
1

Update Protocols and Cluster-based Shared Memory

Peter J. Keleher
keleher@cs.umd.edu

Department of Computer Science
University of Maryland

College Park, MD 20742

Abstract
Software DSMs have been a research topic for over a decade. While good performance has been
achieved in some cases, consistent performance has continued to elude researchers. This paper investi-
gates the performance of DSM protocols running highly regular scientific applications. Such applica-
tions should be ideal targets for DSM research because past behavior gives complete, or nearly com-
plete, information about future behavior. We show that a modified home-based protocol can signifi-
cantly outperform more general protocols in this application domain because of reduced protocol com-
plexity.

Nonetheless, such protocols still do not perform as well as expected. We show that the one of the major
factors limiting performance is interaction with the operating system on page faults and page protection
changes. We further optimize our protocol by completely eliminating such memory manipulation calls
from the steady-state execution. Our resulting protocol improves average application performance by a
further 34%, on top of the 19% improvement gained by our initial modification of the home-based pro-
tocol.

Keywords: DSM, Shared Memory, Update Protocols, Scientific Computing.

1. Introduction

Iterative scientific applications would seem to be ideal applications from the perspective of a software distrib-

uted shared memory (DSM) system. While aspects of such programs differ, many have highly regular sharing

behaviors. The set of shared data accessed by individual threads is often invariant from one iteration to the next.

This regular behavior can be used by DSMs to predict future accesses, and to move data in advance of subse-

quent accesses [4, 11, 12]. Such update protocols allow much of the latency of remote data fetches to be hidden.

Given reasonably efficient communication, DSMs should be able to achieve good speedups on such applica-

tions.

The output of parallelizing compilers, such as SUIF [13], is a good source for this type of application.

While parallelizing compilers can analyze many sequential programs well enough to generate message-passing

versions, this process is by no means easy or common. The process of generating parallel applications that run in

shared memory environments requires far less analysis. Further, the set of applications that can currently be

2

analyzed well enough to turn into a shared memory application is much larger than for message-passing appli-

cations.

By combining parallelizing technology with sophisticated runtime systems [3, 4, 12], we can create a

programming environment that is flexible and easy to use. Scientists are not required to write message-passing

programs or use data-parallel languages such as HPF. Instead, they can write sequential programs, rewriting a

few computation-intensive procedures, and adding parallelism directives where necessary. This combination has

the advantage of producing programs that can run on large-scale parallel machines as well as the more pervasive

multiprocessor workstations. This portability is important for scientists and engineers who want to develop ap-

plications that run well on their multiprocessor workstations, but who desire the ability to scale their applica-

tions up for larger parallel machines as needed. The combination of ease of use and scalability of the resulting

software is a key appeal of shared-memory compilers.

1.1 Contributions

This paper presents the design and performance of several new protocols to handle this and similar types of ap-

plications. We first look at a relatively straightforward update protocol based on multi-writer lazy release con-

sistency (LRC) [6].

We then show that modified home-based [15] protocols can perform even better than LRC protocols for

applications of this type. Whereas "home-less" LRC protocols can perform poorly for applications that modify

(and communicate) large amounts of data, home-based protocols maintain relatively little state, and such state

lives has short lifetimes. The main drawbacks of home-based protocols are related to problems adapting to dy-

namic sharing patterns, precisely the sort of pattern that the applications we are investigating here do not have.

The rest of the paper is organized as follows. Section 2 discusses the background of LRC and home-based

protocols and describes the specific protocols that will be investigated in this work. Section 3 presents the per-

formance of these protocols and attempts to relate their differences to how the protocols interact with specific

sharing patterns. Sections 4 and 5 describe and analyze the performance of extensions to our home-based proto-

cols that impose less of a load on the underlying operating system. Finally, Section 6 concludes.

2. Background and Protocol Descriptions

Our home-based protocols are based on those discussed by Zhou [15]. Home-based protocols are, in turn, based

on the multi-writer lazy release consistent (LRC) protocols used by DSMs such as TreadMarks [1] and CVM [5].

2.1 Distributed Shared Memory (DSM) Systems

CVM is a software distributed shared memory (DSM) system. DSM allows processes to assume a globally

shared virtual memory even though they execute on nodes that do not physically share memory. Figure 1 illus-

trates a DSM system consisting of n networked workstations, each with its own memory, connected by a net-

3

work. The DSM software provides the abstraction of a globally shared memory, in which each processor can

access any data item, without the programmer having to worry about where the data is, or how to obtain its

value. In contrast, in the native programming model on networks of workstations, message passing, the pro-

grammer must decide when a processor needs to communicate, with whom to communicate, and what data to

send.

For programs with complex data structures and sophisticated parallelization strategies, this can become a

daunting task. On a DSM system, the programmer can focus on algorithmic development rather than on man-

aging partitioned data sets and communicating values. In addition to ease of programming, DSM provides the

same programming environment as that on (hardware) shared-memory multiprocessors, allowing programs

written for a DSM to be ported easily to a shared-memory multiprocessor. Porting a program from a hardware

shared-memory multiprocessor to a DSM system may require more modifications to the program, because the

much higher latencies in a DSM system put an even greater value on locality of memory access.

The programming interfaces to DSM systems may differ in a variety of respects. We focus here on mem-

ory structure and memory consistency model. An unstructured memory appears as a linear array of bytes,

whereas in a structured memory processes access memory in terms of objects or tuples. The memory model re-

fers to how updates to shared memory are made visible to the processes in the system. The most intuitive model

of shared memory is that a read should always return the last value written. Unfortunately, the notion of “the last

value written” is not well defined in a distributed system. A more precise notion is sequential consistency [8],

whereby the memory appears to all processes as if they were executing on a single multiprogrammed processor.

With sequential consistency, the notion of “the last value written” is precisely defined. The simplicity of this

model may, however, exact a high price in terms of performance, and therefore much research has been done

into relaxed memory models. A relaxed memory model does not necessarily always return to a read the last

value written.

Node 1Node 1

MemMem

Node 2Node 2

MemMem

Node nNode n

MemMem

distributed shared memory

network

Figure 1: Distributed Shared Memory: The underlying DSM system uses local memories as
caches for remote pages. The net result is that the local memories, in combination with the net-
work, appear as an abstraction of shared memory.

4

2.2 Multi-Writer LRC Protocols

2.2.1 Lmw-i
LRC protocols allow the shared memory system to delay performing shared updates until specific synchroniza-

tion events occur. For the applications in this study, this means the next barrier. The advantage of LRC in this

context is that sharing (either true or false) does not cause invalidations between barriers.

This is useful in two cases. First, consider an example with true sharing. Shared data item x is initially

valid on both nodes i and j. If process pi writes to data x during the same barrier epoch (between the same two

barriers) in which pj reads x, the value returned by the read does not depend on the relative ordering of the read

and the write. The value that is returned by the read is always the last value written prior to the previous barrier.

By contrast, the canonical sequentially consistent [8] memory model would require node j's copy of x to be in-

validated before pi is allowed to modify it. The result is that if the write occurs before the read in "wall-clock"

time, the read will return the new value. However, if the read occurs before the write, the previous value is re-

turned.

Consider where this is useful. If the programmer intended pj's read to return the previous value of x, then

an anti-dependence exists between the two accesses. The compiler would need to add an extra round of syn-

chronization to enforce the anti-dependence for a sequentially consistent system. For an LRC system, on the

other hand, the notice of the write is only propagated to pj at the next barrier. The anti-dependence is therefore

protected without recourse to extra synchronization.

The second case where LRC is useful for our applications is in hiding the effects of false sharing. Assume

two data items x and y reside on the same shared page. Sequentially consistent systems require processes to gain

exclusive access to shared pages before modifying any items that reside on the pages. Therefore, modification of

x and y by distinct processes during the same barrier epoch requires the processes to communicate in order to

arbitrate access to the page. By contrast, multi-writer LRC protocols allow the modifications to proceed in par-

allel, without communication. The separate modifications are merged at the next synchronization.

 Lmw-i implements an invalidate-based multi-writer LRC protocol. Multi-writer protocols allow multiple

processes to simultaneously modify the same page without network communication. Our programs are pre-

sumed to be free of data races, so such concurrent modifications are constrained to be to disjoint sections of the

pages. At the end of each barrier epoch, the modifications to each shared page are captured in the form of diffs

(Figure 2). A diff is a run-length encoding of the changes made to a single virtual memory page. Diffs are cre-

ated by performing a page-length comparison between the current contents of the page and copy of the page that

was created at the first write access. If each concurrent writer summarizes its modifications as a diff, the system

can create a copy that reflects all modifications by applying the concurrent diffs to the same copy.

5

Since Lmw-i is an invalidate protocol, these diffs are not immediately sent to other processes. Instead,

structures called write notices are distributed to other processes via existing synchronization (barrier) messages.

Each write notice informs the recipient that a shared page has been modified, and the recipient invalidates any

local copy of the page. The write notice also names the diff that needs to be applied in order to bring the local

copy of the page up to date. Accesses to invalid pages cause page faults, during which the diffs named by write

notices are retrieved and applied to the faulting page. Once the diffs have been applied, the page protections are

re-validated and the application continues.

2.2.2 Lmw-u
Lmw-u is an extension of lmw-i that uses updates to communicate data whenever possible (see Figure 3). A

more complete description can be found in the literature [12], but we provide a short description here.

Accesses to shared pages are tracked by using per-page copysets, which are bitmaps that specify which

processors cache a given page. This information can be used to selectively employ a hybrid invalidate/update

coherence protocol. Coherence for pages that are consistently communicated between the same set of processors

can be updated, rather than invalidated, after writes. Such updates eliminate page faults. Coherence for the re-

maining pages is maintained by using the above invalidate protocol.

On the first iteration of each time-step loop, copysets for all pages are empty, and page faults can occur.

By the second iteration, however, copyset information accurately reflects stable sharing patterns by indicating

the processors that need each page. Page faults can be then be eliminated by sending any local updates to all

Write Currently
Unwritable Page Make Writable

Twin

modification

Diff

 Same Page on
Another Node

merged
changes

modification

Updated Page
(Unwritable)

Figure 2: Diff Creation: Updates are communicated in the form of diffs. Pages are
initially write-protected. At the first write access, the system makes a copy, or twin, of the
unmodified page. After the modification is complete, a diff is created by comparing the
twin with the page’s current contents. The diff consists of all modified data on the page.
Later, other page replicas are brought up to date by the applying the diff.

6

processors on the copyset for each page. Since updates are sent before the data is needed, subsequent remote

page faults are avoided.

SUIF was modified to automatically insert calls to DSM routines to mark pages to be updated at barriers.

For a given page, local modifications are then flushed to all other processors in the page's local copyset at each

barrier. A processor p is inserted into processor q's copyset for a page if p requests a diff for the page, or if q

sees a write notice for the page that was created by q.

Compiler analysis needed to use such a protocol is much simpler than communication analysis needed in

HPF compilers. The identities of the sending/receiving processors do not need to be computed at compile time.

Instead, the compiler only needs to locate data that will likely be communicated in a stable pattern, then insert

calls to DSM routines to apply the update protocol for those pages at the appropriate time. More precise com-

piler analysis can be used to explicitly clear or set the copysets of data to be communicated. The compiler’s an-

notations do not need to be guaranteed correct, since the page annotations only affect efficiency, not program

correctness.

As previously discussed, barrier flushes of updates (essentially a restricted update model) have both ad-

vantages and disadvantages. On the plus side, flushes ideally move data before it is needed, allowing computa-

tion and communication to be wholly overlapped. The result can be fewer page invalidations and page faults. A

second advantage is that lost flush messages do not affect correctness, only performance. Flush messages can be

unreliable, and therefore do not need to be acknowledged. A ``flush'' therefore consists of only a single message,

whereas a miss to shared data incurs at least one request and response message pair.

All consistency information in lazy-release-consistency systems is piggybacked on synchronization mes-

sages (barrier messages in the case of compiler-parallelized applications). By contrast, diff requests are inher-

ently two-way, and so cost two messages. On the negative side, if sharing patterns are not stable, out-of-date

Miss

B
arrier

B
arrier

Miss

P1

P2

P3
ITEM3 modified

ITEM1 modified

ITEM
1

IT
EM

3

Figure 3: Update protocols – If the modified pages must be fetched on demand, the
entire latency of the remote requests is seen by the requesters. However, if item1 and item3

are pushed by P1 and P3 prior to the first barrier, no miss latency is incurred.

7

copysets will cause data to be sent to processors that do not need it. Correctness is not affected, but the unneeded

flushes cause unnecessary overhead.

2.3 Home-Based Protocols

Home-based protocols differ from "homeless" protocols, such as lmw-i and lmw-u, in that each page has a stati-

cally assigned home. Each update to a page is flushed to the home at the next synchronization. The result is that

the “home” copy of each page is always up to date, at least with respect to the synchronization operations that

have been performed at it.

The home-based protocol has two potential advantages: the “home” effect, and the short lifetimes of many

data structures. As discussed above, homeless protocols summarize modifications in the form of diffs. Aside

from the expense of creating and applying diffs, they can cause homeless protocols to have voracious appetites

for memory because diffs have long lifetimes. The “home” effect refers to the fact that home-based protocols

allow the owner of a page (i.e. the home) to dispense with creating diffs describing its own modifications. Diffs

are created only to describe modifications made to a page by processes other than the page’s home node. Modi-

fications made by the home node are merely noted locally. No network communication is required.

Second, home-based diffs have short lifetimes. The most inelegant aspect of homeless protocols is that the

data structures that describe shared modifications can not be discarded until explicitly garbage-collected. For

example, consider Figure 4. This example shows three processes, P1 through P3, that access migratory data x.

First, P1 modifies x and releases a synchronization variable. P2 then acquires the synchronization variable,

causing any local copy of the page that contains x to be invalidated. Lastly, P2 accesses x.

With a homeless protocol, touching x causes a page fault that is satisfied by requesting the diff of w1(x)

from P1. However, the diff can not be discarded by P1 even after it has been supplied to P2, because P1 can not

know if or when some other process (P3, for example) might subsequently request the diff as well. More gener-

ally, the diff can not be discarded until the system can guarantee that no process will request it in the future. The

situation is complicated even more by the fact that if and when P3 requests diff1, the diff may be requested from

P2 rather than P1. For performance reasons, then, P2 can not discard the diff either. The result is that no diff, nor

any of the write notices that name diffs, can be discarded until garbage-collection occurs.

Figure 4: Diff Exchanges

8

By contrast, diffs have very short lifetimes under home-based protocols. Diffs are created at synchroniza-

tion points, flushed to the home nodes, and immediately discarded. This is correct under home-based protocols

because all page faults are serviced via complete page copies from the home node, rather than by applying diffs

to pre-existing page replicas.

Consider Figure 4 again. Assuming that the manager of the affected page is P3, both P1 and P2 will create

and send diffs to P3 prior to their releases. P2 will also need to request a new copy of the page from P3 before it

can perform the local modification. The advantage is that both diffs can be immediately discarded. The disad-

vantage of this approach is that more messages are sent than with homeless protocols. The situation can be even

worse. Consider the case where a fourth process, P4, is the home node for the page. In this case, both P1 and P2

will send diffs to P4. Both P2 and P3 will then request copies of the page from P4, a node that isn’t even involved

in the communication. This behavior means that home assignment must take expected sharing behavior into ac-

count in order to get efficient communication. Furthermore, dynamic sharing patterns would require additional

mechanisms in order modify home assignments.

To summarize, home-based protocols have the following advantages:

1. Modifications made by the home node do not require diffs to be created. They do need to be tracked,

however, and so still require local interrupts the first time each page is modified during each barrier ep-

och.

2. Validating a page always requires exactly one request-reply pair since validations are always accom-

plished by retrieving a complete new copy of the page.

3. There is very little persistent state. No garbage collection is needed.

 There are also several obvious disadvantages:

1. The home node must be chosen wisely, and the application must not change sharing patterns drastically.

2. Communication of data between two non-home processes requires the data to be sent through the home

node. Consider a piece of migratory data x. Each time x moves from one process to the next, it must be

sent back to the home node in the form of a diff, and then paged in from the second node. By contrast,

the data travels directly from one process to the next in a homeless protocol.

3. Potentially more diffs are created, as diffs are created promptly at the end of each interval rather than

lazily [7], as with homeless protocols.

2.3.1 Bar-i and Bar-u
In order for the “home” effect to be useful, modifications of shared data should be mainly done by the data’s

home. This is somewhat analogous to the “owner computes” rule often used in parallelizing compilers. Unsur-

prisingly, therefore, the output of parallelizing compilers is a good candidate for a home-based protocol. Our

9

bar-i protocol is a simplified home-based protocol that has several extensions to support iterative scientific

codes.

First, by limiting the protocol to codes that only use barrier synchronization, we can prevent any diff or

consistency state from living past the next barrier. Page coherence is maintained by using a per-page scalar ver-

sion index, which is maintained by the page’s home node. The index is incremented with any local modification

of the page (but only once per barrier epoch), and for each applied diff from another node. Indexes for modified

pages are distributed via the barrier process. The new page versions are used by other processes to decide which

pages need to be invalidated.

Second, bar-i has been augmented to provide explicit support for reductions. Many of our applications

were automatically parallelized by SUIF [13], and reductions are used in most of these codes. Accesses to shared

pages are tracked by using per-page copysets, which are bitmaps that specify which processors cache a given

page. This information can be used to selectively employ a hybrid invalidate/update coherence protocol. Using

updates rather than invalidates allows page faults to be eliminated for pages that are consistently communicated

between the same processes. Coherence for the remaining pages is maintained using an invalidate protocol in

order to avoid excessive communication. On the first iteration of the time-step loop, the copysets of each page

are empty and page faults occur. By the second iteration, however, copyset information indicates the processors

that need each page, accurately reflecting stable sharing patterns.

Third, our barrier protocols assign page homes at runtime, rather than requiring the compiler or user to do

so statically. The most obvious drawback of a scheme with statically assigned homes is that the initial assign-

ment must be done well. Secondarily, the scheme will not adapt if an application undergoes a phase change; a

point in the code where the set of pages written by a given process change.

Zhou [15] addressed the problem of assignments by requiring user annotations on each section of data,

and observed that making such assignments is easy for the majority of cases. This is especially true for scientific

Apps Input Summary

barnes 16k bodies n-body gravitational simulation (SPLASH)

expl 512 x 512 explicit hydrodynamics (Livermore 18)

fft 64x64x64 3-D fast Fourier transform (SPLASH)

jacobi 1024 x 1024 jacobi w/ convergence test

shallow 750 x 750 shallow water model (RICE)

sor 2k x 1k red-black jacobi

swm 750 x 750 shallow water model (SPEC)

tomcat 512 x 512 vector mesh generation (SPEC)

Table 1: Application summary

10

applications, which tend to distribute computation among processes as large array slices. Even when this is the

case, however, such annotations are an additional burden on the programmer.

Our protocols collect access behavior information during the first iteration of a program, and migrate

pages before the second iteration begins. We migrate any pages that have not been written by their initial owner,

but have been written by at least one other process. The migration decisions are distributed on release messages

at the next barrier.

Similarly to lmw-u, then, page faults can be eliminated for bar-u by updating processors on the copyset for

each page, sending the data before it is accessed.

Additional extensions are discussed in Section 4.

3. Experimental Results

3.1 Applications

The applications used in this study are summarized in Table 1. The shared segment size is the size of the shared

portion of the address space, while “Sync. Gran.” is the average period between barrier synchronizations. Barnes

is a version of the n-body simulation from SPLASH-2 [14] that has been modified to use less synchronization,

and to perform some tasks (i.e. maketree) serially in order to reduce parallel overhead. Expl is a dense stencil

kernel typical of those found in iterative PDE solvers. FFT is a three-dimensional implementation of the Fast

Fourier Transform that uses matrix transposition to reduce communication. Jacobi is a stencil kernel combined

with a convergence test that checks the residual value using a max reduction. SOR is a simple nearest-neighbor

stencil. Shal and Swm are different versions of the shallow water simulation, differing primarily in synchroniza-

tion granularity. Both swm and tomcat are programs from the SPEC benchmark suite and contain a mixture of

stencils and reductions. We used the APR version of tomcat, in which the arrays have been transposed to im-

prove data locality.

In all cases, speedups are calculated with reference to a single-process version of the same program with

synchronization macros nulled out, allowing all traditional sequential optimizations to be performed. Addition-

ally, we start timing only after the applications have reached a steady state (and after all page home assignments

occur). There are two primary reasons for this. First, ignoring the initial iterations allows us to quickly approxi-

mate the behavior of the long runs typical of users of parallel systems, rather than developers. Second, the un-

derlying OS can take a significant amount of time to settle when applications with large address spaces are

started.

3.2 Experimental Environment

Our experimental environment consists of an 8-node IBM SP-2. The SP-2 has a high-performance switch (HPS)

in which each bi-directional link is capable of a sustained bandwidth of approximately forty megabytes per sec-

11

ond. Each processor is a 66MHz RS/6000 POWER2 and has 128 megabytes of memory. The applications were

run on a version of CVM that uses UDP/IP over the high-performance switch.

Simple RPC's in our environment require 160 µsecs. Remove page faults require 939 µsecs. In the best

case, AIX requires 128 µsecs to call user-level handlers for page faults, and mprotect system calls (which are

used to change the protection level of individual pages) require a minimum of 12 µsecs. However, the costs of

virtual memory primitives in the current system are location-dependent, occasionally increasing the cost of page

protection changes by an order of magnitude. This phenomenon is explored in more detail in Section 4.

Although AIX’s default virtual memory page size is 4k bytes, we used 8k pages in CVM by the simple

expedient of ensuring that all page protection changes use an 8k granularity. The larger page size generally in-

creases performance by aggregating data into fewer messages [2].

3.3 Base Results

Figure 5 shows speedups of our application using four protocols, lmw-i, lmw-u, bar-i, and bar-u. Table 2 shows

the number of diff creations, misses (remote faults) that cause network traffic, the number of data and synchro-

nization requests sent (there are an equal number of replies), and the total amount of data communicated, in ki-

lobytes. Protocols lmw-i, lmw-u, bar-i, and bar-u are abbreviated li, lu, bi, and bu, respectively.

Since all of our applications are repetitive scientific computations, the update versions of lmw and bar are

almost uniformly faster than the invalidation versions. Both update protocols eliminate the majority of remote

misses in most of the applications. The exceptions are barnes and swm, both of which perform much worse for

the update version of lmw than for the invalidate version. In both cases, the poor performance is the result of

frequent garbage collection. Lmw protocols discard updates only when a global garbage-collection algorithm is

run. The update version tends to send all updates everywhere for these applications, resulting in most diffs being

cached on most processors. The result is that the garbage collection algorithm is run frequently. The bar proto-

cols do not suffer from this problem because all diffs are discarded after being flushed to the home.

Diffs Remote Misses Messages Data (kbytes)

li lu bi bu li lu bi bu li lu bi bu li lu bi bu

barnes 3261 3261 2688 3274 4185 0 3789 0 16005 2269 4048 1968 28604 28918 33187 27106

expl 632 642 270 648 674 0 390 0 849 247 595 277 1912 1930 3423 1945

fft 2720 2464 140 2464 4640 0 4620 0 5627 2582 4767 1512 36545 41691 37339 32546

jacobi 179 198 77 220 251 0 210 0 412 293 404 293 1236 1294 2259 1543

shallow 5501 5929 2882 5929 6233 198 3420 0 8153 3637 5044 3439 1412 790 27890 783

sor 126 126 0 126 126 0 126 0 196 183 196 178 283 285 1024 264

swm 4408 4858 4873 7462 5159 0 2274 0 6062 2007 3709 2139 8798 9319 32218 19204

tomcat 898 899 413 911 1084 0 625 0 1343 547 992 541 3649 3600 5931 3890

Table 2 : Base Statistics

12

Second, the home-based protocols outperform the homeless protocols for all but jacobi, which performs

similarly for both update-based protocols. A number of factors contribute to this difference. First, the home ef-

fect allows the invalidate version of bar to create an average of 36% fewer diffs than the corresponding lmw

protocol. This translates into 31% fewer remote misses, and a total of 49% fewer messages. This is partially off-

set by the fact that bar-i sends 74% more data. The reason is that lmw moves most data in the form of diffs,

whereas bar-i satisfies all remote misses with complete new copies of pages. Diffs are usually much smaller than

page size.

The complexion of these statistics changes when we look at the update protocols. bar-u uses diffs to push

data before it is needed, just as with lmw-u. Since page faults no longer occur (with the sole exception of a small

number for shallow running on lmw-u), the total amount of data moved is almost identical between the two up-

date protocols, approximately equal to the amount moved by lmw-i. bar-u creates about 14% more diffs than

lmw-u and sends about 12% fewer messages. Overall, bar-u averages approximately 19% more speedup than the

better of the two lmw protocols.

Although the message count differential can certainly account for some of the performance difference

between the update protocols, there are at least two other factors at work. The first is the sheer complexity of the

homeless protocols. Deciding what consistency actions need to be performed consists of filtering locally known

consistency actions by what is known of the node that is being synchronized with. Since lmw supports locks,

flags, and other non-global synchronization types, as well as programs with dynamic sharing behavior, consis-

tency information has long lifetimes, and can not be discarded without explicit garbage collection.

Furthermore, nodes running lmw often receive diffs from nodes other than the diffs’ creators (see [1] for

more details). The result is that in the general case, the producer of a diff often has limited information about

0

1

2

3

4

5

6

7

8

barnes expl fft jacobi shal sor swm tomcat

lmw-i
lmw-u
bar-I
bar-u

Figure 5: 8-Proc Speedups

13

consumers of the diff. This has the effect of making copysets (and hence updates) less precise. As a conse-

quence, lmw-u does not immediately validate pages when diffs that make it possible arrive by update. Instead,

lmw merely stores updates to locally invalid pages and checks to see if all required diffs are present when the

next access to that page occurs. This next access is signaled by a segmentation fault.

By contrast bar-u is designed for static, iterative, barrier-based programs, and consumer information is

distributed globally at barrier synchronizations. This allows producers to have exact knowledge of consumers.

Hence, consumers of data wait for updates before leaving barrier operations, allowing the segmentation faults

and additional page protection changes to be avoided.

4. Eliminating OS Memory overhead

Figure 6 shows a breakdown of the execution time for each of the applications running the bar-u protocol. Run-

time is broken into sigio handling, wait time, operating system overhead, and application computation. Sigio

handling refers to time spent handling incoming requests. Wait time is the time spent waiting for remote re-

quests to succeed. Since nearly all remote misses have been eliminated, this refers primarily to slaves waiting

for barrier release messages. Operating system overhead consists of time spent in operating system traps, such as

‘send’, ‘recv’, and ‘mprotect’, which is used to change page protections. Application computation is time spent

doing useful work.

Note two things. First, several of the applications (fft, shallow, and swm) have substantial OS components.

Although this graph doesn’t break OS overhead down into contributions from individual traps, the majority of

this time is spent in mprotect calls. This is an order of magnitude more time than implied by the mprotect time

given in Section 3.2.

Second, the efficiency implied by the “app” component of several of the applications does not gibe well

with the corresponding speedups. For instance, swm spends 41.7% of the time doing useful work, implying that

speedup should be near 8 * 41.7% = 3.3, assuming that the parallel version does no more work than the sequen-

tial version. However, the actual speedup is closer to 1.8.

0%

20%

40%

60%

80%

100%

barnes expl fft jacobi shallow sor swm tomcat

sigio

wait

os
app

Figure 6: Time Breakdown for Bar-u

14

We theorized that these discrepancies are caused by a degradation of the operating system performance

when under stress. In this case, the stress is an application (CVM) that uses memory in unorthodox ways, i.e.

modifying page protections in large address spaces in an unpredictable order. In order to test our theory, we de-

cided to modify bar-u in order to minimize operating system traps that manipulate the application’s address

space. We could presumably make CVM’s behavior appear more orthodox if we ceased manipulating page pro-

tections and ceased using segmentation violations (segvs) to detect invalid accesses. Once CVM’s behavior fit

the standard envelope, we would expect CVM’s performance to scale much better.

4.1 Bar-s

Eliminating these two mechanisms one at a time, we first address the use of segvs. Segvs are used for write

trapping, the trapping of inappropriate accesses to pages. These can be either write accesses to pages that are

readable but not writable, or any type of access to invalid pages. If segvs are not used, some other method of

write trapping must be used. Given the repetitive nature of our applications, the obvious choice is to use histori-

cal behavior to infer future behavior. We call the protocol that uses this technique bar-s.

After gathering information for some period of time, bar-s goes into overdrive mode, and uses another

method of write trapping. This is analogous to what the update protocol already does via copysets. However,

copysets are indiscriminate in that they provide no information on how shared accesses relate to synchroniza-

tion.

For example, Figure 7 shows two iterations of a single process in a parallel CVM run. Each iteration is

composed of two barrier epochs: that of barrier 1, and that of barrier 2. After barrier 1, p1 modifies data x. After

barrier 2, p1 modifies y. The application goes into overdrive mode after the first iteration. Hence, given the be-

havior during the first iteration, we expect x to be modified after the next occurrence of barrier 1, and y to be

modified after the next occurrence of barrier 2. Bar-u would trap this write by making a twin when the first write

to the page during the barrier epoch occurs. However, without recourse to segvs, we must assume that the write

will take place and make the twin ahead of time. We therefore make a twin of x and make it writable before we

leave barrier 1. Upon arriving at barrier 2 for the second time, the diff is created as normal and write protection

is removed. The only difference from bar-u at this point is that we have no idea whether the write actually oc-

P1
w(x) w(y)

bar 1

bar 2

w(x) w(y)

Iteration 1 Iteration 2

bar 1

bar 2
Figure 7: Iterations and Overdrive

15

curred. We can dispense with updating the page elsewhere if the resulting diff is zero-length. However, the twin

and diff creations are pure overhead if the write did not happen. We do not expect this to be common, however,

as this technique is only applicable when access patterns are highly predictable.

Note that although segvs no longer occur and that we may attempt to create diffs for pages that are not ac-

cessed, bar-s will still be correct. Any unanticipated write will be trapped by a segv, at which point the protocol

reverts to bar-u.

5. Bar-m

The next step is to eliminate the mprotects. We call the resulting protocol bar-m. Bar-m is identical to bar-s ex-

cept that we also eliminate mprotect calls once overdrive mode has started. This means that any page that will be

written locally while overdrive is in effect must be made writable before overdrive goes into effect. Hence, the

set of writable pages at any given point during the overdrive portion of an execution can be a strict superset of

the pages that the protocol expects to be modified. In Figure 7, for example, the pages of both x and y must be

made writable before overdrive goes into effect. This means that if an application’s sharing pattern diverges

during overdrive mode (i.e. P1 modifies y after barrier 1), bar-m is not guaranteed to detect the access at the end

of the epoch in which it happens. Bar-m is therefore not guaranteed to maintain consistency.

5.1 Results

Figure 8 shows the speedups of bar-s and bar-m for seven of our eight applications. The best speedup from the

two lmw protocols and bar-u’s speedup are shown for comparison. Barnes is not shown because its sharing pat-

tern, although iterative, is highly dynamic. Work is allocated via non-deterministic traversals of a shared tree

structure, resulting in slightly different sharing patterns each iteration. The other seven applications ran correctly

under bar-s and bar-m without modification.

0

1

2

3

4

5

6

7

8

expl fft jacobi shal sor swm tomcat

lmw
bar-u
bar-s
bar-m

Figure 8: Overdrive Speedups

16

Figure 8 shows that bar-s improves upon bar-u by only an average of 2%, indicating that segv handling is

not a major source of overhead. However, bar-m achieves a 34% gain on top of the 19% gain from bar-u to the

lmw protocols. Since the shared access behavior of the applications is invariant across iterations, bar-u, bar-s

and bar-m send exactly the same number of messages and communicate the same amount of data. Hence the

difference is entirely due to the lack of memory system interaction via mprotect calls.

5.2 Cost of page protection primitives

Table 3 shows the cost of the page-protection primitives on three platforms. We measured the cost of ‘mpro-

tect’, which is used to change page protections, and segv signal handlers. The segv handler is used to detect in-

appropriate types of accesses to shared pages. For example, when a page is locally invalid, the page is both

write- and read-protected. The first subsequent access to the page causes a segv signal handler to be called.

We measured each quantity by marching through a 1000-page data segment in four ways: forward, back-

wards, forward in increments of two, and in a random order. Table 3 shows that the cost of signal handling re-

mains relatively constant across the different types of progressions for each platform, but Linux handles sequen-

tial faults (forward or backward) better than other patterns.

The protection costs, however, explain much of the performance advantage of bar-m on the SP-2. The av-

erage cost of a protection change increases by a factor of five when going backward, and more than an order of

magnitude when the accesses are in a random order. Note that the pattern of accesses in the real applications is

likely to be somewhere between the forward sequential pattern and random.

A possible explanation for AIX’s erratic performance is that the virtual-memory map might be imple-

mented with a single-linked list, augmented with a saved pointer to the last accessed entry. This scheme would

explain the good performance for forward traversals of pages and the poor performance of other access orders.

The map usually consists of only a few blocks for most processes. However, the page-level protection changes

used by a DSM system tend to fragment the list, resulting in poor access times by code that is not optimized for

handling many blocks. Linux, the only system for which we have source, uses AVL trees to represent the map.

An even better solution would be to combine a fast tree algorithm with block coalescing. Page protections are

often manipulated one-by-one during initialization phases, leading to fragmentation of the map. However, por-

forward backward forward by 2 random
protection 2.0 2.0 2.0 2.4266 Mhz Pentium II,

Linux 2.0.32 signal handling 13.9 13.9 17.6 17.9
protection 17.1 85.1 17.8 789.866.7 Mhz POWER2,

AIX 4.2 signal handling 374.9 267.4 268.6 273.5
protection 20.4 19.0 21.6 24.8275 Mhz 21064A,

Alpha, Digital Unix 4.0 signal handling 133.0 148.4 130.7 135.2

Table 3: Memory system operations (usecs)

17

tions of “shared” data segments are often accessed by only a single processor. Performance could be improved

by coalescing contiguous ranges of such pages back into a single block.

5.3 Discussion

While protocols like bar-m are not likely to be the first option for many users of software DSMs, they could be

useful in specific circumstances. Their primary application domain would likely be large, iterative scientific

codes, like most of those discussed in this paper. Such applications tend to stretch operating systems in ways

that are unexpected for the operating system developers. However, eliminating interrupts and kernel traps will

always improve performance even if operating system support is tuned for DSM-like consistency actions.

Nonetheless, protocols such as bar-m should clearly be used only if the programmer knows, by whatever

means, that the program's data accesses are completely predictable. While running bar-s over similar data sets

several times can give some measure of assurance, a clean run of bar-s is by no means proof of a program's re-

peatability. In this sense, the problem of knowing whether an application is safe for bar-m is analogous to the

problem of detecting data races at run-time [9, 10].

One potential source of information is the programmer. While complicated applications could be analyzed

by programmers manually, it is more likely that the programmer could verify that the sharing patterns of an ab-

stract algorithm are invariant. Given knowledge that the application closely models the underlying algorithm,

the programmer would then have some measure of confidence that the application would execute correctly un-

der a bar-m.

Nonetheless, compilers are a more trustworthy source of information, whether they be parallelizing com-

pilers or compilers for explicitly parallel languages. The information needed to determine that sharing behavior

is invariant is clearly a subset of the information that is needed in order to determine precisely what that sharing

behavior is. We therefore expect that this information could be obtained more easily and therefore could be

more commonly implemented. Moreover, there is likely to be a large class of applications for which determining

invariance of access patterns is possible, but determining the nature of the patterns is not.

6. Conclusions

This paper has presented the design and performance of several new protocols that support iterative, parallel

applications with stable sharing patterns. We first described lmw-u, an update-based version of a conventional

lazy release consistent protocol that improves performance over lmw-i by eliminating most remote misses.

We then described bar-u, a modified home-based [15] protocol that performs even better than LRC proto-

cols for this type of application. The reasons include “home” effects, and the fact that home-based protocols are

much less complex. Whereas “home-less” LRC protocols can perform poorly for applications that modify (and

communicate) large amounts of data, home-based protocols incur less system overhead because they maintain

18

relatively little state, and such state has very short lifetimes. The main drawbacks of home-based protocols are

related to problems adapting to dynamic sharing patterns, precisely the sort of pattern that the applications we

are investigating do not have.

Finally, we presented and analyzed bar-s and bar-m, two protocols that successively strip away all reliance

on kernel protection manipulation. The result is that the application’s behavior conforms more closely to the

type of behavior expected (and optimized for) by the underlying operating system, and therefore performs much

better. Overall, our update home-based protocols average 51% better than the original lmw invalidate protocols

for our environment.

7. Bibliography

[1] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and W. Zwaenepoel,

“TreadMarks: Shared Memory Computing on Networks of Workstations,” IEEE Computer, pp. 18--28,

February 1996.

[2] C. Amza, A. L. Cox, K. Rajamani, and W. Zwaenepoel, “Tradeoffs between False Sharing and Aggre-

gation in Software Distributed Shared Memory,” in Proceedings of the Principles and Practice of Par-

allel Programming, 1997.

[3] S. Chandra and J. R. Larus, “Optimizing Communication in HPF Programs on Find-Grain Distributed

Shared Memory,” in Proceedings of the 6th Symposium on Principles and Practice of Parallel Pro-

gramming, 1997.

[4] A. L. Cox, S. Dwarkadas, H. Lu, and W. Zwaenepoel, “Evaluating the Performance of Software Dis-

tributed Shared Memory as a Target for Parallelizing Compilers,” in Proceedings of the International

Parallel Processing Symposium, 1997.

[5] P. Keleher, “The Relative Importance of Concurrent Writers and Weak Consistency Models,” in Pro-

ceedings of the 16th International Conference on Distributed Computing Systems, 1996.

[6] P. Keleher, A. L. Cox, and W. Zwaenepoel, “Lazy Release Consistency for Software Distributed Shared

Memory,” in Proceedings of the 19th Annual International Symposium on Computer Architecture, May

1992.

[7] P. Keleher, S. Dwarkadas, A. Cox, and W. Zwaenepoel, “TreadMarks: Distributed Shared Memory on

Standard Workstations and Operating Systems,” in Proceedings of the 1994 Winter Usenix Conference,

January 1994.

[8] L. Lamport, “How to Make a Multiprocessor Computer that Correctly Executes Multiprocess Pro-

grams,” IEEE Transactions on Computers, vol. C-28, pp. 690--691, September 1979.

19

[9] D. Perkovic and P. Keleher, “Online Data-Race Detection via Coherency Guarantees,” in Proceedings

of the 2nd Symposium on Operating Systems Design and Implementation, 1996.

[10] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson, “Eraser: A Dynamic Data Race

Detector for Multi-Threaded Programs,” in Proceedings of the 16th Symposium on Operating Systems

Principles, 1997.

[11] I. Schoinas, B. Falsafi, A. R. Lebeck, S. K. Reinhardt, J. R. Larus, and D. A. Wood, “Fine-grain Access

Control for Distributed Shared Memory,” in The Sixth International Conference on Architectural Sup-

port for Programming Languages and Operating Systems, October 1994.

[12] C.-W. Tseng and P. Keleher, “Enhancing Software DSM for Compiler-Parallelized Applications,” in

11th International Parallel Processing Symposium, 1997.

[13] R. P. Wilson, R. S. French, C. S. Wilson, J. M. Amarasinghe, S. W. Anderson, S. W. K. Tjiang, S.-W.

Liao, C.-W. Tseng, M. W. Hall, M. S. Lam, and J. L. Hennessy, “SUIF: An Infrastructure for research

on parallelizing and optimizing compilers,” ACM SIGPLAN Notices, vol. 29, pp. 31-37, December

1994.

[14] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-2 Programs: Characterization

and Methodological Considerations,” in Proceedings of the 22nd Annual International Symposium on

Computer Architecture, June 1995.

[15] Y. Zhou, L. Iftode, and K. Li, “Performance Evaluation of Two Home-Based Lazy Release Consistency

Protocols for Shared Virtual Memory Systems,” in Proceedings of the 2nd Symposium on Operating

Systems Design and Implementation, October, 1996.

