
Decentralized Replicated-Object Protocols
Peter J. Keleher
University of Maryland

College Park, MD 20742

keleher@cs.umd.edu

ABSTRACT

We describe a new replicated-object protocol designed for use in
mobile and weakly-connected environments. The protocol differs
from previous protocols in combining epidemic information
propagation with voting, and in using fixed per-object currencies
for voting. The advantage of epidemic protocols is that data
movement only requires pairwise communication. Hence, there is
no need for a majority quorum to be available and simultaneously
connected at any single time. The protocols increase availability
by using voting, rather than primary copy or primary commit
schemes. Finally, the use of per-object voting currencies allows
votes to take place in an entirely decentralized fashion, without
any server having complete knowledge of group membership.
We show that currency allocation can be used to implement
diverse policies. For example, uniform currency distributions
emulate traditional dynamic voting schemes, while allocating all
currency to a single server emulates a primary-copy scheme. We
present simulation results showing both schemes, as well as the
performance advantages of using currency proxies to temporarily
reallocate currency during planned disconnections.
Keywords

Guides, instructions, authors kit, conference publications.

1. INTRODUCTION
We describe the use of currency-based epidemic algorithms in
improving the performance of replication protocols in weakly-
connected and mobile environments. Our algorithm description
will be presented in the context of Deno, a replicated-object
system intended for use with mobile and or weakly-connected
hosts. We assume a system that consists of a series of peer shared-
object servers, each capable of caching replicas of any object in
the system. The protocols discussed in this work assume peer
servers with no designated primary copy [16] for any object. By
default, all replicas of a given object are equally able to create
new updates for the object, and to have them committed.

Replicas are useful for many reasons, including efficiency,
availability, and fault tolerance. Replicas increase efficiency by
allowing a local rather than a remote copy to be accessed, much in
the same way that accessing a processor’s memory cache is much
faster than accessing memory over the computer’s I/O bus.
Replicas improve availability by making it possible for
applications to make progress even when one or more replicas
become temporarily unavailable. Fault tolerance is achieved by
ensuring that object data is kept consistent. Loss of any one
replica does not result in committed updates being lost if other
replicas have copies of the same updates.

The problem with replicas is that they must be kept consistent.
Consistency is problematic in distributed systems because updates
of multiple sites are generally non-atomic operations. Different

sites usually take differing amounts of time to access, meaning
that competing tentative updates may be seen in different orders at
different updates sites. However, consistency requires that any
competing updates to the same shared object be committed in the
same serial order at every replica.

A canonical primary-copy scheme orders updates by when they
arrive at the primary copy’s server. This is designated as the only
correct order, and updates are required to be applied in this order
at every replica. This approach has two drawbacks. First, the
primary copy can become a performance bottleneck for updates to
the object. More importantly in the context of a distributed
environment, no updates can be committed, and no application
progress made, without contacting the primary copy.
Unavailability of the primary copy brings the entire system to a
halt. Administrators often try to minimize the possibility of this
occurrence by ensuring that the primary copy resides on a trusted
server, protected by a firewall and safeguarded by elaborate
battery-backup systems. Any other copy connected to the
corporate intranet can communicate with the primary copy.

Unfortunately, progress often needs to be made outside of the
corporate boundaries. For example, IBM sales staff have
traditionally been expected to be on the road so much that they
did not even have offices. If salespeople Frank, Joe, and Nancy
collectively cover the state of Texas, they might expect to be able
to consolidate their sales data when they meet in Austin. Off-the-
shelf hardware like WaveLAN would allow them to open their
laptops in a conference room and instantly establish a local
network between their machines. Unfortunately, even though all
interested parties are present, no updates to shared data can be
committed if the primary copy resides in a mainframe in New
York. Consider the other alternative: locating the primary copy on
one of their machines, such as Nancy’s. Problems arise if Nancy
then heads to California for a regional sales meeting. Even if
Frank and Joe immediately proceed back to New York to update
the corporate database, they can not commit any new data until
Nancy returns from California.

This area has been the subject of a great deal of recent interest [1,
7, 11, 14, 20]. Protocols with widely varying properties have been
proposed and implemented in a variety of systems. Many of these
systems use a primary copy or commit scheme, also called a
monarchy [2]. This approach relies on a single distinguished
replica to serialize all commits of object updates, effectively
holding forward progress in the system hostage to the availability
of a single server. One can make the claim that progress is still
possible while the primary copy is disconnected because new
updates can be generated, just not committed. Various session
control guarantees [19] allow such tentative updates to be seen by
the application or user even before commitment. However, no
“progress” can be made in such cases for applications that wish
only to see committed data, which is probably the common case.

In The 18th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC), April 1999.

Dynamic voting schemes [1, 9, 12] eliminate the single point of
failure by allowing a quorum of all replicas to commit an update.
Quorums are distinct sets that can each commit an update,
provided that all replicas of the quorum agree. Serialization of
updates is accomplished by requiring that any two potential
quorums must share at least one replica. Hence, competing
updates can not both be committed without first being serialized
by the replicas in the intersection of the quorums that commit
them. Dynamic linear voting [8] extends the canonical majority
voting schemes with an a priori linear ordering on quorums that
can be used to break ties between equal-sized groups of servers.
Voting has been shown to provide optimal availability when all
processors have the same independent failure probability of less
than ½ [13].

This paper has two central contributions. First, we describe how
to extend voting schemes through the use of fixed per-object
currencies [17, 21, 22]. We say that the currency is fixed because
there is a fixed amount of currency that is divided among all
replicas of a single object. The amount of currency held by a
given replica is used as that replica’s weight during voting rounds.
Replicas do not necessarily have complete information on the
amount of currency allocated to other replicas, and currency
allocation is not static. Nonetheless, updates can be committed
without complete knowledge of the votes of all replicas because
the amount of currency remains fixed during failure-free
operations. Currencies therefore allow votes to take place in a
decentralized fashion, without any server having complete
knowledge of group membership. Furthermore, currencies allow
the behavior of the protocol to be fine-tuned to match expected
system and application behavior. For example, appropriate
currency allocation can cause the protocol’s behavior to
approximate that of a primary-copy or monarchy system.

Second, we use these currencies to allow voting to take place
through a pairwise epidemic protocol. Currency-based epidemic
protocols can make progress and eventually commit object
updates even if there is never a majority of replicas connected to
each other simultaneously. Epidemic protocols [4, 15] are
appropriate for situations in which all replicas need to eventually
be made consistent, and where disconnections are frequent.

In addition to the description of the new protocol, we provide
simulation results showing that currency allocation can be used to
implement diverse policies. For example, uniform currency
distributions emulate traditional dynamic voting schemes, while
allocating all currency to a single server emulates a primary-copy
scheme. We present results showing the rate at which both
schemes commit updates, as well as the performance advantages
of using currency proxies to temporarily reallocate currency
during planned disconnections.

We note that recent work [23] has investigated why quorum
systems have yet to become widespread in real-world
applications. One of the conclusions is that quorums do not
enhance availability because either failures are positively
correlated (when servers are on a single LAN) or network
partitions occur (when servers are distributed across multiple
LANs). In the latter case, a quorum constructed on a single LAN
has higher availability than quorums constructed across multiple
LANs. However, the weakly-connected environments discussed in
this work fit neither category. Failures (disconnections) are likely

to be independent, and partitions, while possible, are not the
dominant cause of unavailability.

2. THEORY
We assume a model in which the shared state consists of a set of
objects that are replicated across multiple servers. Objects do not
need to be replicated at all servers, and servers may replicate
multiple objects. For simplicity of presentation, however, we limit
our discussion to single objects that are cached at all servers. Our
discussion is easily extended to include the more general case.

Objects are modified by updates, which are issued by servers. An
update consists of either a code fragment or a run-length encoding
of binary changes. Updates can be transmitted to other servers and
are assumed to execute atomically at remote sites. Given a
consistent initial state, application of the same updates in the same
order on multiple replicas of the same object result in the same
final object state.

Updates do not commit globally in one atomic phase because we
assume an epidemic style of updates and poor connectivity.
Instead, each server commits updates based on local information.
However, we show below that any update that commits at any
server eventually commits everywhere, and in the same order with
respect to other committed updates.

2.1 Elections
A clean way of thinking about update commitment is as a series of
elections. A server is analogous to a voter, creating an update is
analogous to a voter deciding to run for office, and a committed
update is analogous to a candidate winning the election. Voters
(and hence candidates) have indexes 0 through n-1, where n is the
total number of voters. We use vi to refer to the voter with index i,
and ci to refer to the candidate with index i. Candidates win
elections by cornering a plurality of the votes. Each election
begins with an underlying agreement of the winners of all
previous elections. Once an election is over, a new election
commences. Any given election may have multiple candidates
(logically concurrent tentative updates), and candidates from
different elections might be alive in the system at the same time.
In the latter case, however, uncommitted candidates for any but
the most recent election have already lost, but this information has
not yet made it to all voters.

Because of the style of information flow, there is no centralized
vote-counting. Instead, each voter independently collects votes
from other voters and deduces outcomes. This creates situations in
which the “current” election of distinct servers is temporarily out
of sync. Voter vi’s current election is the election for which vi is
collecting votes. In order to implement this protocol, each voter
maintains three pieces of state:

1. vi.completed – the number of elections completed locally,
and

2. k
iv .[j] – is either the index of the candidate voted for by

vj in vi’s in election k, or ⊥ , which means that vi has not
yet seen a vote from vj. The election is understood to be
vi’s current election if the superscript k is omitted. The
size of the array is bounded by the total number of
voters.

3. vi.curr [j] – The amount of currency voted by vj in vi’s
current election. Currency allocation may change with
each election.

The total amount of currency in any election is 1.0.
Definition 1: Define uncommitted(vi) as:

=

n

j
i jcurrv

1
][. , s.t. vi[j] is equal to ⊥ .

Definition 2: Define votes(vi, k) as:

=

n

j
i jcurrv

1
][. , s.t. vi[j] is equal to k.

Definition 3: A candidate cj wins vi’s current election when:

1. votes(vi, j) > 0.5, or

2. ∀ k ≠ j:
 votes(vi, k) + uncommitted(vi) < votes(vi, j), or
 ((votes(vi, k) + uncommitted(vi)) = votes(vi, j)) and (j < k))
Definition 3 essentially says that a candidate wins with a voter if it
has a majority or plurality of the vote. Ties are broken with a
simple deterministic comparison between the indexes of the
servers that created thee competing updates. The winner of the jth
vote at vi is denoted vi.commit(j). When an election is won at vi,
all votes vi[j] are reset to ⊥ .

It follows naturally from the above definitions that candidates can
win without all the votes being known. Similarly, updates can be
committed by a server without complete knowledge of which
servers have seen the update, or even complete knowledge of
which servers cache the object.

2.2 Anti-entropy
Election information flows from voter to voter through anti-
entropy sessions. In terms of elections, an anti-entropy session is a
uni-directional flow of information specifying elections that have
been won, and votes in the current election. More specifically, an
anti-entropy session from vi to vj causes the following events to
occur as a single atomic unit:

1. If vi.completed > vj.completed, then vj.completed ←
vi.completed and ∀ k, vj[k] ← ⊥ , and:

)(.)(.
.

1.
kcommitivkcommitjv

commitiv

commitjvk
←

+=
∀ .

2. If vj.completed = vi.completed, then

∀ k s.t. vj[k] = ⊥ , vj[k] ← vi[k].

3. If vj[j] = ⊥ , then vj[j] ← vi[i].

The first rule states that if vi is aware of the outcome of more
elections than vj, vj accepts these results as a given, without
waiting to find out the specific votes that caused these outcomes
to occur. The second rule says that if both voters are holding the

same election, then vj will copy all of the votes known to vi that it
does not yet know itself. The final rule says that if vj has not yet
voted, it will vote the same as vi. In both of these last two rules,
the “vote” being copied may be ⊥ . However, as this value only
overwrites ⊥ , no consistency problems occur.

2.3 Becoming a candidate
Voters may become candidates (new updates may be created) in
any election at any time, provided that:

1. the election has not been decided for that voter yet, and

2. the voter has not yet voted in the election.

Becoming a candidate merely consists of setting vi[i] to i.

2.4 Correctness
Given the above definitions, we can show that distinct voters
arrive at the same election results.
Theorem 1: After all elections have been completed by all voters:

∀ i,j,k: vi.commit(k) = vj.commit(k).

Sketch of Proof: The proof proceeds along the following lines.
Restrict the discussion to a single election. If vi.[j] = k, for any
i,j,and k, then vl.[j] will be either k or ⊥ for all other voters l.
Assume vi commits update k. Let S be the set of servers that vi
records voting for k. For all servers l, vl.[j] must be either k or ⊥ ,
for all j in S. Therefore, the currency represented by these servers
either has to be recorded as voting for x or as uncommitted. In
either case, this amount of currency prevents Definition 3 from
allowing any other update to be committed. Therefore, all servers
must eventually deduce the same outcome, or be told of the
common outcome by other voters ((1) in Section 2.2), and will
come to the same conclusions.

3. PRACTICE
This session discusses our approach to issues that will arise when
implementing this protocol in a real system. The first issue is
whether or not to let applications see uncommitted updates.
Newly created updates are tentative, and may be rolled back
without ever being committed. Tentative updates may or may not
be visible to the application, depending on the type of session
guarantees needed by the application. Updates are committed
when servers holding a plurality of the object’s currency agree
that they are acceptable.

Consider Figure 1 (a). Objects x and y are replicated at sites v1
through v4. Each site has currency of 0.25 for both objects. Server
v1 creates a tentative update to x at time t0. At time t1, v1 sends
information to v2, and at time t2, v2 sends to v3. At this point, three
of the four replicas know of the tentative update and have ordered
it before any other tentative updates to x. These replicas can
commit u1,1 because they control 75% of the object x’s currency.
However, only v3 knows this. Not knowing of the first election’s
outcome, v4 naively creates a new update, u4,1 at time t3. This
update will be aborted at t4 when v4 learns that a majority has
already determined that u1,1 should be committed.

Figure 1 (b) shows an example of two competing updates being
started at time t5. Each synchronizes with one other replica at t6,
leading to a potential stalemate in which each competing update
has 50% of the currency. While currency allocation schemes
could be rigged to prevent this from occurring in the case of two
competing updates, three or more competing updates could still
lead to the same problem. The lexicographic tie-breaker will favor
u1,2 over u4,2.

3.1 Voting
Deno’s replication protocol makes few assumptions on the
completeness of available replica information. For example, Deno
propagates updates to shared objects in the absence of knowledge
of the complete set of replicas, or even of a primary copy that has
pointers to all extent replicas. This problem, and many others, is
greatly complicated by the peer-to-peer communication. This
communication pattern results in data moving slowly through the
system, one step at a time.

Objects are initially created with a total currency of 1.0, which is
held by the creating server. New replicas are created by sending
requests to servers that have existing replicas. The response to
such requests contains both the object's data and some amount of
currency. This amount is subtracted from the currency held by the
existing replica. The total amount of currency in the system
remains constant during failure-free operation.

Going back to the example discussed in Section 1, assume that
each replica has an equal amount of currency. Any three replicas
control 75% of the currency, and can conclude that no other set of
replicas is concurrently committing updates to the same object.

Hence, they can commit updates and application progress can be
achieved.

Progress is achieved in the above examples because one set of
replicas had more than half of the currency. What happens if two
disjoint sets of replicas each have exactly half of the currency?
More generally, consider the case where multiple tentative
updates each gain currency support of less than 50%, but all
currency is consumed.

We handle conflicts by generalizing the majority-voting scheme to
commit updates that fail to achieve a majority. An update can be
committed if no other update can garner more currency, and the
update is chosen by the tie-breaking procedure. Deno breaks ties
through a lexicographic comparison between the server ID’s of
the servers that created the updates. This procedure does not
require the participation of all replicas, but it does require that the
amount of unaccounted-for currency not be enough to change the
update chosen to be committed. Conflicting updates can therefore
slow the process of committing updates because more complete
information is needed.

It is also worth noting that the primary copy and voting
approaches to update commitment are not necessarily mutually
exclusive. Currencies can be allocated in ways that prefer
majorities containing specific replicas, or more than half of the
currency can be retained by a given replica. The latter situation
reduces to a primary copy scheme.

3.2 Currency allocation
Timely update commitment depends on being able to assemble a
majority to vote on updates. The cost of assembling a majority is

v1 v2 v3 v4

u1,1(x)t0

t1

u1,2(y) u4,2(y)

t2

??

t3

t4

t5

(a)

(b) t6

x=0.25, y=0.25 x=0.25, y=0.25 x=0.25, y=0.25 x=0.25, y=0.25

u4,1(x)

t7

Figure 1: Four replicas each of objects x and y. ui,j is the update created by vi in election j.
Currency is divided evenly for both replicas. (a) shows the progress of update u1,1 from v1. The
update is committed because a majority of the object’s currency “sees” it before any competing
update. (b) shows two competing updates to y. At time t6, both u1,2 and u4,2 have been seen by
replicas with a combined currency of 0.50.

highly dependent on the availability and currency distribution of
the object replicas. There are a number of different strategies that
could be pursued in currency allocation. The best choice can
depend on application semantics, expected availability of
individual servers, and network topology. A peer-to-peer
application might work best with currency evenly distributed
among the replicas, while a client-server application might work
better if any one client and the server together constitute a
majority. Note that a uniform distribution of currency is not
necessarily easy to achieve unless the number of replicas is
known. Even if the number of replicas is known a priori, poor
distributions can result when replicas are created by other than the
first replica. The problem is that currency is split between any
new replica and the replica that created it. Unless the existing
replica has twice the eventually desired average currency, both
will have only half the desired values.

Deno applications can direct currency allocation by providing a
hint at object creation as to how many replicas are expected to be
created. This hint allows Deno to allocate currency to replica
requests in a way that provides a uniform level of currency for the
expected number of replicas. For this to work, new replicas must
be created from the original replica.

Deno also allows servers to exchange currency in peer-to-peer
changes. Peer-to-peer exchanges can be used to converge
currencies to desired levels from any starting point.

3.3 Proxies
Proxies are often used to represent unavailable devices in
distributed systems. A primary can engage a proxy to vote in its
place in commit majorities. The use of proxies can prevent
degradation in the overall commit rate when devices have
expected, planned-for disconnections. In fact, proxies can even
improve commit latency because currency is concentrated in
fewer servers, and fewer rounds of communication are required to
establish a majority. An example where proxies would be useful is
when a laptop is taken on a trip where no other servers will be
available. The laptop’s currency can be transferred to a desktop
machine for the trip’s duration.

There are two obvious approaches to including proxies in
currency-based replication protocols. The first is to explicitly
transfer currency to the proxy. The proxy’s weight in subsequent
votes temporarily increases to encompass both its own currency
and that of the proxy’s primary. One drawback is that proxies
become visible to all servers. Problems can arise from race
conditions between the information about a proxy being engaged
or disengaged, and tentative updates.

A less intrusive approach is to have the proxy tell other servers
that the primary’s vote is the same as it’s own while the proxy is
engaged. A proxy vote is then indistinguishable to other servers
from the situation where a server votes and then disconnects.
When a primary reconnects, it updates its own information to
match that of the proxy, including votes on prior and current
tentative updates. The primary treats any votes cast in its behalf as
if they had been cast directly. In particular, any votes cast for
tentative updates remain cast. The result is that there are no race
conditions, and the entire proxy engagement is transparent to the
rest of the system.

Proxies whose primaries fail can permanently vote the primary’s
currency. The advantage of this approach is that even the failure is
transparent to the other servers. The orphaned data structures will
continue to collect in long-running computations as more servers
fail. A garbage-collection mechanism could periodically reclaim
data structures pertaining to failed servers.

The default behavior can be used to deal with proxies that fail.
Consider a primary that reconnects, only to find that its proxy has
failed. If a failure update for the proxy has been committed, but no
such update has been committed for primary, the primary can
immediately resume voting without further mechanism. If failure
updates have been committed for both, the normal mechanism for
reconstituting failed servers is used.

3.4 Failure detection and handling
Failure detection in the domain of mobile applications is a
difficult process. Servers may be out of contact either temporarily
or permanently. No action should be taken in the former case, but
action must be taken in the latter case because the currency held
by the server can prevent updates from committing.

Detecting permanent disconnections is the first problem. Simple
timeouts are not workable because disconnection is the rule rather
than the exception. Disconnections are not only potentially
frequently, but might be quite lengthy. A second approach is to
count the updates that commit without a vote from the server in
question. The advantage of this approach is that servers planning
disconnections will designate proxies to vote their currency.
Hence, votes are only not cast by servers that are unexpectedly out
of touch with the rest of the system.

Once a permanent disconnection is detected, action must be taken
to recoup the currency held by the disconnected server. Loss of
this currency can either slow or completely prevent updates from
being committed. The protocol can compensate for failed replicas
by revaluating the currency.

The purpose of revaluation is to redistribute the currency of the
failed server to other servers in the same proportions as the
current currency distribution. A server proposes to revaluate the
currency of an object by issuing a revaluation update.
Revaluation updates compete on an equal basis with other
updates. If committed, each server increments its local currency
by a percentage equal to the failed server’s currency in the last
election. Additionally, any server that exchanged currency with
the failed server subsequently to the last election resets its
currency to the level prior to the exchange.

A “failed” server that rejoins the computation can not have voted
on any election except the one won by the revaluation. Hence, no
votes can be cast by failed server until it learns of the revaluation.
Upon learning of the revaluation, the server resets its current
currency to zero. The server may obtain currency from other
servers through peer-to-peer exchanges (Section 3.2).

As with other changes to objects, a currency revaluation is a
special type of update operation on an object. Revaluations must
be committed before they can take effect. One implication is that
revaluation can only occur if a plurality of the current currency
can be obtained. This is necessary to prevent parallel currency
revaluations in multiple partitions after a network failure.

3.5 Commutativity tables
Most databases, Deno included, expect a single ordering of all
updates to a single object. However, Deno will also allow
application-specific functions to modify the system’s consistency
requirements. The first way in which Deno will allow consistency
to be relaxed is through commutativity tables. Operations in
typical database systems are not commutable, but many operations
in collaborative and groupware applications are. We can take
advantage of this by allowing applications to define operation
templates, lacking only the instantiation of the template
parameters. Applications can then record information on which
operations are commutative through two-dimensional grids called
commutativity tables, which indicate commutability for each
possible pair of operation types.

As an example, consider a scalar object representing the balance
of a checking account, shown in Table 1. Simple credits and
debits can be executed in any order without changing the final
balance. However, calculating and crediting the account for
earned interest based on the current balance does not commute
with respect to credits and debits.

Operation templates must be defined in advance in order to be
included in the tables. However, the data used by these operations
need not be static. For example, the specific amounts credited or
debited to an account in Table 1 are irrelevant1. Moreover, all
operations do not need to be defined in advance. By default, Deno
assumes that operations not defined in advance are not
commutative with respect to any other operation.

More specifically, we can think of each update being generated in
a given context, where a context is the current election number of
a given object. Without commutativity tables, all except the
winning update created during in a given context are aborted.
With commutativity tables, all losing updates are compared
against the winning update to check for commutativity, and the
commutative updates are reborn in the next election. As
commutativity tables are created at object creation time, this
process can be repeated deterministically at each server.

We can generalize the commutativity table into general-purpose
commutativity procedures in order to exploit more sophisticated
inter-relationships. An update-specific commutativity procedure
can be supplied with each update. Analogously to the above, each
losing update with a commutativity procedure has the procedure
run against the contents of all local data objects after the winning
update has been applied. Allowing all objects to be inspected
opens the possibility of the procedures returning different results
at different sites. This does not affect correctness, but can be

1 Ignoring error conditions for the moment. It is certainly possible

that processing all debits before credits might result in a bank
shutting down an account unnecessarily.

difficult to reason with. As an optimization, procedures can be
limited to inspecting only the current object.

3.6 Anti-entropy
The pairwise communication between servers in epidemic
protocols is called anti-entropy because each such session reduces
differences between servers, thereby decreasing total entropy. A
Deno anti-entropy session consists of one server, s1, picking a
second server, s2 to pull information from. The selections of s2
will initially be made at random among other servers known to s1.
However, this choice could be skewed according to some scheme
that eliminates redundancy in highly-available environments. A
server votes for the first update for an object that it “sees” after
the last was committed.

The initiating server pulls information from the responding server.
This is in contrast to a server pushing information to another
server. Pushing information is inexpensive, and allows a number
of non-traditional transmission mediums, such as floppies, email,
or satellite transmission.

However, pulling information allows the initiating server to
summarize its state to the responding server. This summary allows
the responding server to respond with only new information. By
contrast, push transmissions have to be conservative about
underlying assumptions of the data that has been seen by the
destination. Without any knowledge of the destination, the
initiator of a push would have to send all updates in order to
ensure that any of the information can be used. Consider the
alternative. If the initiator of a push transfer knows of 20 updates
to object x and assumes that the destination must know of at least
10 of the updates, it will only transmit updates 11 through 20.
However, if the destination had only seen the first 9 updates, it
can not use any of the later updates because updates must be
applied in order. The result is that push transfers tend to be
conservative, and result in wasted resources.

Another advantage of pull transfers is that tend to commit updates
more quickly than push transfers [4]. Let pi be the probability that
a server has not seen a new update after the ith interval after the
creation. Then the probability that the server has not seen the
update after the i+1th iteration is just:

2
1 ii pp =+

which converges rapidly. The corresponding recurrence for
pushes is:

)1()11(1
ipn

n
pp ii

−−≈+

This second recurrence converges (commits updates) more slowly
than the first. Deno supports push transfers as well as pull, but
uses pulls by default.

Note also that servers can transparently gift other servers with
currency, allowing the system to stabilize in a state with uniform
currency distribution regardless of the initial configuration.
However, care must be taken to ensure that knowledge about the
currency transaction moves with at least as fast as knowledge of
any vote. In other words, changing currency requires each “vote”
to be accompanied by the amount of currency held by the server
when the vote was made. Additionally, care needs to be taken to

 Credits Debits Interest

Credits x x

Debits x x

Interest x
Table 1: Commutativity Table

avoid transferring currency from a server that has voted on a given
update to one that has not.

4. SIMULATION
The primary goal of our protocols will be to improve the ability of
the system to make progress during times of low connectivity.
This includes improving read availability, and the ability to
commit updates. However, poor performance and speed at
committing could make a system unusable during periods of good
connectivity. We built a simple simulator in order to gain an
intuitive into the protocol’s behavior in our expected
environments. We simulate a system in which time is broken into
uniform intervals. Each server initiates a randomly-directed anti-
entropy session during each interval. The initial metric of interest
is commit speed versus the number of servers.

Figure 2 (a) shows a plot of the average number of intervals
needed to commit an update versus the number of servers. We
assume uniform distribution of currency and a completely
available, fully-connected system. We show three protocols:
“primary” is a simple primary copy scheme with a randomly
chosen primary copy, “voting” is Deno’s default voting scheme,
and “voting-2” is this same scheme assuming a reliable underlying
communication protocol. Reliable communication allows the
responding server to accurately predict when the initiating server
will vote for an update based on the responding server’s
information. This results in slightly faster information
propagation, but the resulting performance is still short of the
primary copy scheme. This is to be expected, as a primary-copy
scheme can potentially commit updates with much less
communication.

However, the time at which the first server commits an update is
not necessarily the quantity that best predicts application
performance. Since all servers have an equal chance of being read,
a second interesting metric would be the time at which the last
server commits an update. Figure 2 (b) shows that the rate at
which the Deno’s protocol commits updates everywhere in the
system is virtually identical to that of the primary copy. The
metric of most use to applications probably lies somewhere
between the two.

Deno’s currency mechanism allows currency allocation to be used
in tuning protocol performance. Figure 3 shows commit costs
(first commit) versus the degree to which object currency is
skewed towards a single replica. A skew of 0% results in the
default uniform distribution of currency. A skew of 100%
emulates a primary-copy scheme. The plot suggests that a
sophisticated replication protocol might benefit from skewing
currency towards a single copy in times of high connectivity, and
from smoothing out the distribution during times of low
connectivity.

Measuring the availability of an epidemic protocol is not
necessarily well defined. The availability of a typical quorum
protocol is the percentage of time that a quorum is simultaneously
connected and able to communicate. However, epidemic protocols
do not require any server to be able to talk to more than one other
server in order to make progress. While this implies that
availability might be a poor metric, we can capture the affects of
disconnections by looking at its effect on commit rates.

Figure 4 shows plots of commit rates versus the probability that a
server will disconnect in any given interval. The commit rates are
from 2000-interval runs, with new updates created every 20
intervals if previous updates have been committed. Disconnection
probabilities are assumed to be uniform. We show curves for two
different disconnection durations, and both with and without
proxies. Section 3.3 alluded to the fact that the use of proxies can
actually improve performance by effectively concentrating the
currency in fewer replicas. This can be seen in the line for
duration 10 with proxies. Proxies dramatically improve commit
rates for both durations.

Note that these availability curves assume independent failures,
i.e. no network partitions. One of the main advantages of voting
schemes is that a single network partition can not prevent updates
from being committed. Multiple partitions can be tolerated if they
do not result in a single partition of less than half of the original
replicas, or if the revaluation protocol is run between partitions.

5. Related Work
We discuss related systems below. Related work on voting and
transaction semantics is referenced in the text where appropriate.

0
2
4
6
8

10
12
14
16
18
20

0 200 400 600 800 1000

voting

voting-2

primary 0

5

10

15

20

25

30

0 200 400 600 800 1000

voting
primary

(a) (b)

Figure 2: Commit rates: (a) shows the average number of intervals needed for the first replica to commit an
update versus the number of replicas for the default voting scheme, voting assuming reliable communication,
and a primary-copy scheme. (b) shows the number of intervals for last replica to commit updates.

Bayou [20] also uses epidemic information flow via anti-entropy
sessions. However, Bayou objects are committed through a
primary copy rather than a voting scheme. Rather than making
guarantees that an update commits only in the context in which it
was created, Bayou allows all updates to compete and be
committed. Conflicts are detected through dependency-check
procedures (similar to our commutativity procedures) that are
supplied with each update. These procedures are run at each
server in order to decide whether an update can be committed
there. Note that these procedures need to be deterministic with
respect to the sites that they execute on, while non-determinism of
commutativity procedures only affects the rate at which updates
commit, not correctness.

Coda [10] and Ficus [18] share many of the goals of our work in
the more limited domain of distributed file systems. This choice in
domain allows the use of strong assumptions on the relative
scarcity of contention. Additionally, reconciliation can be
automated for many types of files. Hence, these systems both use
replication that is optimistic in the sense of allowing conflicting
transactions to commit. Our work makes stronger consistency
guarantees at the expense of committing fewer updates.

Dan [3] points out several shortcomings of the traditional ACID
transactional model [6] when applied to Internet environments.
Primarily, entities are less concerned with the consistency of local
databases with respect to partner databases than they are about
ensuring that transactions, including legal obligations, are durably
recorded. Coyote applications can describe compensating
transactions that can be used to recover from transactions that
need to be retracted. This approach assumes more optimism than
ours. However, a similar approach could be used to extend Deno’s
mechanisms in order to allow more updates to commit, at the cost
of the corresponding compensating transactions.

Gray [5] categorizes replication systems along two axis: group
versus master and eager versus lazy. Our system seems to fit into
the lazy group category because updates move slowly, and no
single server ever needs to sign off on any update in order to have
it commit. However, Gray also assumes that lazy systems commit

updates optimistically, relying on subsequent reconciliation
sessions to ensure data consistency. Deno’s protocol does not
commit updates optimistically, so it would have to be classified as
an eager group protocol. However, it does not suffer the problems
with such protocols defined by Gray because information is
allowed to propagate slowly. Moreover, our approach could be
viewed as a generalization of Gray’s two-tier solution because
weights could be rigged to provide the same functionality with
our protocol.

6. CONCLUSIONS AND FUTURE WORK
Weakly-connected environments pose special problems to object
replication systems. We have described a protocol that uses a
combination of voting with fixed currencies and epidemic
information flow to allow updates to commit in such
environments. This approach is well-suited to weakly-connected
environments specifically because it is highly decentralized.
However, this decentralization could make the protocol unwieldy
in times of high connectivity. For example, users of interactive
groupware applications are likely to tolerate slow response times
when intermittently connected, but will expect low response times
when connected to the corporate backbone. This type of behavior
can be built on top of the protocol described above by increasing
the frequency of and directing the destinations of the anti-entropy
sessions, somewhat similarly to rumor-mongering [16].

We are currently building the Deno prototype to investigate these
and other issues.

7. References
[1] Y. Amir and A. Wool, “Evaluating Quorum Systems

over the Internet,” in Fault-Tolerant Computing
Symposium (FTCS), June 1996.

[2] Y. Amir and A. Wool, “Optimal Availability Quorum
Systems: Theory and Practice,” Information Processing
Letters, vol. 65, pp. 223-228, April 1998.

[3] A. Dan, F. Parr, and D. Sitaram, “A Monitor for
Extended Transactions on the Internet,” .

0

2

4

6

8

10

12

14

0% 20% 40% 60% 80% 100%

 1

10

100

1000

0% 20% 40% 60% 80% 100%

10

100

10 (proxy)

100 (proxy)

Figure 3: Commit cost (in intervals) versus percentage
of currency given to single replica (200 replicas).

Figure 4: Committed updates in 2000 intervals versus
unavailability: The x axis is the probability that a server
will disconnect in any given interval.

[4] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S.
Shenker, H. Sturgis, D. Swinehart, and D. Terry,
“Epidemic algorithms for replicated database
maintenance,” in Proceedings of the 6th Symposium on
Principles of Distributed Computing, August 1987.

[5] J. Gray, P. Helland, p. O'Neil, and D. Shasha, “The
Dangers of Replications and a Solution,” in
Proceedings of the 1996 ACM SIGMOD international
conference on Management of data, June 1996.

[6] J. Gray and A. Reuter, “Transaction Processing:
Concepts and Techniques,” , 1992.

[7] M. Herlihy, “A Quorum-Consensus Replication Method
for Abstract Data Types,” in TOCS, February 1986.

[8] S. Jajodia, “Managing Replicated Files in Partitioned
Distributed Database Systems,” in IEEE International
Conference on Data Engineering, 1987.

[9] S. Jajodia and D. Mutchler, “Dynamic Voting
Algorithms for Maintaining the Consistency of a
Replicated Database,” ACM Transactions on Database
Systems, vol. 15, pp. 230-280, 1990.

[10] J. J. Kistler and M. Satyanarayanan, “Disconnected
Operation in the Coda File System,” in Proceedings of
the 13th ACM Symposium on Operating Systems
Principles, October 1991.

[11] E. Y. Lotem, I. Keidar, and D. Dolev, “Dynamic Voting
for Consistent Primary Components,” in 17th ACM
Symposium on Principles of Distributed Computing,
June 1997.

[12] J.-F. Pâris and D. D. E. Long, “Efficient Dynamic
Voting Algorithms,” in Proceedings of the Fourth
International Conference on Data Engineering,
February 1988.

[13] D. Peleg and A. Wool, “The availability of quorum
systems,” Information and Computation, vol. 123, pp.
210-223, 1995.

[14] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M.
Theimer, and A. J. Demers, “Flexible Update
Propagation for Weakly Consistent Replication,” in
16th ACM Symposium on Operating System Principles,
Saint-Milo France, October 1997.

[15] M. Rabinovich, N. H. Gehani, and A. Kononov,
“Scalable Update Propagation in Epidemic Replicated
Databases,” in International Conference on Extending
Database Technology (EDBT), 1996.

[16] M. Stonebraker, “Concurrency control and consistency
of multiple copies of data in distributed INGRESS,”
IEEE Transactions on Software Engineering, vol. SE-5,
pp. 188-194, May 1979.

[17] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A.
Sah, J. Sidell, C. Staelin, and A. Yu, “Mariposa: A
Wide-Area Distributed Database System,” VLDB
Journal, vol. 5, pp. 48-63, 1996.

[18] R. G. G. T. W. Page, J. S. Heidemann, D. Ratner, P.
Reiher, A. Goel, G. H. Kuenning, and G. J. Popek,
“Perspectives on Optimistically Replicated Peer-to-Peer
Filing,” Software--Practice and Experience, vol. 28, pp.
155-180, February 1998.

[19] D. B. Terry, A. J. Demers, K. Petersen, M. Spreitzer, M.
Theimer, and B. W. Welch, “Session Guarantees for
Weakly Consistent Replicated Data,” in 3rd
International Conference on Parallel and Distributed
Information Systems (PDIS 94), September 1994.

[20] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers,
M. J. Spreitzer, and C. H. Hauser, “Managing Update
Conflicts in a Weakly Connected Replicated Storage
System,” in Proceedings of the 15th ACM Symposium
on Operating Systems Principles, December 1995.

[21] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O.
Kephart, and W. S. Stornetta, “Spawn: A distributed
Computational Economy,” IEEE Transactions on
Software Engineering, vol. 18, pp. 103-117, February
1992.

[22] C. A. Waldspurger and W. E. Weihl, “Lottery
Scheduling: Flexible Proportional-Share Resource
Management,” in Proceedings of the First Symposium
on Operating Systems Design and Implementation,
Monterey, CA, November 1994.

[23] A. Wool, “Quorum Systems in Replicated Databases:
Science or Fiction?” Bulletin of the Technical
Committee on Data Engineering, vol. 21, pp. 3-11,
1998.

