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We describe the design and use of the tape mechanism, a new high-level abstraction of accesses to shared 
data for software DSMs. Tapes consolidate and generalize a number of recent protocol optimizations, includ-
ing update-based locks and record-replay barriers. Tapes are usually created by “recording” shared ac-
cesses. The resulting recordings can be used to anticipate future accesses by tailoring data movement to ap-
plication semantics. Tapes-based mechanisms are layered on top of existing shared memory protocols, and 
are largely independent of the underlying memory model. Tapes can also be used to emulate the data-
movement semantics of several update-based protocol implementations, without altering the underlying pro-
tocol implementation. 

We have used tapes to create the Tapeworm synchronization library. Tapeworm implements sophisticated re-
cord/replay mechanisms across barriers, augments locks with data movement semantics, and allows the use 
of producer-consumer segments, which move entire modified segments when any portion of the segment is 
accessed. We show that Tapeworm eliminates 85% of remote misses, reduces message traffic by 63%, and 
improves performance by an average of 29% for our application suite. 

1. Introduction 
This paper describes the concept of tapes [21]: a new 
high-level abstraction that unifies the expression and 
implementation of a number of techniques for im-
proving the performance of software distributed 
shared memory (SDSM) protocols. SDSM protocols 
support the abstraction of shared memory to parallel 
applications running on networks of workstations. 
The SDSM abstraction provides an intuitive pro-
gramming model and allows applications to become 
portable across a broad range of environments. These 
environments can include clusters of inexpensive 
PC’s and workstations, allowing a much better trade-
off between price and performance to be achieved 
than with most hardware-supported shared memory 
machines. While SDSM systems have primarily been 
used as an effective way to obtain cheap cycles, they 
are also useful in integrating machines with important 
resources (access to a sensor or a database, for exam-
ple) into computations running on other machines. 
Finally, SDSM provides a uniform shared memory 
abstraction over the small-scale multi-processors that 
are becoming common in labs and on desktops. 
However, this level of abstraction prevents the appli-
cation from improving performance by explicitly 
directing data movement. While it is relatively easy 
to get parallel applications working on current DSMs, 
it can be very difficult to achieve high performance. 

Tapes can make this task easier by allowing the 
data movement to be directed by the application at a 
high level of abstraction. A tape is essentially an ob-
ject that encapsulates an arbitrary number of updates 
to shared data. Tapes are created through calls to the 
tape library that start and stop recording of updates to 
shared data made by the local process. Once created, 
a tape provides a convenient way to manipulate the 
updates. The data referenced by a tape can be sent to 
another process. Tapes can be reshaped by changing 
the set of data to which they refer. Tapes can also be 
added and subtracted, allowing a single tape to de-
scribe any arbitrary set of updates.  

As a quick example, Figure 1 shows a simple use 
of the tape mechanism. We defer detailed description 
of this example until the next section. Essentially, 
however, the example shows process P1 modifying 
three shared pages while holding lock L1, followed by 
P2 acquiring the same lock and reading the same 
three pages.  

In a traditional invalidate protocol, P1’s modifi-
cations would cause all three pages to be invalidated 
at P2. The subsequent reads by P2 would each cause 
remote page faults. Each fault is satisfied by retriev-
ing a current copy of the faulting page from a remote 
processor, and hence implies at least one network 
RPC. After the data is returned and copied to the cor-
rect location, page protections are changed to allow 
the page to be accessed normally.  
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By including the code in italics, however, P1 can 
record the accesses automatically, append the modi-
fied data to the lock grant message, and update, 
rather than invalidate, P2‘s copy of the page. For each 
page fault thereby avoided, the system eliminates 
both local fault-handling overhead and network 
RPC’s.  

The key points of this example are the following. 
First, tapes allow sharing behavior to be captured at 
runtime. The system needs neither compiler coopera-
tion nor extensive user interaction in order to deter-
mine exactly which pieces of shared data are ac-
cessed by P1. This is important because we do not 
assume any explicit associations between synchroni-
zation and shared data, just as no such associations 
are assumed in a typical multi-threaded environment 
like Pthreads.   

Second, moving the data with the lock is only a 
performance optimization, it can not cause correct-
ness to be violated. No damage is done if P2 does not 
access either x, y, or z. Any additional pages accessed 
by P2 will be demand-paged across the network when 
the pages are accessed.  

While tapes could be used directly by applica-
tions, they are probably more useful when folded into 
specialized synchronization libraries. Such libraries 
can reduce the total application involvement to just 
the replacement of calls to generic synchronization 
primitives with calls to the corresponding routines in 
the new libraries. This indirection allows the syn-
chronization implementation to be quite simple, 

without losing any generality. On the other hand, 
sophisticated middleware or application programmers 
can use tapes abstractions to directly improve per-
formance. 

The primary claimed advantage of SDSM sys-
tems over message-passing programming models is 
ease of use. By abstracting away any need to specify 
data locations, SDSM systems allow parallel and 
distributed applications to be more simply created. 
Requiring applications to contain additional annota-
tions would seem to run counter to this goal. How-
ever, synchronization libraries can hide the mecha-
nism from programmer view. The only change 
needed to use tape mechanisms in these cases is link-
ing with a different library. Moreover, tape mecha-
nisms can be added to applications incrementally. 
Applications can be developed and tested without 
tapes. Since tape mechanisms do not affect correct-
ness, adding tape calls can not break any application 
that has already been debugged. 

We used tapes to implement Tapeworm, a new 
synchronization library that is layered on top of exist-
ing consistency and synchronization protocols in 
CVM [18], a software distributed shared memory 
system. The use of tapes allowed us to write Tape-
worm in fewer than 400 lines of C++ code. At the 
same time, Tapeworm is able to track and use very 
sophisticated data movement patterns. Specifically, 
Tapeworm augments ordinary locks to include data 
movement semantics in addition to synchronization 
semantics. Tapeworm also supports producer-

acq(L1)
start_recording()

w(x)
w(y)
w(z)

end_recording()
add_tape_data()

rel(L1)
acq(L1)

r(x) miss
r(y) miss
r(z) miss

rel(L1)

2

2

1
1

tape1 = {(1,x), (1,y),  (1,z)}

req(L1)

L1, 
tape1

P1 P2

 
Figure 1: Tapes: tape1 describes the writes performed by P1. 
Subsequent misses by P2 can be avoided if the tape, together 
with the data it describes, is transferred with the lock. 
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consumer regions and record/replay barriers. Re-
cord/replay barriers use recordings of data accesses 
from one iteration of an application to anticipate ac-
cesses during future iterations.  

Overall, Tapeworm eliminates an average of 
85% of data misses on our suite of applications. The 
reduction in misses translates into a reduction in mes-
sage traffic of 63%, and an average improvement in 
overall performance of approximately 29%. 

The rest of the paper is as follows. Section 2 dis-
cusses the high-level semantics of tapes in a protocol-
independent fashion. Section 3 describes the proto-
col-independent interface to Tapeworm, a high-
performance synchronization library built using 
tapes. Section 4 describes the requirements that the 
tapes abstraction, and Tapeworm in particular, make 
on the underlying consistency protocols, and Section 
5 describes Tapeworm’s performance. Section 6 de-
scribes the use of tapes in emulating update-based 
protocols such as home-based LRC [36] and scope 
consistency [15]. Section 0 describes related work, 
and Section 8 concludes. 

2. Tape semantics 
A tape is a recording of shared accesses. Clearly, a 
tape containing a record of all accesses to shared 
memory could not be implemented efficiently in 
software. Hence, accesses must be manipulated in 
coarser units. We assume that the underlying con-
stancy protocol aggregates accesses by taking advan-
tage of both spatial and temporal locality in the appli-
cation. Spatial locality is exploited by grouping all 
accesses to the same object or page into a single unit. 
Hereafter, we will refer to this unit as a page, but it 
could refer to any systematic grouping of consecutive 
addresses. Temporal locality is exploited by dividing 
each process’s execution into distinct intervals, each 
of which is labeled with a system-unique interval id. 
The exact method by which intervals are defined is 
not important, although most protocols will probably 
delimit intervals by synchronization events. For ex-
ample, each of the processes in Figure 1 has two in-
tervals, delimited by synchronization accesses to lock 
L1. These optimizations allow a tape to be con-
structed from lists of modified pages during distinct 
intervals, instead of addresses and cycle counts. 

More specifically, a tape consists of a set of 
events, each of which is a 3-tuple (x,y,z), where x is 
an interval id, y is a set of page id’s, and z is a proc-
essor id. The processor id is not shown in the text 
below where it can be derived from context. We as-
sume here that such events only correspond to write 
operations, but we extend the discussion to reads and 
requests below. Hence, tape1 in Figure 1 consists of 
the three events {(1,1), (1,2), (1,3)}. Note that the 
event (and the tape) consists only of the tuple, it does 

not contain the actual modifications. The actual 
modifications are tracked by the underlying protocol. 

Tapes can be created in several different ways, 
but the primary method is that shown in Figure 1, e.g. 
recording accesses over a period of time. This 
method of creating tapes enables synchronization 
protocols to capture dynamic access patterns at run-
time, rather than relying on the programmer or com-
piler to derive complete information statically.  

A second method of creating tapes is for them to 
be generated by hooks into the underlying consis-
tency protocol. While we defer full discussion of the 
interface to the underlying protocol until Section 3, 
hole_tape(Extent *) is fundamental to some 
of the interfaces discussed in the next section. Its 
function is to create and return a tape that describes 
all updates needed to validate the region of memory 
described by an extent. A shared page is validated by 
applying all updates necessary to bring the page up to 
date. 

Extent is short for “data extent.” An extent is 
merely a list of pages. Extents are useful when the 
full information encoded in a tape is not needed. For 
example, if a synchronization interface needs to 
know the set of pages modified by a process while a 
lock is held, a tape is created by recording accesses 
during the synchronized period. The tape is then pro-
jected into an extent listing the pages accessed by the 
tape’s events by removing all information from the 
tape’s tuples except page id’s. 

There are three tape variations. The canonical 
form is a write tape, created primarily by recording 
write accesses. Read tapes are created by recording 
read accesses. Finally, request tapes can be created 
by recording data requests received by the local node. 
Request tapes can be used to locally obtain informa-
tion about the data accessed by other nodes. Unlike 
read and write tapes, request tapes are not complete. 
They do not describe all accesses made by a node at 
any specific time. Nonetheless, they can be a cheap 
and useful way of obtaining information about re-
mote accesses without explicitly requesting it. 

Once a tape has been created, it can be transmit-
ted to remote sites, projected into an extent, pruned to 
contain only notices that pertain to a given extent, or 
added to another tape. Most importantly, the tape can 
be used to request a set of pages or updates that will 
soon be needed locally, before the data is needed.  

The approach shown in this example has several 
advantages over other approaches described in the 
literature. Simple update protocols push modified 
data to existing replicas to update them, rather than to 
invalidate them. The advantage of such protocols is 
that subsequent page faults are avoided, but the lack 
of any selectivity often causes update protocols to 
move far more data than invalidate protocols. Several 
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researchers have described more selective update 
protocol variants [3, 32, 33] that might also suffice in 
this example. However, these protocols effectively 
encode expected sharing behavior into the underlying 
protocol. By making such expectations part of the 
programmable protocol interface, the tape mecha-
nism has far more flexibility. 

2.1 Operations 

As mentioned above, tapes can be added, subtracted, 
and projected to extents. We discuss allowable opera-
tions in more detail in this section. Recall that a tape, 
Ta, is an unordered set of 3-tuples, each of which 
contains an interval id, a page id, and a process id: 
(va, mb, pc). Addition is a simple set operation: 

{ | }a b a bT T x x T x T+ = ∈ ∨ ∈   (1) 
Subtraction is similar: 

{ | }a b a bT T x x T x T− = ∈ ∧ ∉   (2) 
Projection is used to extract information from a sin-
gle tape dimension, such as the set of pages accessed. 
Projection of a single 3-tuple consists of extracting 
the appropriate index. We denote extracting the sec-
ond index of a 3-tuple as follows: 

2 ( , , )a b c bπ =   (3) 

Projection of a an entire tape into a single dimension 
(either interval indices, page ranges, or processor 
lists), can be defined as follows: 

2 ( ) { | ,  where ( , , ) }a aT b a c a b c TΠ = ∃ ∈  
Such a projection defines an extent, either temporal, 
spatial, or processor.  

The main use of extents is in pruning other tapes. 
For example, consider a static, iterative, three-process 
application where producer P0 repeatedly modifies 
two chunks of data. One piece of data is read during 
the iteration after it is produced by P1, and the other 
by P2. Assume that P0 creates a write tape, T0, and P1 
creates a read tape, T1, during iteration i. The set of 
data that will be accessed in iteration i+1 by P1 is a 
subset of the data named by P0’s iteration i write 
tape. More specifically, the data that will be needed 
by P1 consists of all the data named in T0 that pertains 
to the pages mentioned by T1. We can describe this 
data formally as follows: 

2 0 1 0 2 1( / ) {( , , ) | ( )}T T T a b c b TΠ = − ∉Π  
 The resulting tape can be used to request precisely 
the page needed by P1 in iteration i+1. 

Extents can be added to and subtracted from 
tapes. Adding an extent to a tape prunes the tape to 

class Extent : UniqueIntegerSet { 
 Extent(); 
 void reset(); 
 int empty(); 
}; 
 
class Tape { 
 Tape() 
 void reset(); 
 void start_reading(), stop_reading(); 
 void start_writing(), stop_writing(); 
 void start_requesting(), stop_requesting(); 
 void pause(), unpause(); 
 Extent *project_data(); 
 Extent *project_processor(); 
 Extent *project_intervals(); 
 void operater += (Tape *); 
 void operater += (Extent *); 
 void operater -= (Tape *); 
 void operater -= (Extent *); 
 int populate(char *); 
 void apply(); 
}; 
 
Tape *hole_tape(char *, int); 
Tape *weak_mods_tape(); /* specific to weak consistency protocols */ 
void register_fault_callback(FUNC_PTR func, int type); 
void register_request_callback(FUNC_PTR func, int type); 

Figure 2: Tape class definition and support routines 
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only include tuples corresponding to elements of the 
extent: 

{( , , ) | ( , , ) }data dataT E a b c a b c T b E+ = ∈ ∧ ∈
  (6) 
Analogous equations can be defined for adding proc-
essor and interval (temporal) extents, but they are not 
currently defined in our implementation. Subtracting 
is the converse; the resulting tape is pruned of all 3-
tuples corresponding to the extent: 

{( , , ) | ( , , ) }data dataT E a b c a b c T b E− = ∈ ∧ ∉
  (7) 

2.2 Class definition 

Figure 2 shows the generic, protocol-independent 
interface to the tape abstractions. The API includes 
class definitions for the Extent and Tape data types, 
together with two support routines. The Extent 
class is based on a generic set type, with the excep-
tion that all elements of an extent are unique scalars. 
This allows extents to summarize data, processor, or 
temporal extents equally well.  

The Tape class consists of routines to start and 
stop recording each of the three event types, routines 
to implement the operations defined above, and two 
routines to handle the data referred to by the tape. 
Tape::populate() copies the tape, together 
with all data referred to by the tape, to the specified 
location and returns the number of bytes copied. 
populate() is used to copy data into a message 
for transmission to another processor. 
Tape::apply() is used to copy the data back 
out, and to integrate it into the local processor’s view 
of shared data. Note that only local data can be used 
to populate a tape, so the resulting copy might not 
contain all of the data described by the tape.  

hole_tape() is used to create a tape that 
describes all updates needed to validate a region of 
the shared segment, and was introduced above. 
weak_mods_tape() is the sole element of this 
API that is specific to weak consistency protocols. 
This routine recognizes that tapes, and the data that 
they describe, are often piggybacked on top of exist-
ing synchronization messages. For weak consistency 
[11] and the many variations of release consistency 
[14, 19], release synchronization messages contain 
invalidations for the destination. The 
weak_mods_tape() call creates a tape describ-
ing these invalidations so that the corresponding data 
can be included and the invalidations avoided. The 
routine always returns null if the underlying consis-
tency protocol does not distinguish regular shared 
accesses from synchronization accesses. 

The register_fault_callback() 
and register_request_callback() calls 
are routines used to register functions to be called 
back when local page faults and requests from remote 
sites, respectively, occur. The former are used to 
track local shared accesses, and the latter are used to 
intercept data requests coming from remote proces-
sors. register_fault_callback() will 
normally be used only by the tape support li-
brary in implementing the tape recording func-
tions. The latter is used in the implementation of 
producer-consumer regions discussed in the next 
section. 
3. The Tapeworm library 
We have implemented a tapes abstraction layer and 
the Tapeworm synchronization library on top of 
CVM [18], a software DSM that implements a multi-
writer form of lazy release consistency (LRC) [19, 
36]. CVM supports a single thread or process per 
machine, a shared segment that can be transparently 
accessed by any of the processes, and a set of simple 
synchronization mechanisms. Synchronization is 
implemented in addition to, rather than on top of, the 
consistency mechanism.  

Tapeworm’s application interface consists of 
three synchronization operations that we found useful 
for our application suite: record-replay barriers, up-
date locks, and producer-consumer regions. All three 
operations have precedent in the literature. Our intent 
is to show the flexibility, expressiveness, and power 
of the tapes abstraction. In all cases, we rely on the 
underlying protocol layer to insure correctness, re-
gardless of when data arrives. Section 4 describes the 
demands that this requirement places on the underly-
ing protocol. We avoid details specific to any one 
underlying system whenever possible, but the syn-
chronization routines must interface directly with 
communication routines in order to avoid redundant 
messages and extra copying. We tried to make the 
names of these hooks and interfaces as self-
explanatory as possible, and use pseudo-code when it 
does not obscure important details. 

3.1 Record-Replay Barriers 

The most simple way in which we expect tapes to be 
used is in recording data movement in the first itera-
tion of an iterative scientific application and replay-
ing it in future iterations. Much of the remote latency 
can be hidden by sending the data before it is needed. 
Figure 3 shows pseudo-code for a simple grid appli-
cation. Each process iteratively computes new values 
for all of the elements that it owns, using barriers and 
a temporary array to synchronize the read and write 
accesses to the shared array.  
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The only difference between this code and code 
written for a non-Tapeworm system is that the barrier 
calls are bound to specialized versions, rather than to 
the generic cvm_barrier().  

Pseudo-code for each process’s barrier routine is 
shown in Figure 4. The purpose is to selectively send 
updates to remote processes before they are re-
quested. Each process identifies data to be flushed to 
other processes by crossing the set of locally-created 
modifications with the set of data requested by other 
processes, and assuming that sharing patterns are 
static. 

Each process records locally-created modifica-
tions, as well as data requests from other processes. 
This allows a process to directly track the data that 
will be needed by other processes during the next 
iteration. Tracking writes allows a process to identify 
new local modifications. Crossing such requests with 
the tape of local modifications allows us to create 
descriptions of the data that needs to be sent to other 
processes. 

In more detail, each process uses writeTape 
to record local writes and reqTape to record re-
quests during any single iteration. The reqEx-
tents[] array is used to hold the set of all pages 
that each process has ever requested. The barrier pro-
cedure starts by projecting the remote request tape to 
sets of pages requested by each remote process. Each 
such set is unioned with all previous pages requested 
by that process. The tape of local writes is then 
crossed with each such set to create a new tape nam-
ing the set of modifications that needs to be flushed 
to the corresponding process. Each tape is created by 
adding the write tape to the extent describing the 
pages that have been requested by that processor, as 
defined by Equation 6. For each such tape that is non-
empty, a message is created, populated with the tape, 
and sent to the corresponding process. 

This code assumes static access behavior. Appli-
cations with dynamic sharing patterns will only bene-
fit to the extent that there is overlap between the sets 
of data accessed by consecutive iterations. Re-
cord/replay barriers for dynamic sharing patterns 
would only maintain extent information about recent 
iterations, rather than about all as in the static case. 

3.2 Update locks 

Update locks are modifications of the globally exclu-
sive locks common to many parallel programming 
environments. Update locks use tapes and extents to 
combine data movement with synchronization trans-
fers. Rather than using separate protocol transactions 
for synchronization and for data, update locks at-
tempt to piggyback the data movement on top of ex-
isting synchronization messages. Tapes and extents 
are used to identify and communicate the updates that 
are needed to validate shared data. This section dis-
cusses two variants: auto-locks, which gather and use 
access information automatically, and user locks, 
where an explicit API is presented to the user. 

Auto-locks 
Auto-locks attempt to exploit static access patterns by 
using past behavior to predict and eliminate memory 
faults during later lock synchronizations. The as-
sumption is that the set of pages accessed during the 
n+1th acquire of any lock is similar or identical to the 
set of pages accessed during the nth acquire of the 
same lock. Hence, we can avoid remote faults by 
ensuring that the pages accessed during the last lock 

while (TRUE) { 
 tape_barrier(); 
 forall i,j { 
  temp[i][j] = arr[i-1][j] + arr[i+1][j]; 
 } 

tape_barrier() 
forall i,j { 
 arr[i][j] = temp[i][j]; 
} 

} 

Figure 3: Red/black stencil 
    

Tape  reqTape;       /* records requests from other procs */ 
Tape  writeTape;     /* records local writes */ 
Extent reqExtents[NUM_PROCESSES]; 
 
tape_barrier() 
{ 
 writeTape.stop_writing(); 
 reqTape.stop_reading(); 
 
 for proc in (all processes) { 
  reqExtents[proc] += reqTape.project_data(proc); 
 
  Tape *out = writeTape + reqExtents[proc]; 
  if (out) { 
   create flush message 
   int len = out->populate(msg->curr_buf); 
   msg->add(len);  
   send flush message to proc 
  }  
 }  
  
 barrier(); 
 
 reqTape.reset();    reqTape.start_reading();  
 writeTape.reset(); writeTape.start_writing(); 
} 
 
void flush_handler(Msg *msg) 
{ 
 Tape *tape = msg->get_tape(); 
 tape->apply(); 
} 

Figure 4: Record/replay implementation 
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acquisition (of the same lock) are valid when the lock 
acquisition is accomplished. 

There are two sets of updates that need to be re-
trieved in order to prevent these remote faults. Let S 
be the set of pages that the requestor will access 
while holding the lock. This is the set of pages that 
the auto-lock mechanism will attempt to validate. 
The necessary updates can be divided into miss(S) 
and new(S). Miss(S) consists of updates known 
(but not present locally) before the lock grant returns, 
whereas new(S) consists of new updates learned 
from information piggybacked on the lock grant. The 
former set is empty if the pages in S are all valid 
when the lock acquisition begins. 

Consider the example in Figure 5. For the sake 
of simplicity, assume that x is a single page. Prior to 
performing its second lock acquisition, P1’s copy of 
page x is invalid because the preceding barrier dis-
seminated an invalidation resulting from P2’s update. 
P1’s miss(S) therefore consists of upd2(x).  

The new(S) set is needed because weakly-
consistent protocol implementations often append 
consistency information to existing synchronization 
communication. In Figure 5, the lock grant at P1’s 
second lock acquisition returns knowledge of a third 
update, upd3(x). Hence, this latter update consti-
tutes new(s) at the lock grant. All of the updates in 
either set are needed in order to validate the pages in 
S. 

Figure 6 shows the code used to implement auto-
locks in Tapeworm, lacking only comments and er-
ror-checking code. Each of the five routines is an 
upcall from the underlying implementation into the 

protocol code. The first four execute on the re-
questor’s side, the last is executed by the previous 
holder of the lock. Tapeworm is implemented as part 
of a tapes protocol that specializes the default multi-
writer LRC protocol. Therefore, all upcalls from 
CVM first call the Tapeworm routines, and then fall 
through to the corresponding LRC routines that main-
tain memory consistency.  

The data structures consist of writes, a tape 
used to record local modifications to shared memory, 
and lockExtent, an extent used to remember the 
set of pages accessed the last time the lock was held. 
The code starts recording modifications in 
lock_entry(), and stops in 
lock_release().  

The add_to_lock_request() routine is 
called just before the lock request messages are sent. 
The auto lock routine adds to this message an extent 
and a tape. The extent is derived from the writes
tape created during the previous lock access. The 
tape, created by hole_tape(), names all updates 
needed in order to validate the region covered by the 
extent. In other words, if page x of the extent’s region 
is currently invalid, the tape specifies all updates that 
need to be applied to x in order to re-validate it. 

The routine add_to_lock_grant() is 
called by the lock granter. This routine first retrieves 
miss(S) from the message and then creates 
new(S) by pruning weak_mods_tape()the ex-
tent sent in the request. These two tapes are added 
together, potentially resulting in a tape that includes 
modifications from several different processes. Fi-
nally, populate()is used to load the tape data into 
the reply. 

The requesting process uses apply() to read 
and apply all updates from a message. If all has gone 
well, apply() will also re-validate the entire shared 
region named by lockExtent.  

User Locks 
The second type of update locks, user locks, replace 
the implicit arguments of auto-locks with explicit 
buffer and length arguments. User locks are useful 
when the shared data accessed while a specific lock is 
held will change in some well-known manner. The 
interface to user locks include a simple buffer pointer 
and length. These parameters allow the program to 
specify a single contiguous section of shared memory 
that is likely to be accessed while the lock is held. 
Inside the lock operator, the region is converted to an 
extent, which provides an efficient and portable rep-
resentation of the set of pages covered by the region.  

P1 P2

acq(L1)
upd1(x)
rel(L1)

P3

acq(L1)

upd2(x)
rel(L1)

acq(L1)

upd3(x)
rel(L1)

miss(S) = upd2(x)
acq(L1)

new(S) = upd3(x)
upd4(x)
rel(L1)

x = 0 x = 0 x = 0

 
Figure 5: Auto-locks 
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This extent is used to create miss(S) as above. 
It is also appended to the lock request in order to 
identify new(S). These quantities are handled simi-
larly to the corresponding quantities in auto-locks. 

We look at user locks primarily in order to have 
a point of comparison when evaluating how well the 
auto-locks are able to correctly predict and anticipate 
shared accesses.  

3.3 Producer-consumer regions 

Many applications exhibit producer-consumer inter-
actions. In these applications, one process produces a 
region of memory that is consumed by another proc-
ess at an arbitrary time later. These types of commu-
nication are difficult to anticipate because the pro-
ducer-consumer connections are often dynamic and 

can have low locality. If such regions are multiple 
pages, the consumer usually must fetch updates to 
each page separately, as the pages are accessed.  

Tapes and extents can be used to aggregate these 
transfers by recording writes at the producer end, 
projecting the resulting tape to an extent, and storing 
it with the region pointer. When a process subse-
quently consumes the data by removing the pointer 
from the central repository, it also retrieves the corre-
sponding extent.  

Figure 7 shows the implementation of producer-
consumer regions in Tapeworm. The application reg-
isters the region by bracketing its writes with 
start_produce() and end_produce() calls. 
In addition to stopping the recording, the latter enters 
the resulting tape into an ordinary queue. CVM first 
vectors page fault requests to the tape protocol, pro-

Tape  writes;  /*  per-lock tape */ 
Extent lockExtent; 
 
/* executed by prospective holder of the lock */ 
void Tapeworm::lock_entry(int id) 
{ 
 writes.reset(); writes.start_writing();  
} 
 
void Tapeworm::add_to_lock_request(Msg *msg, int id) 
{ 
 Tape *empty = tape->hole_tape(lockExtent); 
 msg->add(tape, (char *)empty, empty->size()); 
 msg->add(type_extent, (char *) lockExtent, lockExtent ->size()); 
} 
 
void Tapeworm::read_from_lock_grant(Msg *msg, int id) 
{ 
 Tape *in = msg->get_tape(); 
 in->apply(); 
}  
 
void Tapeworm::lock_release(int id) 
{ 
 writes.stop_writing();  
 lockExtent = writes.project_data(); 
} 
 
/* executed by last holder of the lock */ 
void Tapeworm::add_to_lock_grant(Msg *msg, int pid) 
{ 
 Tape  outTape; 
 
 outTape = *(Tape *)msg->retrieve(type_tape)) { 
 if (extent = msg->retrieve(type_extent)) { 
  outTape += weak_mods_tape(pid, extent); 
 } 
 
 int len = outTape.populate(msg->curr_buf); 
 msg->add(len); 
} 

Figure 6: Auto-lock implementation 
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viding an opportunity to search the queue for a tape 
that contains the requested page. If the page is found, 
the entire region’s data is appended to the reply mes-
sage. While the total data transferred is the same as if 
the pages were transferred one at a time, the benefits 
of aggregating multiple requests into one can be sig-
nificant. 

4. Tape implementation 
While tapes are conceptually independent of both the 
programming model and the particular protocol im-
plementation, the underlying consistency protocol 
and system architecture must provide basic support. 
Our tapes implementation is layered on top of CVM 
[18], a software DSM that supports multiple proto-
cols and consistency models. CVM is written entirely 
as a user-level library and runs on most UNIX-like 
systems. CVM was created specifically as a platform 
for protocol experimentation. 

New CVM consistency protocols are created by 
deriving classes from the base Page and Protocol 
classes. Only those methods that differ from the base 
class's methods need to be defined in the derived 
class. The underlying system calls protocol hooks 
before and after page faults, synchronization, and I/O 
events. Since many of the methods are inlined, the 
resulting system is able to perform within a few per-
cent of a severely optimized commercial system run-
ning a similar protocol. Although CVM was designed 
to take advantage of generalized synchronization 
interfaces, as well as to use multi-threading for la-
tency toleration, we use neither of these techniques in 
this study. Tapeworm is a subclass of LmwProtocol, 
which is derived from the base Protocol class. 
LmwProtocol is the base multi-writer LRC protocol 
used by both CVM and TreadMarks [3]. 

4.1 Interactions with the consistency protocol 

A tapes layer logically resides on top of existing con-
sistency and synchronization protocols. Conceptu-
ally, at least, the tape mechanism is independent of 
both the underlying protocol implementation, and of 
the precise application access orderings that are being 
captured. Tape semantics have been carefully crafted 
to accommodate multi-writer relaxed consistency 
models. However, they also work well with less 
complicated single-writer protocols. 

Tapes place four requirements on consistency 
protocols, as summarized in Table 1. First, process 
executions must be divided into the intervals dis-
cussed above. The actual division into intervals is 
best left to the tape mechanism, as the synchroniza-
tion libraries built using tapes will tend to have more 
information about application semantics than the un-
derlying protocols. However, the consistency proto-
col must provide a means for a tapes layer to inform 
it that a new interval has begun. 

Second, the consistency protocol must provide a 
way to record shared accesses. We divide this process 
into write trapping and write collection [2]. Write 
trapping refers to the process of tracking shared ac-
cesses. SDSM systems have to track shared accesses 
in order to determine when to make pages valid, and 
when to move data. Most page-based systems, 
including CVM, use the virtual memory system in 
order to trap accesses.  Address ranges for which 
there is no valid local copy are marked unreadable. 
Any access to such a page leads to an SDSM handler 
being called, which notices that the page is being 
accessed. Similarly, writes are trapped by making 
pages unwritable by default. The first write access to 
any such page causes an SDSM handler function to 
be called. The handler sets things up so that the write 
can proceed, but also notes that the write took place. 
A second approach to write trapping is through the 
use of software dirty bits [5, 26]. This approach con-
sists of modifying all shared writes to also set a bit 
that can later be used to track which locations were 

start_produce() 
{ 
 tape.reset();  tape.start_writing (); 
} 
 
end_produce() 
{ 
 tape.stop_writing (); 
 queue.add(tape); 
} 
 
producer_region(int pg_id, Msg *msg) 
{ 
 if (Tape *tape = queue.search(pg_id)) { 
  int len = tape->populate (msg->curr_buff); 
  msg->add(len); 
 } 
} 
 
register_request_callback(producer_region-region, 0); 

Figure 7: Producer-consumer regions 

Function Explanation 
Interval specification: API for specifying interval 

boundaries. 
Access recording: Between start() and end() calls, 

return a list of all pages either 
read, written, or requested. 

“Hole” tape creation: Create a list of data/pages needed 
to validate a given address range. 

Data instantiation: Retrieve local data/pages corre-
sponding to a tape. 

Table 1: Required protocol functionality 
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written. Write collection refers to the mechanism 
used to marshal shared modification into a network 
message, and unmarshalling the data at the other end. 
Many systems marshal and unmarshall data merely 
by copying the entire page or object into and out of 
messages. However, multi-writer protocols usually 
create some form of diff, which encodes only those 
portions of the page or object that were modified. 
Diffs are usually smaller than the entire object, and 
allow multi-writer protocols to allow simultaneous 
concurrent write accesses to the same object.  

For a given interval, the consistency protocol 
must be able to provide a list of all pages that have 
been written, and all pages that have been read. As-
suming a consistency protocol based on virtual mem-
ory, most of the accesses can be tracked with little or 
no overhead. An ordinary read fault implies that the 
corresponding page is being read, and an ordinary 
write fault indicates that a page is being written. For 
example, we know that any readable, but not wri-
table, page is not being written. When recording only 
write accesses, therefore, we merely need to note any 
such page that takes a write fault. The tape support 
layer can track these by using the regis-
ter_fault_callback() routine described in 
Section 2. 

Only tracking existing faults will not catch ac-
cesses to pages for which permissions are sufficient. 
In order to record all read accesses, for example, read 
permission must be removed from all currently-
readable pages. The first subsequent read access to a 
given page will generate a fault, which allows the 
access to be recorded. These recording faults are 
handled by noting the page access and restoring the 
original page protection; no network communication 
occurs, and subsequent accesses proceed without 
faults. When recording ceases, the original page pro-
tections must be restored for any page that did not 
have a recording fault. The overhead of recording is 
therefore two protection changes, and potentially one 
local recording fault, per page that is already in the 
desired mode. Note that protection changes can often 
be combined in order to aggregate the cost of kernel 
calls. Request tapes are created by recording the se-
quence of incoming requests. 

Recording faults can be avoided entirely by re-
cording only normal consistency faults, i.e. not in-
validating pages that are already in the target protec-
tion. This approach is less complex, and can be im-
plemented with little or no runtime overhead. This is 
the approach used in CVM’s tape support. The disad-
vantage, of course, is that it provides less complete 
information. Note, however, that recording is usually 
used to predict and anticipate future misses. If no 
miss occurs for a page during iteration i, a miss is 
unlikely to occur during iteration  i+1. If it does, the 

faulting page can easily be added to the pages that 
caused misses during the previous miss. The only 
cost is that a single miss for that page went unantici-
pated.  

The third functionality required of the consis-
tency protocol is to provide a means of describing the 
data needed to revalidate a “hole” in the shared seg-
ment, i.e. all data in a consecutive range of virtual 
addresses. For example, the programmer might know 
that a given object will be read soon. The base and 
length of this object is passed to the consistency pro-
tocol, which returns a list of tuples describing the 
modifications needed to validate the object.  

Fourth, the consistency protocol must provide a 
means of instantiating the updates described by a 
tape, and of applying this data at a remote location. 
For example, the above interface can be used to cre-
ate a tape describing all updates needed to validate an 
object. This tape can be sent to the process that cre-
ated those updates. This creating process needs a 
means of turning a description of the updates, i.e. the 
tuples in the tape, into the actual data, which is then 
returned to the requester in a message. At the request-
ing site, the incoming data needs to be reintegrated 
into the consistency protocol’s view of the shared 
segment.   

Finally, the producer-consumer interface defined 
in Section 3 requires a callback when a page request 
arrives. The first row of Table 2 shows the low-level 
hooks, or callbacks, required by the tapes layer. 
Protocol::fault() and Proto-
col::page_request() are upcalls from the 
SDSM to a protocol, in this case Tapeworm. Tape-
worm specializes these calls to track accesses to 
shared pages. Protocol::fault() is called at 
local accesses to pages with the wrong permissions, 
i.e. reading an invalid page or writing a page without 
permission. Tapeworm uses this call to track reads 
and writes to shared pages. The Proto-
col::page_request() function is called when 
a remote site requests local data. This is used both for 
tracking requests (as with record/replay barriers), and 
for identifying and handling accesses by a consumer 
to producer/consumer regions. 

4.2 Interactions with the message subsystem 

Table 2 summarizes the required interfaces to the 
messaging subsystem. Independent of the consistency 
protocol, Tapeworm must also have access to the 
messaging layer in order to add and retrieve data to 
existing messages, as well as to create Tapeworm-
specific messages. The calls msg->add() and 
msg->retrieve() allow arbitrary data to be 
added and retrieved from CVM Msg objects. While 
Msg objects are specific to CVM, the same function-
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ality could be made available without reference to 
specific message objects. However, this method 
would be less clear, and we have therefore left the 
interface unchanged. 

The last row of Table 2 shows upcalls from the 
SDSM system to the consistency protocol. These are 
intercepted by CVM to provide hooks into existing 
messages. By adding data to these messages, Tape-
worm can often avoid creating messages itself.  

5. Performance evaluation 
This section describes the performance of several 
applications, both with and without the use of Tape-
worm’s new synchronization primitives. Section 5.1 
describes our experimental environment and Section 
5.2 gives an overview of our application suite. The 
rest of the subsections describe the impact of Tape-
worm on performance. Since each application was 
chosen to provide a different challenge to the syn-
chronization library, we describe our results one ap-
plication at a time rather than all at once. 

5.1 Experimental environment 

We ran our experiments over CVM’s lazy multi-
writer protocol on an eight-processor IBM SP-2. 
Each node is a 66.7 MHz POWER2 processor. The 
processors are connected by a 40 MByte/sec switch. 
The operating system is AIX 4.1.4. 

CVM runs on UDP/IP over the switch. Lock ac-

quires are implemented by sending a request message 
to the lock manager, which forwards the request on to 
the last requester of the same lock. This takes either 
two or three messages, depending on whether the 
manager is also the last owner of the lock. Two-hop 
lock acquires take 779 µsecs, while three-hop lock 
acquires take 1185 µsecs. Simple page faults across 
the network require 1576 µsecs. Page fault times are 
highly dependent on the cost of mprotect calls, 15 
µsecs, and the cost of handling signals at the user 
level, 120 µsecs. Minimal 8-processor barriers cost 
1176 µsecs. 

5.2 Application suite 

Our application suite consists of one branch-and-
bound lock application, TSP, one producer-consumer 
divide-and-conquer application, QS, two applications 
that combine both locks and barriers, Water (Water-
Nsquared from SPLASH-2 [34]) and Spatial (Water-
Spatial from SPLASH-2), one tree-structured barrier 
application, Barnes (also from SPLASH-2), and 
gauss (gaussian elimination with partial pivoting). 
While these applications are meant to be in some 
sense “representative," their more important common 
attribute was that each had characteristics that illus-
trate one or more facets of tape behavior. Note that 
there certainly exist applications for which tapes do 
not improve performance. Performance can even de-
grade if the access patterns assumed by the tape 
mechanisms called by an application do not match 
the actual sharing patterns in the application. 

Table 3 summarizes our applications and the 
maximum performance improvements on each. De-
tails of the algorithms are deferred until the discus-
sion of each application’s performance. Overall, the 
best combination of options for each application 
eliminated an average of 85% of all remote page 
misses, 63% of all messages, and an average increase 
in speedup of 29%. For iterative programs, e.g. Bar-
nes, Spatial, and Water, only the second and subse-
quent iterations were measured, in order to eliminate 
effects caused by the initial data distribution.  

Interface Description 
msg->add(msg_type, char *, int) 
msg->retrieve(msg_type, char **, int *) 

Allows arbitrary data to be added and retrieved from Msg 
objects. ‘curr_buf’ assumed if ptr omitted. 

Protocol::fault(int pg) 
Protocol::page_request(Msg *, int) 

Upcalls to Tapeworm for local page faults and requests for 
local data from remote sites. 

Protocol::add_to_lock_request(Msg *, int) 
Protocol::add_to_lock_grant(Msg *, int) 
Protocol::read_from_lock_request(Msg *, int) 
Protocol::read_from_lock_grant(Msg *, int) 

Allows data to be piggybacked on top of existing synchro-
nization messages. Barrier routines are analogous. 

Table 2: Low-level hooks and messaging support  

Improvement App. Input 
Set 

APIs 
Used Speedup Msgs Misses Bytes

Water 
5 iters, 
512 
mols 

lock, 
bar 14% 42% 83% 0%

TSP 18 
cities lock 7% 79% 94% 9%

Spatial 
5 iters, 
1024 
mols 

lock, 
bar 41% 96% 100% 15%

QS 1x106 lock, 
p-c 49% 53% 88% 0%

Gauss 1024 x 
1024 flush 25% 67% 100% 2%

Barnes 8192 
bodies bar 40% 75% 48% -2%

Table 3: Application Summary 
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5.3 Application performance 

Water 
Our first application is Water, an iterative molecular 
simulation. Water alternates phases in which locks 
are used and phases in which barriers are the only 
synchronization. Table 4 shows the performance of 
Water with no tape optimizations, with record/replay 
barriers, with user locks, with automatic locks, and 
with both types of locks plus record/replay barriers. 
“Speedup” is relative to the single-processor time 
without CVM overhead. “Remote Misses” is the 
number of remote page faults incurred. “Lock Pages” 
is the number of pages that are re-validated by data 
moved as a result of one of the tape mechanisms. The 
“Updates Used” column shows the percentage of 
updates moved by the tape mechanism that are used 
at the destination. This column is omitted in some of 
the other application tables because it is near one 
hundred percent. “Comm KBytes" shows the total 
amount of data communicated during the measured 
portion of the application. Again, this column is 
omitted in some later tables because it is essentially 
unchanged across different runs. Finally, the last five 
columns show lock, barrier, flush, data (data request), 
and total messages.  

Several trends are clear. First, auto-locks per-
form better than user locks. The reason is that the 
user locks are difficult to specify statically. For ex-
ample, in one place, the region passed to the user-
lock is an entire molecule, which may extend over 

two pages. The user-lock implementation therefore 
sends all modified data on both pages, including data 
modified as the result of false sharing. The auto-lock 
implementation is able to determine that only the first 
half of the molecule is while the lock is held, and the 
falsely-shared modifications in the second page are 
not sent.  

Second, the sets of misses addressed by the lock 
and barrier mechanisms are disjoint: the number of 
misses eliminated with both mechanisms is almost 
exactly the sum of the misses eliminated by the 
mechanisms individually. Simple update protocols 
would perform similarly to the record-replay barriers, 
but be less effective at eliminating misses that are 
addressed by the update locks. 

TSP 
TSP is a branch-and-bound implementation of the 
traveling salesman problem. The central data struc-
ture is a global queue that contains partially com-
pleted tours. Processes alternately retrieve tours from 
the queue, split them into sub-tours, and put them 
back into the queue.  

As shown in Table 5, TSP is almost exclusively 
lock-based. Locks are used to guard access to the 
central queue and to current minimum tour values. 
Barriers are used only during initialization and 
cleanup. We investigated both user locks and auto-
locks. The results are shown in Table 5.  

The first row shows the default TSP application. 
The second row shows performance with user locks. 
User locks are used to avoid misses when updating 

Messages 
Protocol Speedup Remote 

Misses 
Lock 
Pages 

Updates 
Used 

Comm 
KBytes Lock Barrier Flush Data Total 

Default 5.66 4852 0 - 6697 2786 196 0 4878 7860

Rec/Rep 5.78 3405 0 71% 6761 3016 196 420 3415 7047

User Locks 5.93 4336 1579 60% 6852 2642 196 0 4348 7186

User + Rec/Rep 6.14 1874 1550 64% 7736 2720 196 924 1950 5790

Auto-locks 6.16 3200 1566 70% 6683 2550 196 0 3200 5946

Auto + Rec/Rep 6.43 841 1535 68% 6655 2592 196 924 852 4564

Table 4: Water 

Messages 
Protocol Speedup Remote 

Misses 
Lock 
Pages 

Updates 
Used 

Comm 
KBytes Lock Barrier Data Total 

Default 7.02 6058 0 - 6860 1124 28 6060 7212

User 7.22 4297 6161 88% 6648 1142 28 4272 5442

Auto-locks 7.48 387 6120 68% 6249 1134 28 387 1549

Table 5: TSP 
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the “best” tour variable and when accessing the work 
queue. However, user locks can not specify the data 
that will be returned by a request for new work to 
perform, because the specific work has yet to be 
identified. 

The auto-locks perform better because they re-
tain a history of the last data that was accessed when 
the lock was held. This history is not an accurate pre-
dictor of future accesses (witness the low “updates 
used” value), but is relatively complete.  

Spatial 
Spatial solves the same problem as Water, differing 
primarily in that the molecules are organized into 
three-dimensional “boxes." The sizes of the boxes are 
set so that molecules in one box interact only with 
molecules in neighboring boxes. The box structure 
allows synchronization and sharing to be done at the 
level of boxes rather than individual molecules, ef-
fectively aggregating much of the synchronization. 
This gain is partially offset by the overhead of main-
taining the box structure. 

Table 6 shows the performance of Spatial. The 
“Updates Created” column describes the number of 
separate per-page updates that are constructed by the 
underlying LRC system. The number of updates dou-
bles with record-replay barriers because the default 
version is able to lazily create updates only every 
other barrier.  

Other than the overhead of creating and applying 
updates, this problem ends up having little impact on 
the Spatial’s performance. The multiple updates usu-
ally do not overlap, and therefore do not consume 
any more space or bandwidth than single updates. 
Second, few additional flush messages are sent be-

cause there are usually other updates destined for the 
same site. Therefore, the messages would need to be 
sent even if the excess updates were not produced. 
The flush versions actually send less data than the 
non-flush versions because the large flush messages 
have less system overhead than individual update 
requests.  

Auto-locks have little effect on Spatial’s per-
formance. The reason is that locks are used mainly to 
arbitrate access to the linked lists that tie molecules to 
boxes. The auto tape mechanism only prefetches the 
pages containing these pointers, not the pages con-
taining the molecules themselves. Nonetheless, the 
overall impact of the flush mechanism is to improve 
performance by over 41%. 

QS 
QS is a parallel implementation of QuickSort. Again, 
the central data structure is a global queue that con-
tains partially computed values, which are iteratively 
removed, refined, split, and inserted back into the 
queue until all are complete. QS differs from TSP in 
that the chunks of data that are taken out of the queue 
are merely pointers to the actual data. Hence, we use 
the producer-consumer regions that were discussed in 
Section 3.  

Table 7 shows three versions of the QS program, 
with statistics as for TSP. The only new statistic is 
the “tape” message type. The first row shows the 
default implementation. The second row shows the 
results of a run in which all accesses to the central 
queue are through user locks. The regions passed to 
the user locks comprise the entire centralized queue 
structure. As this structure is updated frequently, the 

Messages 
Protocol Speedup Remote 

Misses 
Updates 
Created 

Updates 
Used 

Comm 
KBytes Lock Barrier Flush Data Total

Default 3.62 32677 4845 - 21727 764 518 0 65354 66636

Auto-locks 3.63 32494 4847 76% 21746 780 518 0 64988 66286

Rec/Rep 4.98 158 8950 98% 18924 762 518 1588 316 3184

Auto+Rec/Rep 5.12 11 8943 98% 18885 734 532 1589 22 2877

Table 6: Spatial 

Messages 
Protocol Speedup Remote

Misses 
Lock 
Pages Lock Barrier Data Tape Total 

Default 4.23 4499 185 3804 28 9110 0 12942 

User 5.86 3377 1064 3830 28 6890 0 10748 

User + PC 6.32 539 1563 3806 28 142 2096 6072 

Table 7: QS 
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user locks eliminate all misses on the pointer data 
structures, about one fourth of all remote misses.  

The row labeled “User+PC” contains statistics 
reflecting the producer-consumer tape functions dis-
cussed in Section 3. The number of remote misses is 
reduced six-fold over the version with just user locks. 
The total number of messages is reduced by 53%, 
and speedup is increases by 49%. 

Barnes 
Barnes is the n-body galactic simulation from 
SPLASH-2, modified by Rajamony [27] to contain 
only barrier synchronization. Because of this modifi-
cation, fine-grained tasks such as make-tree are now 
performed sequentially. This modification effectively 
increases the synchronization granularity. Note that 
while tapes can reduce or limit data movement during 
a parallel make-tree phase, they can do nothing to 
affect the direct costs of fine-grained synchroniza-
tion.  

Table 8 shows that Barnes differs from the other 
applications in that use of the tape mechanism is only 
able to eliminate about half of the remote misses. 
This is primarily because there is little locality across 
iterations. Processes access new pages during each 
iteration, and the system is therefore unable to antici-
pate all accesses. Nonetheless, 87% of updates 
flushed at barriers are eventually used, and total mes-
sages sent drops by a factor of four.  

Gauss 
Gauss is an implementation of gaussian elimination 
with partial pivoting. Essentially, it consists of a 2-D 
grid, with rows assigned to processes in chunks. At 
the beginning of each iteration, a new row is chosen 
as the “pivot”, and all processes update all rows after 
the pivot row. The pivot row and column index need 
to be propagated to all other processes. 

This method of updating plays havoc with stan-
dard update protocols. The problem is that each pivot 
is only flushed once, meaning that historical informa-
tion can not be used to determine that the data needs 
to be broadcast. Application input is essential. We 
used tapes to build two new routines called 
“cvm_start_flush()” and “cvm_stop_flush()”. These 
routines use a tape to record all shared modifications, 
and to broadcast them to all other processes.  

Gauss’s performance is shown in Table 9. All 
remote misses are eliminated. However, overall 
speedup is still mediocre because the last iterations 
have too little computation to make parallelism 
worthwhile. 

5.4 Discussion 

The tape mechanism’s advantages are performance 
and simplicity. In evaluating performance, we distin-
guish between the performance of the tape layer it-
self, the performance of Tapeworm, the specific syn-
chronization library discussed in this paper, and the 
potential performance improvements of other syn-
chronization libraries that could be built using tapes.  

The tape layer itself adds very little overhead. 
Recording page reads and writes adds only a few 
instructions to the page fault handlers. The runtime 
cost of manipulating tapes and extents is also small. 
Extents are implemented as bitmaps in our current 
prototype. They are therefore fast, but reasonably 
expensive in terms of memory consumption. Since 
the constituent elements of extents are pages, the size 
of an extent is proportional to the number of shared 
pages. Currently, the largest applications we run 
share on the order of thirty-two megabytes. Assum-
ing 8k pages, this results in a bitmap of 512 bytes. On 
the other hand, water uses less than 500k of data, 
resulting in bitmaps of only eight bytes. If the current 
representation becomes unacceptable, extents could 
be implemented as sets of bitmaps, and would have 

Messages 
Protocol Speedup Remote 

Misses 
Updates 

Used 
Comm 
KBytes Barrier Flush Data Total 

Default 3.88 4177 - 15767 140 0 31826 31966 

Rec/Rep 5.43 2157 87% 16047 140 576 7266 7982 

Table 8: Barnes 

Messages 
Protocol Speedup Remote 

Misses 
Updates 

Used 
Comm 
KBytes Barrier Flush Data Total 

Default 3.45 14294 - 32280 7160 0 14294 21454 

Flush 4.31 0 100% 31673 7160 0 0 7160 

Table 9: Gauss 
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size proportional to the working set of pages. Tapes 
are currently implemented as sequential records of 
events, and are therefore of size proportional to the 
number of recorded events. Similar to extents, more 
sophisticated representations for tapes are possible in 
the event that their size or runtime cost grows too 
large. Most of the tape operations involve only a sin-
gle linear pass through a tape, with random access to 
the bitmaps used to represent extents. The result of 
tape addition (used in auto-locks) is the set of all 
unique elements of the union of two unordered sets. 
Our current implementation is O(n2) in the size of the 
tapes, but more sophisticated implementations are 
possible.  

As far as the effectiveness of the specific syn-
chronization library discussed in this section, Table 3 
showed that Tapeworm eliminates an average of 85% 
of all remote access misses. The percentage of access 
misses eliminated can be termed the coverage of the 
protocol. The accuracy of the protocol can be charac-
terized by the number of updates sent but not used. 
These updates are pure overhead, but do not affect 
correctness. This quantity is given by the “Updates 
Used” column in Table 4 through Table 8. Tape-
worm’s average accuracy is 91%. Assuming a uni-
form distribution of diff sizes, this implies that the 
average bandwidth overhead is only nine percent. 
However, the number of extra messages is likely to 
be a much smaller percentage. Most of these extra 
updates are sent in messages that would have to exist 
for other updates or synchronization, even if the use-
less updates were not sent.  

One last aspect of this effectiveness is whether 
Tapeworm results in a significant number of extra 
updates being created and applied. This occurs only 
in Spatial. However, it does not result in either extra 
messages or data, so we conclude that the effect on 
Spatial’s performance is negligible. This effect could 
be significant in other applications. We expect that 
specializing barriers, as described in Section 3, would 
minimize this effect. 

Mechanisms such as auto-locks and re-
cord/replay barriers also incur overhead in that they 
need to be trained before being used. Faults incurred 
during the initial use of these mechanisms can be 
termed cold misses. Faults avoided during subsequent 
synchronizations are always conflict misses for our 
implementation because CVM relies on the underly-
ing virtual memory system to handle capacity prob-
lems. All results presented in this paper represent the 
steady state execution of applications after the cold 
misses are complete. Assuming static sharing behav-
ior, however, the percentage of potential faults that 
are cold misses can never be higher than 1/n, where 
‘n’ is the number of iterations timed. Hence, cold 
misses are unlikely to be important for realistic runs. 

The second claimed advantage of tapes, simplic-
ity, has two parts: simplicity of use and simplicity of 
support. Using the modified synchronization routines 
merely consists of replacing existing synchronization 
calls. Determining whether to use the routines is 
more difficult. Ideally, the system itself would recog-
nize iterative access patterns and either automatically 
invoke modified routines or inform the user. This is a 
subject of future research. However, the access pat-
terns that our current mechanisms exploit are quite 
simple and common. Parallelizing an application in 
the first place requires far more detailed knowledge 
of data movement than is required to select among 
these mechanisms. 

Our claim of simplicity for support is based on 
the amount of code needed to build the tape mecha-
nism. The total size of the CVM system is about 
15,000 lines of commented code, including debug-
ging statements. The tapes support layer consists of 
less than 500 lines of C++ code, and the Tapeworm 
synchronization library is an additional 400 lines.  

6. Tapes and other memory models 
The tapes concept has been carefully designed in 
order to accommodate a range of underlying consis-
tency protocols, including those implementing weak 
memory models like LRC. However, tapes can be 
efficiently implemented on top of conventional sin-
gle-writer-multiple-readers (SWMR) protocols as 
well. The salient feature of these sequentially consis-
tent protocols is that a single virtual page can be wri-
table at one node, or readable at one or more nodes, 
but not both. This implies that any valid copy of a 
page is as up to date as any other copy in the system. 
This is very different than with multi-writer LRC 
implementations, where a single page may be simul-
taneously modified by any number of processors. 
Much of the complexity in CVM’s support for tapes 
arises from the need to identify, locate, and retrieve 
the data needed to create an up-to-date copy of a 
page.  

The support needed from a SWMR protocol is 
essentially a subset of the support in CVM described 
above. Section 4 listed four requirements from the 
underlying system: interval specification, access re-
cording, “hole” tape creation, and data instantiation. 
The first two are handled as with LRC protocols. 
Taking the last two in reverse order, SWMR proto-
cols do not validate local copies of pages by applying 
diffs; all that is required is to create a local copy. 
Since all copies are guaranteed to be up to date, any 
such copy will contain all previous updates. Hence, 
instantiating the data referenced in a tape consists of 
making local copies. “Hole” tapes, therefore, consist 
of a single 3-tuple per invalid page; the interval and 
process id’s of each tuple are irrelevant.  
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6.1 Emulation of update-based protocols 

Having described the interaction of tapes with differ-
ent underlying memory model implementations, we 
next describe how tapes can be used to emulate the 
runtime behavior of several high-performance mem-
ory model implementations. While a full-fledged 
performance comparison between tapes-based code 
and these other implementations is beyond the scope 
of this paper, we argue that tapes can be used to ex-
press both the data capture and data movement func-
tionality needed to emulate the other protocols. In all 
cases, we assume that the underlying protocol is 
LRC.  

Tapes can be used to construct data-movement 
protocols that offer the performance advantages of 
SDSM consistency algorithms such as home-based 
LRC [36], entry consistency [5], and scope consis-
tency [15]. These algorithms differ from standard, or 
homeless, LRC [19] in both consistency semantics 
and in data movement. However, the difference in 
consistency semantics usually has a negligible effect 
on performance.  

To see this, note that the differences essentially 
boil down to the question of what writes seen by the 
releaser of a synchronization variable need to be seen 
by the next subsequent acquirer. Figure 8 illustrates 
the differences in consistency semantics between 
(homeless) LRC, scope consistency, and entry 
consistency. Home-based LRC implements the same 

sistency. Home-based LRC implements the same 
memory model as homeless LRC with a different 
underlying page replication scheme. Greatly simpli-
fied, entry consistency requires locks to be explicitly 
identified with the data that they guard. The acquirer 
of a lock must see the same versions of all data asso-
ciated with the lock as were seen by the last releaser 
when its release was performed. At the time of its 
first lock acquire in Figure 8, for example, p2 sees the 
update to x, but not the update to t. Likewise, p3 sees 
only p2’s update to y, not the updates to x and t.  

Scope consistency is similar, but differs in that 
the associations of data to synchronization variables 
need not be explicit1. Hence, the lock transfer from p1 
to p2 would transfer notification of the updates to 
both x and t. The other lock transfer would transfer 
notification of the updates to y and z between p2 and 
p3.   

Finally, LRC requires all modifications made 
prior to a release to be made visible at the next sub-
sequent acquire. Hence, p3 sees p2’s modifications to 
both y and z, and even sees p1’s modification to t. 
This is despite the fact that p1 and p3 have not ac-
cessed any synchronization variables in common, or 
communicated directly. 

                                                           
1 There are other differences, but they are not relevant to 
this discussion. 

P1 P2

acq(L1, x)
w(x)1
w(t)1

rel(L1)

P3

acq(L1, x)
r(x)1
rel(L1)

acq(L2, y)
w(y)2
w(z)2
rel(L2)

acq(L2, y)
r(y) ?
r(z) ?
r(t) ?
rel(L2)

 
Figure 8: The parameters to the acq() calls are the lock, and any explicit data associations that would be 
specified in the case of entry consistency. Assuming that all data was initially zero, the P3’s reads of y, z, 
and t would return 2,2,1 for LRC, 2,2,0 for scope consistency, and 2,0,0 for entry consistency. 
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None of these differences in consistency seman-
tics translates to a significant performance difference. 
Transferring notifications of additional writes uses no 
additional messages, and consumes a negligible 
amount of space on existing messages. These addi-
tional notifications may cause pages to be errone-
ously invalidated if pages are falsely shared, and if 
write trapping is performed through page-based vir-
tual memory mechanisms. However, this still only 
has a performance impact if the erroneously invali-
dated pages are subsequently accessed before being 
invalidated through true sharing. Various studies 
have shown that relaxed consistency models largely 
eliminate the effects of false sharing in page-based 
systems [4, 18].  

Aside from differences due to the use of page-
based or diff-based write collection mechanisms, the 
primary performance differences between scope, en-
try, and lazy release consistency are due to the degree 
to which faults are eliminated by moving updates 
prior to their use [9]. We discuss below how tapes 
can be used to emulate this data movement for each 
protocol. Our discussion assumes an underlying pro-
tocol implementing homeless LRC, but the data-
movement protocols will work with a variety of un-
derlying protocols. 

Home-based LRC 
Home-based LRC [36] protocols implement the same 
consistency model as homeless LRC, differing only 
in the underlying implementation. The primary dif-
ference is that pages in home-based protocols each 
have a designated home. Any modification made to a 
page is flushed to the home at the next synchroniza-
tion release, while page faults are satisfied by retriev-
ing a complete new copy from the page’s home. This 
has two advantages. First, the protocol updates the 
home, rather than invalidating it. A consumer does 
not have to fault data across the network if it is the 
home for the desired pages, because they are auto-
matically flushed to it soon after they are created. 
Second, home-based protocols have lower memory 
overheads because copies of the modified data can be 
discarded after being flushed to the home node. 
Homeless protocols need a garbage collection 
mechanism in order to identify diffs that can be dis-
carded.  

Emulating home-based protocols essentially con-
sists of providing a means of designating each page’s 
home and of flushing updates to the home at syn-
chronization points. The former is trivial and omitted 
here. The latter is implemented by flushing updates 
made while the lock is held to the updates’ homes, 
and is implemented by the code in Figure 9. An array 
of extents, homes, names the pages for which each 

node is “home”. A single tape captures all updates 
created while a lock is held, and another track all 
other updates. This code assumes that locks are not 
nested, but extension to the nested case is straight-
forward. 

Recording into barrierWrites is paused 
while a lock is held. The flush() routine is used to 
flush new updates to their homes. For each node, we 
create a new tape containing the tape of all updates 
filtered by the pages for which that node is “home”. 
The result is flushed to that node.  

Entry and scope consistency 
Tapes could also be used to build a synchronization 
interface that would closely approximate the data 
communication characteristics of Midway’s [5] or 
CRL’s [16] update protocol. While both systems dif-
fer from CVM in many ways, one of the key differ-
ences is that both Midway and CRL use update-based 
protocols. Unnecessary updates are avoided by limit-
ing the updates to shared regions that are explicitly 
associated with synchronization. The auto-locks de-
scribed in Section 3.2 would approximate these data 
movement patterns, modulo excess invalidations 
caused by false sharing. 

Similarly, a tape is not a scope, but they can be 
used to build a synchronization interface that superfi-
cially mimics scope consistency (ScC) [15]. The two 
would differ in that ScC is a consistency model, 
whereas any interface built using tapes is merely a 
data movement mechanism that exists on top of the 
underlying consistency model. Hence, whatever 
claims are made as to the relative benefits of ScC and 
LRC as a consistency model still apply. However, 
tapes can be used to greatly reduce communication 
traffic in either case. The canonical ScC implementa-
tion is home-based [15], so all updates are con-
strained to move through the home node. Therefore, 
data communication between processes p1 and p2 
must involve the home nodes of any data communi-
cated. The tapes-based approach can therefore move 
less data, and certainly use fewer messages, than the 
home-based approach for all cases where the home 
nodes are not one of the communication endpoints. 
We plan to investigate the performance of a tapes 
layer on top of ScC in the future. 

Although entry consistency allows either invali-
date or update implementations, Midway’s canonical 
implementation uses an update protocol for lock syn-
chronization transfers. Acquiring a lock guarantees 
that all of the data explicitly associated with that lock 
are present and valid. Recall that this is very close to 
the semantics of the user locks discussed in Section 
3.2. The only major difference is that the user lock 
mechanism is not guaranteed to have all diffs in the 
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presence of false sharing. Likewise, data movement 
under scope consistency is similar to the auto-lock 
mechanism discussed in Section 3.2. 

7. Related work 
Software distributed shared memory (SDSM) has 
been an active field of research for over a decade. 
Early page-based systems, such as Ivy [24] and 
Clouds [10], established the basic ideas of page-
based VM support. Relaxed consistency models were 
introduced by Munin [6], which pioneered the use of 
release consistency and multiple protocols, and 
Treadmarks [20], the first highly-portable implemen-
tation of lazy release consistency and the system on 
which CVM is closely modeled.  

Work on alternatives to VM-based write-
trapping began in earnest with Midway [5] and Bliz-
zard [31]. Midway uses a modified compiler to gen-
erate code that modifies dirty bits after each shared 

write. Blizzard-S (and later, Shasta [30]) uses a bi-
nary-rewriter to insert code that invokes a state ma-
chine at each access. Blizzard-E is similar, but uses 
manipulation of the ECC bits of the CM-5 to invoke 
the state machine. In all cases, the method of write 
trapping and collection can easily be accommodated 
by the tapes abstraction. Furthermore, all of these 
protocols are single-writer-multiple-reader, so sup-
port for tapes would be quite simple. However, one 
of the key points of these protocols is that they avoid 
false sharing by maintaining consistency at fine 
granularity, either at a cache block or program object 
size. This potentially poses scalability problems for 
tape implementations because tapes contain 3-tuples 
for each modified object, and cache lines and pro-
gram objects are usually much smaller than virtual 
memory pages. Tape data structures would therefore 
be much larger on such systems than on VM-based 
systems.  

Tape   lockWrites;   
Tape   barrierWrites; 
Extent  homes[MAX_NODES];    /* already initialized */ 
 
void HomeBased::lock_entry(int lockId) 
{ 
 lockWrites.reset(); 
 lockWrites.start_writing(); 
 barrierWrites.pause(); 
} 
 
void HomeBased::lock_release() 
{ 
 flush(lockWrites); 
 barrierWrites.unpause(); 
} 
 
void HomeBased::barrier_exit() 
{ 
 barrierWrites.reset(); 
 barrierWrites.start_writing(); 
} 
 
void HomeBased::barrier_entry() 
{ 
 flush(barrierWrites); 
} 
 
void flush(Tape *tape) 
{ 
 tape.stop_writing(); 
 Extent *ex = tape.project_data(); 
 for proc in (all processes) { 
  if (proc == ME) continue;  
  if (Tape *perNodeTape = tape + homes[proc]) { 
   populate perNodeTape and send to proc; 
  } 
 } 
} 

Figure 9: Implementing home-based data movement. 
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There are a number of ways that this scalability 
problem might be addressed. For example, fine-
grained objects might be aggregated at the tape layer, 
either in consecutive ranges or by dynamically ob-
serving objects that are accessed together. Shasta 
performs a great deal of analysis in order to minimize 
the amount of inserted code. This analysis could con-
ceivably be extended to statically identify and aggre-
gate objects. 

Record/replay barriers were first implemented by 
the Wind Tunnel project [13]. This work focused on 
providing support for irregular applications by coding 
application-specific protocols, one of which imple-
mented a record/replay barrier. Later work in the 
same project resulted in a protocol-implementation 
language called Teapot [7]. This work is similar to 
ours in that both are trying to expose protocol handles 
to application or library builders. However, the Tea-
pot language is more complex. More lines of Teapot 
code are required to implement a sequentially consis-
tent invalidate protocol than the corresponding proto-
col written in C++ on CVM. Part of the reason for 
this additional complexity is that Teapot protocols 
perform both data movement and maintenance of 
correctness, whereas consistency can not be violated 
in any synchronization library built on top of tapes. 
One major advantage of Teapot is that it leverages 
existing cache protocol verifiers to automatically 
verify Teapot programs. 

Our work has similarities to work performed at 
Rice University on compiler-SDSM interfaces [12]. 
The missing_data_type() routine is essen-
tially the information-gathering phase of the Tread-
Marks [3] validate(). Some of the update work 
we describe is similar in spirit to the TreadMarks 
push() command. However, our work not only 
provides ways to manipulate data, as with Tread-
Marks, but it also provides ways to gather this infor-
mation dynamically through tapes. While the Tread-
Marks work assumes all information is provided by 
the compiler, our work provides a way for the user or 
synchronization library to gather this information at 
runtime. For instance, our tapes allow us to dynami-
cally determine the extent of the data being accessed, 
while this information is assumed to be known by the 
compiler in TreadMarks. Our work also allows the 
user to manipulate discover and manipulate shared 
modifications at a high level. Recent work at Rice 
has investigated automatic determination of extent-
like objects in shared memory applications [4]. 

We have concentrated our discussion on soft-
ware SDSM systems, but it may also be relevant in 
the context of hardware shared memory systems. For 
instance, the prefetch and poststore primitives of the 
KSR-2 [1] implement user-initiated data movement 
on top of the underlying consistency protocols. Other 

work [28] generalized these primitives to allow the 
destination of pushes to be specified either by run-
time copyset management or by specific calls initi-
ated by application programs. By augmenting these 
primitives with the ability to read and write copyset 
information, tapes could be supported on top of this 
type of system with only a minimal runtime layer. 
Even with an efficient implementation, however, 
such a system would probably only be useful with 
large cache lines, i.e. 128 or more bytes. Kagi [17] 
categorizes a number of techniques for increasing 
synchronization speed on SMP’s, including colloca-
tion (putting locks and the data they guard on the 
same cache lines) and QOLB, a distributed lock im-
plementation. The most directly relevant to SDSM 
systems is synchronous prefetch, or compiler-
directed prefetches of synchronization variables. 
However, this technique could only be implemented 
with extensive cooperation from the underlying pro-
tocol, and so would not generally be implemented at 
the tapes level. 

Several papers have used predictive techniques 
to accelerate hardware coherence protocols directly. 
Zhang [35] described a technique similar to our pro-
ducer-consumer regions, but in the domain of cache 
lines. Their technique allows users and compilers to 
explicitly create arbitrary groups of cache lines, 
which are fetched as a group. This is useful even for 
regular applications (where the groups will usually 
consist of contiguous lines), but is especially useful 
for irregular applications. Lebeck [23] describes self-
invalidating caches, where the directory controller 
identifies cache lines to be self-invalidated based on 
prior behavior. There is no direct tapes analog be-
cause the point of self-invalidating caches is to elimi-
nate coherence messages. Tapes affect only data 
movement, not coherence. Mukherjee [25] described 
the use of branch predictors in anticipating coherence 
operations. Similar techniques could be used to direct 
tape operations. However, they are likely to be less 
useful because SDSM systems have larger, and there-
fore fewer, operations. Statistical techniques usually 
work best with large populations. 

Shared memory systems with dedicated protocol 
processors [22, 29] might turn out to provide the best 
possible platform for tapes implementations. Tape 
code executing on the protocol processors could track 
data and synchronization accesses without ever in-
volving the application processor.   

8. Conclusions 
This paper has described the tape mechanism, and its 
use in tailoring data movement to application seman-
tics. Tape-based synchronization libraries are layered 
on top of existing consistency protocols and synchro-
nization interfaces, meaning that incorrect choices 
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(whether by heuristics or programmers) affect only 
performance, not correctness. 

The tape mechanism is ideally suited to direct 
data movement because it allows shared accesses to 
be recorded, grouped, and manipulated at a very high 
level. These tapes can be used to predict future data 
accesses and to eliminate subsequent misses by mov-
ing data before it is needed.  

We used the tape mechanism to build Tape-
worm, a new synchronization library that uses infor-
mation gathered at runtime to reduce access misses. 
Tapeworm’s interface consists of auto-locks, pro-
ducer-consumer regions, and record/reply barriers. 
Auto-locks pre-validate data that is accessed while 
locks are held. Producer-consumer regions use the 
first access to a region as a hint to request the rest of 
the region before it is needed. Record/replay barriers 
allow accesses to be recorded during one iteration 
and then played back during future iterations. The 
combination of these mechanisms allows Tapeworm 
to eliminate an average of 85% of remote misses for 
our applications, 63% of all messages, and to im-
prove overall performance by an average of 29%. We 
conclude that the tape mechanism is a promising ap-
proach to creating high-performance synchronization 
libraries. 

We also describe how tapes can be used to mir-
ror the data movement in recent update-based proto-
cols, including home-based LRC [36], entry consis-
tency [5], and scope consistency [15]. These proto-
cols differ from generic LRC in terms of the pro-
gramming model, the memory model, and the flow of 
data. Tapes-based implementation can be used to 
separate the performance effects of the latter factor 
from the effects of the former two factors. Such im-
plementations can also be used to provide “front-
ends” to a SDSM system, somewhat analogously to 
the front end of a compiler. 

In general, Tapes have at least two major advan-
tages over optimizations of specific protocols. First, 
tapes provide a high-level abstraction of shared ac-
cesses, and are protocol-independent. Tapes make 
few requirements on the underlying protocol, provid-
ing a terse, powerful approach to managing data 
movement. Second, tape mechanisms can be imple-
mented and used incrementally. Applications can be 
completely debugged before any tape mechanisms 
are added. One by one, tape mechanisms can be used 
to improve data movement at inefficient points in 
application executions. 

Our future work with tapes will center on two ar-
eas. First, we are exploring the use of compilers to 
automatically generate tapes interfaces. This work is 
complementary to recent work in parallelizing com-
pilers [8, 32]. Tapes improve performance by exploit-
ing repetitive access patterns. Identifying such pat-

terns with high degree of probability in the compiler 
is much easier than generating explicit message-
passing code for the data movement. Hence, compiler 
heuristics that might not be rigorous enough to gen-
erate verifiably correct message-passing code could 
be used by tapes to direct data movement in a SDSM 
system. 

Second, we are looking at the expressiveness of 
the tapes interface, and attempting to identify other 
functionality that tapes layers could be used to sup-
port.  One current deficiency is the inability of tapes 
to track dynamically changing access patterns. Our 
tapes support only tracks accesses that generate page 
faults. We currently have no way of telling (at the 
tapes level) whether data that is pushed to another 
node by a tapes layer is actually used. Hence, data 
might continue to be pushed to nodes that long ago 
ceased consuming the data. There are several obvious 
ways to address this, such as periodically resetting all 
mechanisms and rebuilding access information from 
scratch. However, this approach would entail over-
head even in the common case of static applications, 
so we are looking for a less expensive option. We are 
also looking at the use of tapes in debugging. A 
tapes-based approach could conceivably be used to 
build an online race-detection mechanism [26] for 
single-writer protocols. However, such a mechanism, 
while expressible at the tapes level, would likely be 
protocol-dependent.  Race detection on multi-writer 
protocols requires the underlying protocol to check 
for sharing at all granularities less than a virtual 
memory page. 
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