
1

CVM: The Coherent Virtual Machine
Pete Keleher

University of Maryland
keleher@cs.umd.edu

CVM Version 0.1
November 21, 1996

1. Introduction
This tech report describes contains the primary description of the Coherent Virtual Machine (CVM) software dis-
tributed shared memory system. CVM is a user-level library that links with shared memory programs and enables
them to exploit shared-memory semantics over message-passing hardware, i.e. networks of workstations or distrib-
ute-memory parallel machines such as the IBM SP-2.

CVM supports multiple protocols and consistency models. Like commercially available systems such as TreadMarks
[keleherdwarkadas94], CVM is written entirely as a user-level library and runs on most UNIX-like systems. Unlike
TreadMarks, CVM was created specifically as a platform for protocol experimentation.

The system is written in C++, and opaque interfaces are strictly enforced between different functional units of the
system whenever possible. The base system provides a set of classes that implement a generic protocol, lightweight
threads, and network communication. The latter functionality consists of efficient, end-to-end protocols built on top
of UDP.

New shared memory protocols are created by deriving classes from the base Page and Protocol classes. Only
those methods that differ from the base class's methods need to be defined in the derived class. The underlying sys-
tem calls protocol hooks before and after page faults, synchronization, and I/O events take place. Since many of the
methods are inlined, the resulting system is able to perform within a few percent of a severely optimized system,
TreadMarks, running a similar protocol. However, CVM was designed to take advantage of generalized synchroni-
zation interfaces, as well as to use multi-threading for latency toleration. We therefore expect the performance of the
fully functional system to improve over the existing base. NOTE: Several of these techniques are either not yet im-
plemented or in an incomplete state.

Of course, the ultimate reference for CVM is the source itself.

The rest of this report proceeds as follows. Section 2 describes how to install CVM, Section 3 describes how to run
and debug applications on CVM. Section 4 describes how to extend CVM by defining new protocols. Finally, Sec-
tion 6 describes future extensions that we plan to add to the core system.

2. Installation

2.1 Getting CVM
CVM’s home page is http://www.cs.umd.edu/projects/cvm.html. This document, together with complete source, can
be downloaded from the home page.

2.2 Compiling CVM
CVM currently supports four distinct platforms, Sparcs running SunOS 4.1, Sparcs, running SunOS 5.5 (Solaris 4.0),
the IBM SP-2 running AIX 4.1, and DEC Alpha workstations running Digital Unix 3.2D-1. We are currently com-
piling CVM using gcc version 2.7.2 and gmake 3.74 on all platforms.

The first release of CVM uses UDP/IP communication only. Future versions will support MPI as well.

Figure X shows CVM’s general heirarchy. The main CVM directory has a source subdirectory, and apps subdirec-
tory, and library build subdirectories for each supported architecture. Underneath the apps directory are each of the
application supplied with the distribution. Each application subdirectory contains a similar structure, allowing ver-
sions to be build for each architecture.

In general, to build a CVM application, you first need to build the appropriate library, and then the application. To
build ‘Water’ on Digital Unix, for example:

2

• cd cvm/alpha
• gmake
• cd ../apps/water/alpha
• gmake

3. Running Applications on CVM

3.1 Configuration
In order to transparently spawn worker processes on other hosts,CVM needs two files:

• .cvmrc - CVM looks for a file in your home directory called .cvmrc . .cvmrc contains a list of hosts to run on,
one per line. The host that CVM is started on must be the first host in this file. Alternatively, the -H flag can be
used to specify hosts on command lines. In situations where multiple network connections between two ma-
chines exists, the desired connection can usually be specified by using the correct variant of the name, e.g.
‘spanky01’ might name an ethernet interface to spanky01, ‘spanky01h’ might name a connection to spanky01
over the SP-2’s high-performance switch, and ‘spanky01-a’ might name the ATM connection to spanky01.

• .netrc - CVM uses rexec to spawn worker processes on other hosts. In order to avoid being queried for a
password for each worker process, you must set up a .netrc file on the master node, specifying userids and pass-
words for all nodes that might host worker processes.

Fully-qualified names (e.g. herby.cs.umd.edu as opposed to herby) should be used in all cases.

3.2 Command-Line Options
The cvm_startup() routine parses all options after the first double dash (--) on the command line. The following are
supported options:

-a Uses the runon() command on DEC Alpha multiprocessors when spawning worker threads.
-A <num> Multiplies the default page size by ‘num’
-d Turn on debugging output. See Section 3.3 for details. The CVM_DEBUG variable must be defined

in global.h in order for this to do much. Undef CVM_DEBUG to improve performance.
-E Create output files. Automatically invoked for -d, -F, -T.
-F Collect “history” information. This is basically a history of events, such as how long each thread

waited at barriers for the last 100 barriers. This is printed to the out.0.x file.
-H <mach> Interpret ‘mach’ as the name of a machine on which to spawn a remote thread. Multiple ‘-H’ com-

mands can be used to specify all the machines for the run. The first ‘-H’ must name the machine on
which the application is initially run, subsequent arguments name other machines. For instance, to
run water on machines spanky01 through spanky08 , I can specify a command line of the
form:

water -- -n8 -Hspanky01 -Hspanky02…
or, taking advantage of shell interpolation:

water -- -n8 -Hspanky0{1,2,3,4,5,6,7,8}
In both cases, the application must be started from spanky01 .

-n <nodes> Specify number of threads in system. A total of ‘n’ machines must be specified either by the .cvmrc
file or through repeated -H arguments.

-s Turn on statistics gathering.
-S Turn on timing statistics. These can adversely affect performance, but usually not by much.
-T Use the /tmp/ directory for debugging output.
-X <ind> Choose a protocol. Supplying either 0, 1, or 2 as the argument to -X chooses one of the three proto-

cols provided with CVM. ‘0’ is the default. The protocols are the following:
1) Lazy multi-writer (LMW) - Lazy Release Consistency (LRC), allowing multiple writers to

simultaneously access the same page without communication. “Diffing” is used to summa-
rize modifications and to resolve multiple concurrent modifications to the same page. Ad-
vantages include low numbers of messages, low bandwidth, good toleration of false shar-
ing, and good overall performance. Disadvantages are complexity, “diffs” (inelegant), LRC
programming model (synchronization must be correct).

2) Lazy single-writer (LSW) - Uses LRC, but differs in that only a single writer is allowed to
modify any given page at a time. Since there is no problem with merging multiple concur-

3

rent diffs, they are not used. Advantages over LMW are simplicity, and a slight perform-
ance edge in cases of no false sharing. No diffs. Disadvantages are poor performance in the
face of false sharing (the ping-pong effect), and higher bandwidth requirements (since
small modifications can no longer be summarized in a diff rather than sending the entire
page). The ping-pong effect is mitigated to some extent be allowing each processor to have
access to any new page for a delta of time before it can be invalidated or stolen away.

3) Sequentially consistent single-writer (SEQ) - Uses sequential consistency rather than LRC,
and only a single writer. All the disadvantages of LSW apply and are usually more pro-
nounced. Additionally, there are extra messages for invalidations. Advantage is the pro-
gramming model, no dependence on synchronization. SEQ also uses a delta interval in or-
der to somewhat minimize the effects of false sharing.

There are other options, but most refer to untried, untested, experimental code and you are advised not to use them.

3.3 Debugging CVM Applications
There are two basic avenues to debugging application on CVM or CVM itself:
Output files -Turning on either the -d, -E, -F, or -T options causes each thread to create an output file in the same
directory as the application. With the -d option (and CVM_DEBUG defined in global.h), a large (easily 100 meg)
amount of debugging output is spewed to per-thread files. The files are named out.x.y, where x is the process id of
the thread associated with the file and y is the total number of threads.
Most of this output is likely to be unintelligible without study of CVM’s source code. However, in the event of a
crash with -d turned on, even a very cursory examination of the output files should give you a good idea of where the
processes were when the crash occurred. One special case is if one of the files ends with a ‘segv nonsense’ comment.
This usually refers to a bad pointer de-reference, often caused by incorrect programs.
Debuggers - Both gdb and dbx can be used with CVM. The usual approach is to start the application, log in to the
machine on which the thread of interest is running, and then stop the thread by using the ‘attach’ command from with
the debugger.

3.4 Cleaning Up After CVM
Worker processes created by CVM on other machines will all usually die if any one process dies. However, if a
glitch occurs during startup (i.e. before the “Initialization Complete” message appears), processes must be manually
killed. This can usually be semi-automated via awk and shell scripts.

4. Programming with CVM

4.1 Shared Memory Semantics and Synchronization
CVM supports the abstraction of a shared space visible to multiple threads, each of which runs on a different ma-
chine. These threads communicate via shared-memory semantics; e.g. memory allocated through CVM’s
‘cvm_alloc’ call is visible to all threads in the system, regardless of location.
CVM supports several different protocols, each of which implements a slightly different memory model. The default
protocol supports a multi-writer version of Lazy Release Consistency (LRC) [Keleher, 1992 #315]. The memory
models supported by LRC protocols differ slightly from the “standard” shared-memory semantics in that two proc-
esses are only guaranteed to see the same view or version of a given shared object if they have synchronized with
respect to each other, even if only indirectly. Such must be accomplished through synchronization provided by the
CVM system, i.e. cvm_lock() or cvm_barrier().

4.2 Example Program
The following is a complete, runnable CVM program that fills an array in parallel, with the number of parallel
threads (each on a different machine) controlled by a command-line argument.

#include <cvm.h>

#define DIM 4096
int *arr;
int sz = DIM;

void worker()

4

{
int i, start = (DIM/cvm_num_procs) * PID;
int end = start + DIM/cvm_num_procs);

if (end >= DIM) end = DIM-1;
for (i = start; i < end; i++) {

arr[I] = PID;
}

}

main(int argc, char **argv)
{

int c;

while ((c = getopt(argc, argv, “s:”)) != -1) {
case ‘s’: sz = atoi(optarg); break;

}
cvm_startup(argc, argv);
arr = (int *)cvm_alloc(sz);
cvm_create_procs(worker);
worker();
cvm_finish();

}

The program could be run with an array size of 1k on four processors via the following command line:

a.out -s 1024 -- -n4

4.3 CVM’s API
The following summarizes CVM’s application-programmer interface:
• cvm_startup() reads all arguments after the double dash (which must be present), and initializes CVM.

• cvm_alloc() allocates a chunk of shared memory and stores the address of the memory into the variable ‘arr’. At
this point, the program is still single-threaded, so all threads will eventually see this value.

• cvm_create_procs(worker) - creates n-1 (in this case three) worker processes on machines specified by the
.cvmrc file, and starts a single thread on each machine in the worker() function.

1) Each thread at this points inherits an exact copy of the master thread’s global, heap, and stack data. This
implies that each thread, for example, will have it’s own copy of the ‘arr’ variable, and all will point to the
same address in shared space.

2) After this points, local program globals (such as ‘arr’), heap data, and stack data will diverge from machine
to machine.

3) cvm_alloc() calls are not allowed after the cvm_create_procs() call completes. Think of this as the end of
your initilization phase. Indeed, CVM’s automatic timing starts at this point and continues until
cvm_finish() is called.

• The worker() routine is called directly by the master process in order to have the master perform a portion of
the work.

• When worker() completes at the worker threads, cvm_finish() is implicitly called.

Each thread is assigned a process ID, accessed through the PID macro. The total number of parallel threads, speci-
fied via the ‘-n’ cvm option, is accessed via the cvm_num_procs integer variable.

Threads in this application do not share data, and hence do not need to synchronize. However, you applications pre-
sumably will.

The complete source to three applications, water, barnes, and sor are included in this distribution.

4.3.1 Initialization
• cvm_startup(int argc, char **argv) - This routine is called after your app process its own arguments. The inten-

tion is to support programs that are invoked as follows:

5

program <your options> -- <CVM options>.
Hence, your application should always include a getopts loop prior to calling cvm_startup().

• cvm_alloc(int sz) - allocate shared memory. This is the sole means of allocating shared memory, hence all
shared data in CVM programs is necessarily dynamically allocated (this is not always true, look at suif_if.c
and fort_if.c for examples of sharing statically-allocated data). All calls to cvm_alloc() must complete prior
to the cvm_create_procs() call.

• cvm_create_procs(func_ptr worker) - creates threads on remote machines. If n threads are specified on the
command line, n-1 remote threads are created at this stage. The machines are determined either through the
.cvmrc startup file, or on the command line via the -H option. All remote threads are started in the function
specified by the argument. Timing starts at the end of this routine.

4.3.2 Synchronization
• cvm_lock(int id) - Acquires a global lock on the lock specified by ‘id’. The current maximum number of locks is

5000. This can be changed in $CVM/include/cvm.h.
• cvm_unlock(int id) - Releases a global lock.
• cvm_barrier(int id) - Performs a global barrier. Barriers prevent any process from proceeding until all processes

have arrived. The ‘id’ parameter is currently ignored.

4.3.3 Cleanup
• cvm_finish() - called only by the master process. Causes the master to wait until all worker process have com-

pleted. It then prints elapsed time and shuts CVM down.
• cvm_exit(char *, …) - called in case of error for a quick exit.

5. Extending CVM
CVM was written with an eye to extension. Essentially, adding a new protocol to CVM consists of:
1) creating the new protocol by deriving new objects from Protocol and Page,
2) modifying the cvm library makefile to include the new sources, and
3) modifying startup.c to create the new protocol and add it to protObjs (search for ‘lsw’ and duplicate for your

protocol).
4) modifying msg.h to include any new message and data types.
5) modifying comm.c to include a string identifying each new message and data type.
In the future, each page will potentially run a different protocol. However, right now all pages must use the same
protocol.
The following is a sketch of the way protocol and communication objects interact. The true documentation of CVM,
of course, is the code itself.

5.1 Communication
All protocol communication is accomplished through Msg objects. The following is a condensed definition of Msg:

class Msg {
void send(int type, int to);
Msg *wait();
void forward(int to);
void reply(int reliable = FALSE);

int add(int type, char *buf, int buf_sz, int copy=TRUE);
char *retrieve_type(int type);

};

A request is sent to another processor by:
1) Creating a new msg
2) Adding data via ‘add’.
3) Calling ‘send’.
4) Waiting for a reply via ‘wait’, which returns another Msg object containing the reply message.
5) Data is retrieved from the Msg via ‘retrieve_type’, and then…
6) …both the original Msg and the reply must be deleted.

6

The ‘reply’ method is used to reply to a Msg. If the ‘reliable’ parameter is true, the Msg must not be deleted, the
system retains the reply in order to automatically handle duplicated message. If ‘reliable’ is FALSE, the protocol
code must delete the Msg itself.

5.2 Protocol Extension
The following is a condensed version of the Protocol class:

class Protocol {
int msg_handler(Msg *msg); // each protocol has a chance at each Msg

void add_to_lock_grant(Msg *msg, int from);
void read_from_lock_grant(Msg *msg, int from);
void add_to_lock_request(Msg *msg, int from);
void read_from_lock_request(Msg *msg, int from);

};

New protocols are created by deriving a new protocol from the above class, overloading those methods that are ap-
plicable. Most important are the ‘msg_handler’ and synchronization routines. An incoming Msg is presented to each
protocol in turn until one claims it by returning TRUE. The synchronization methods are called at the appropriate
place by the synchronization classes, allowing each protocol to append information to outgoing messages and to re-
trieve information from incoming messages.
The synchronization methods are needed for protocols based on synchronization, such as release consistency or lazy
release consistency, and clearly are not needed for sequential consistency. For the latter, only the ‘msg_handler’
method is necessary, together with an appropriate Page derivation:

class Page {
char *addr;
int is_readable();
int is_writable();
void make_readable();
void make_writable();
void make_unreadable();

void fault(int writing);
};

Only the last method needs to be overridden. The ‘fault’ method will usually interact with protocol routines to sup-
port the consistency model.

6. Future Plans
Future versions of CVM will include the following:
1) Per-node multi-threading support. This support can be used for latency toleration as well as providing a pro-

gramming model that is independent of the underlying architecture.
2) Adaptive load-balancing. Lightweight threads will allow thread migration across nodes. CVM will have an open

architecture that allows new adaptation algorithms to be experimented with.
3) Multiple protocols in the same run. Protocols will be able to be specified on a per-page or object basis.
4) Adaptive protocol switching.
5) High-level object support of consistency protocols. See the Sparcs paper at http://www.cs.umd.edu/~keleher.

