-
cerned is spatial locality. Users who access di are
more likely to also access di+1 than some arbi-
trary dj. Consider web browsing: a given page
might require many nearby items to be accessed,
and the next page accessed by a user is likely to
be on the same site as well.

Virtualization of this process loses several op-
portunities for performance improvement. First,
the route to the exporting site only has to be dis-
covered once in a non-virtualized system. Subse-
quent accesses to a second data item can follow
the same route. In a virtualized system, there
will likely be nothing in common between the
two routes.

Second, an exporting site (or the access ini-
tiator) might choose to prefetch nearby data in
a non-virtualized system. Prefetching, when it
works, enables the system to hide the latency of
remote accesses. While prefetching can be made
to work with a virtualized namespace, it is much
more difficult. For example, CFS [1], a cooper-
ative file system built on top of Chord [9], can
prefetch file blocks. A peer receiving a request
for block i of a file can prefetch the second by
locally reconstructing the virtualized name for
block i + 1 and sending a prefetch message to
the site serving it. However, each such prefetch
requires a network message. Worse, prefetching
blocks is relatively easy because the name of the
nearby object (block i + 1) is easy to predict.
However, the names of nearby items on the ex-
porting site are not easy to predict, and prefetch-
ing could probably only be accomplished via an
application overlay that indexes exporting sites.

Current approaches also fail to exploit tem-
poral locality as much as they might. None of
Chord, CAN [4], Pastry [5], or Tapestry [10] cur-
rently use caching. Repeated accesses by one site
to the same data item require repeated traversals
through the overlay network. However, caching
could easily be added to these systems, and is
used in some applications built on top of these
systems (e.g., Past [6], CFS). Further, some sys-
tems (most notably Pastry) attempt to exploit
locality in charting a route through the overlay
network’s nodes. The result is that the total IP
hop count may be only a small constant higher

than a native IP message.
Note that there is an implicit assumption of

spatial locality in all of the virtualization work.
Virtualization distributes load well only assum-
ing that the only form of locality present is spa-
tial, not temporal. Stated another way, virtu-
alization can not improve load balance in the
presence of single-item hotspots; it can only dis-
tribute multiple (possibly related) data items
across the network.

By contrast, current systems use replication
both to provide high availability and to dis-
tribute load when single items become hot spots.

3 Searching

Most distributed object stores require some
search capability in order to be used effectively.
We distinguish two types of searching: index-
ing and keyword/attribute searching. “Index-
ing” refers to indexing entire documents, e.g.
Google’s index of the web. Indexing of docu-
ments served by a distributed overlay system re-
quires local indexes to be created, combined, and
then served, presumably through the same over-
lay system, although this could also be done at a
higher level. The difficulty of indexing is not af-
fected by whether the namespace is virtualized;
it is a hard problem for any distributed system.

As an example of attribute searching, assume
that we wish to search for “red cars”, where ’red’
and ’car’ are encoded as attributes of certain
documents. Virtualized namespaces do not en-
code attributes in the overlay structure, so this
search could only be accomplished by visiting ev-
ery node or resorting to some higher-level proto-
col. We discuss how embedding attributes in the
overlay structure of a non-virtualized system al-
lows efficient attribute searching in Section 5.

4 Adding Information Back In

There are two approaches to adding application-
specific information and support for locality back
into a virtualized system: use of higher-level ap-
plication layers, and eliminating virtualization
entirely. We discuss the former here, and one
approach to the latter in the next section.

Support for locality in the query stream can
be added back at higher levels. As an example,

2



both Past and CFS cache data along paths to
highly popular items. The advantage of doing so
at the file system layer rather than the routing
layer is that both location information, and the
file’s data itself, are cached together. If address
caching were performed at the routing level, file
caching would be less effective.

File system prefetching can also be accom-
plished at this level. For example, one could
prefetch the rest of a directory after one file is
accessed by (1) deriving the file’s directory name
from the target file’s name, (2) routing a message
to the directory object, (3) reading the directory
object to get the set of other files in the direc-
tory, and then (4) sending prefetches to each of
those files.

However, not only is this inefficient, but it only
makes use of information about accesses to a sin-
gle file. Consider how a system with a virtual-
ized namespace would support a policy that only
prefetches entire directories if two or more files
of the directory are accessed within a short time.

5 Eschewing Virtualization

Consider the types of applications that are being
built on top of the overlay networks discussed
so far: file systems, event notification systems,
distributed auctions, and cooperative web prox-
ies. All of these applications organize their data
hierarchically, and any locality in these appli-
cations is local in the framework of this hierar-
chy. Browsing the hierarchy is, therefore, the
only way of extracting and exploiting locality.
Yet, this information is discarded by virtualized
namespaces.

Another approach is to encode this hierarchy
directly into the overlay layer. While this paper
is not about TerraDir, we discuss it as an exam-
ple approach that addresses some of the short-
comings discussed above. A TerraDir [8] is a
non-virtualized overlay in the form of a rooted
hierarchy that explicitly codifies the application
hierarchy. By default, routing is performed via
tree traversal, taking O(log(n)) hops in the worst
case1. Availability, load balance, and latency are
all addressed further by caching and replication.
The degree to which a node is replicated is de-
pendent on the node’s level in the tree. This

1Assuming a relatively well-balanced tree.

approach helps load balance and only adds a con-
stant amount of overhead per node, regardless of
the size of the system.

TerraDir provides comparable performance to
the other systems (probably somewhat better
latency because of the caching, probably a bit
worse load distribution), but leaves application
locality and hierarchical information intact.

Locality is retained because a given data item
is mapped to the node that exports it, rather
than to another randomized host. Not only does
this save a level of indirection, but co-located
items are mapped to the same locations, meaning
locality can be recognized and exploited without
network communication. Note that replication
is per-node. All items exported by a node are
replicated together, so any replica can perform
prefetching.

Caching addresses both spatial and temporal
locality. Repeated accesses to the same remote
object are serviced by a local cache if caching of
data is turned on. Otherwise, the cache provides
the network address of the exporting node, lim-
iting routing to a single hop through the overlay
network.

Accesses to items “near” each other in the
application hierarchy are handled efficiently be-
cause they are also near each other, or co-
located, in the overlay network. Hence, the num-
ber of hops in the overlay network are again min-
imized.

Data item keywords are explicitly coded into
the overlay hierarchy, so searching for keywords
is handled efficiently. For example, consider
searching for red cars in the hierarchy shown in
Figure 1. The query would be of the form “/ve-
hicles/cars/red/*”, and would be routed to the
smallest subtree on the left side of the figure.
The wildcard will then cause the query to be split
and to flood that subtree. However, the rest of
the hierarchy, aside from the path from the query
initiator to the “cars/red” subtree, is untouched.
By contrast, searching for “red cars” can only
be accomplished efficiently via some higher-level
service in a virtualized system.

To be fair, note that the query is handled effi-
ciently only because the query structure matches
the hierarchy’s structure. Searching for “any-
thing red” would cause all leaves to be visited.
This problem is addressed by allowing “views”

3



red blue

cars

vehicles

red blue

planes

green pink

boats

Figure 1: An example TerraDir. Searching for
“red cars” is more efficient than searching for
“anything red”.

to be dynamically materialized. A client that
expects to make multiple queries with a differ-
ent structure (e.g. “all red things”, then “all
blue things”, etc.) inserts a view query into the
system. The view queries specifies an ordering
on the set of attributes2, which is used to build
a new overlay hierarchy. Building the new hier-
archy requires the entire tree to be visited once;
subsequent queries will be handled efficiently.

The TerraDir approach has at least two other
important advantages. First, maintenance over-
head is significantly less. The virtualized ap-
proaches generally require log(n) operations to
allow a node to leave or join the overlay, whereas
these operations require only a constant number
of operations under TerraDir.

Finally, TerraDir nodes “maps” the key of a
node back to that same node, meaning that the
data item and its mapping are not distributed
across administrative boundaries.

6 Summary

Distributed lookup services using virtualized
namespaces can be important building blocks for
building sophisticated P2P applications. Names-
pace virtualization provides load balance and
tight bounds on latency at low cost.

In doing so, however, it discards potentially
useful information (application hierarchies) and
relationships (proximity within the hierarchy).
This is not always a problem: certain types
of functionality are more efficiently provided at
higher layers (this is merely the end-to-end argu-
ment [7]). However, many applications can ben-

2View queries can also name tag functions, which can
be seen as dynamic attributes synthesized from the static
attributes.

efit from increased functionality in the lookup
layer.

We advocate encoding application hierarchies
directly into the structure of the overlay network.
This approach allows systems to exploit locality
between objects and to provide searching with-
out centralized indexing or flooding.

References

[1] Frank Dabek, M. Frans Kaashoek, David
Karger, Robert Morris, and Ion Stoica.
Wide-area cooperative storage with CFS. In
Proceedings of the 18th ACM Symposium on
Operating Systems Principles (SOSP ’01),
Chateau Lake Louise, Banff, Canada, Octo-
ber 2001.

[2] John Kubiatowicz, David Bindel, Yan
Chen, Steven Czerwinski, Patrick Eaton,
Dennis Geels, Ramakrishna Gummadi,
Sean Rhea, Hakim Weatherspoon, West-
ley Weimer, Chris Wells, and Ben Zhao.
Oceanstore: An Architecture for Global-
Scale Persistent Storage. In Proceedings of
the Ninth International Conference on Ar-
chitectural Support for Programming Lan-
guages and Operating Systems (ASPLOS
2000), 2000.

[3] Karin Petersen, Mike Spreitzer, Douglas B.
Terry, Marvin Theimer, and Alan J. De-
mers. Flexible update propagation for
weakly consistent replication. In Sym-
posium on Operating Systems Principles,
pages 288–301, 1997.

[4] Sylvia Ratnasamy, Paul Francis, Mark Han-
dley, Richard Karp, and Scott Shenker. A
scalable content addressable network. In In
Proceedings of the ACM SIGCOMM 2001
Technical Conference, 2001.

[5] Antony Rowstron and Peter Druschel. Pas-
try: Scalable, distributed object loca-
tion and routing for large-scale peer-to-
peer systems. In Proceedings of the 18th
IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware
2001), 2001.

4



[6] Antony Rowstron and Peter Druschel. Stor-
age management and caching in PAST, a
large-scale, persistent peer-to-peer storage
utility. In Proceedings of the 18th ACM
Symposium on Operating Systems Princi-
ples (SOSP’01), 2001.

[7] Jerome H. Saltzer, David P. Reed, and
David D. Clark. End-to-end arguments
in system design. Computer Systems,
2(4):277–288, 1984.

[8] Bujor Silaghi, Samrat Bhattacharjee, and
Pete Keleher. Query routing in the terradir
distributed directory. Submitted for publica-
tion, 2001.

[9] Ion Stoica, Robert Morris, David Karger,
M. Frans Kaashoek, and Hari Balakrishnan.
Chord: A scalable peer-to-peer lookup ser-
vice for internet applications. In Proceed-
ings of the ACM SIGCOMM ’01 Confer-
ence, San Diego, California, August 2001.

[10] B. Zhao, K. Kubiatowicz, and A. Joseph.
Tapestry: An infrastructure for fault-
resilient wide-area location and routing.
Technical Report UCB//CSD-01-1141, Uni-
versity of California at Berkeley Technical
Report, 2001.

5


