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Abstract

We consider the problem of wide-area large-scale text
search over a peer-to-peer infrastructure. A wide-area
search infrastructure with billions of documents and mil-
lions of search terms presents unique challenges in terms of
the amount of state that must be maintained and updated.
Distributing such a system would require tens of thousands
of hosts leading to the usual problems associated with node
failures, churn and data migration. Localities inherent in
query patterns will cause load imbalances and hot spots
that can severely impair performance.

In this paper, we describe an architecture for construct-
ing a scalable search infrastructure that is designed to cope
with the challenges of scale described above. Our architec-
ture consists of a data store layer which is used to reliably
store and recompute indexes over a slow timescale and a
caching layer that is used to respond to most queries. Our
primary insight is that the problem of efficiently retrieving a
small number of relevant results must be decoupled from the
problem of reliably storing potentially huge indexes. Rele-
vant results can be quickly retrieved from caches of ranked
results, which can be replicated based upon query load. An
entirely different set of mechanisms, such as encoded stor-
age and/or data partitioning, should be used to store large
indexes reliably. These indexes should only be used to com-
pute results when there is a miss in the cache.

1. Introduction

Consider the (thought problem) of a completely dis-
tributed implementation of Google.1 In November 2005,
Google indexed about 11.2 Billion unique pages (Google
no longer publishes the number of indexed pages on its front
page; the 11.2B number was inferred by searching for the
wildcard “??”). The search information is stored in inverted
keyword indexes. An inverted index is a list of all objects
that match some property, e.g., all documents that include a

1The authors are not associated with Google; however, they use Google
search every day.

particular word. With billions of documents, many individ-
ual indexes can be very large. Indexes for common words
often contain hundreds of millions of entries (369M entries
for Apple), and indexes for even specialized terms contain
hundreds of thousands of entries (437K entries for NetDB).
Conservatively, each index entry requires 26 bytes (20 bytes
for a document ID, and 6 bytes for a IPv4 address, port pair),
leading to index sizes ranging from tens of megabytes for
specialized terms to tens of gigabytes for popular terms.

What is wrong with Google? Absolutely nothing. The
goal of our work is not necessarily to replace (logically)
centralized search infrastructures. Instead, our goal is to
explore the limits of current decentralized techniques, and
present a new architecture which we believe will enable
a truly decentralized and distributed search infrastructure.
Systems such as Google have demonstrated the immense
power of commodity cluster computing coordinated using
centralized overview. It is fair to view our work as an at-
tempt at an extension in which we dispense with the cen-
tralized control.

Distributing indexes for data sets with billions of docu-
ments will require tens (or hundreds) of thousands of hosts.
Fortunately, DHTs are particularly good at organizing data
over a large number of hosts, and we could conceivably map
indexes to hosts using a DHT. This approach has a number
of desirable properties. In particular, (1) the reliability of
individual hosts is not an issue since the replication in a
DHT can cope with usual host failures, and (2) the system
can seamlessly scale just by adding new hosts as the cor-
pus increases. This approach, however, has two debilitating
problems, one concerned with data storage and the other
with result computation. The storage problem is obvious: if
the DHT consists of a number of regular hosts, then there is
no control over which index(es) gets mapped to which host,
and it is likely that the hosts holding the indexes for popular
terms will be under-provisioned. The result computation
problem is as follows: the usual procedure for computing
(conjunctive) queries, consisting of multiple terms, is to in-
tersect the index of each term. Intersecting these indexes
requires transferring one or more of the candidate indexes



over the network. Even if we transfer the smallest index
all the time, this procedure consumes a large amount of
the system bandwidth. If this system is to serve billions of
queries per day, then the network (and processing) overhead
of these intersections will prove to be prohibitive.2 Further,
simple intersections do not rank documents by relevance;
ideally, the search infrastructure should return only a few
documents which are most relevant to the query, and not an
unmanageably large set of peripherally related documents.
We are not the first to list these problems; a subset of them
have been pointed out in [11, 22]. Hence, we assert that in
a distributed implementation, (re-)computing results by in-
tersecting complete indexes is not viable. Instead, we make
the following assertions:

1. Results of popular queries must be cached Cached
results allow future queries to be satisfied with band-
width dependent only on the size of the result, not the
size of the indexes used to compute the result.

2. Results must be ranked Ranking results allows the
most relevant results to be returned to the user with-
out prohibitive network or storage overhead.

3. Indexes must be partitioned Indexes are large, and
must therefore be partitioned over available hosts in
a reliable, fair, and highly available manner.

Motivated by these observations, we propose a two-layer ar-
chitecture consisting of an index store layer and an explicit
caching layer.

The index store layer reliably stores large indexes, and
provides reasonably efficient access to index data. The
protocols in the index store layer account for available re-
sources at individual hosts and partition index data accord-
ingly; they also account for expected failure rates and en-
code/replicate index data such that indexes can be recon-
structed when nodes fail. While the store allows complete
access to indexes, the protocols are not optimized for fre-
quent accesses due to individual queries.

The caching layer provides efficient access to popular
indexes, and to the results of prior queries. Cached re-
sults are useful both for direct hits, and for computing re-
sults to new queries that are refinements of previous queries.
Cached results are replicated to account for skews in the
query distribution, i.e. results for popular queries are cached
at more nodes. For almost all queries, users are interested in
only the top few relevant results, and efficiently fetching the
top-k results is an optimization built into many information
retrieval tools. For most queries in Google, for example,
only the top 1000 unique results are accessible. The ability

2The number of queries served is a conservative estimate. While an
official count seems difficult to locate, according to an industry article, in
February 2003, Google was serving 250M queries per day within the US
(http://searchenginewatch.com/reports/article.php/2156461).

to store and retrieve a small set of highly ranked results also
further reduces the overhead of individual queries.

We believe our two layer decomposition will prove use-
ful because it enables the system designer to decouple relia-
bility and efficiency. This is a key property (and our primary
insight) since it allows us to use well-understood, slower
timescale mechanisms for storing and updating large data
(the indexes) while still enabling quick access to data that
must be accessed quickly (search results). In particular, the
protocols in the index store layer manipulate large data ob-
jects and must be reliable: all of the replication here is to
ensure that failures do not cause loss of data that is difficult
to recreate. Access to the index data need not be instanta-
neous as long as the caching layer has an adequate hit rate.

The caching layer, on the other hand, is designed for
access to relatively small items (top k results for different
queries). These items are accessed frequently, and are repli-
cated based on their access frequency. The caching proto-
cols must provide fast access to applicable results. A miss
is not fatal, however, since the result can be slowly recom-
puted using the data stored in the indexing layer.

Will the caching work? Perhaps. Clearly, the most
convincing proof would be a billion document high-
performance decentralized system, which we unfortunately
cannot present in this paper. Instead, our goal for this pa-
per is twofold: first, we hope to convince the reader of the
necessity of a two-layer search architecture. In the rest of
the paper, we describe specific protocols for each layer, dis-
cuss their properties and present pointers to related work.
Our second goal is to convince the reader that these details
constitute sufficient evidence that our approach is interest-
ing, and to motivate future work based upon the ideas in this
paper.

2. Two-level Search Infrastructure

Our two-level infrastructure is based on the need to dif-
ferentiate between large indexes and small result sets, and
to store each appropriately. Caching and load-based adap-
tive replication are clearly crucial techniques, and will be
used extensively throughout the system. In the reminder of
the section we describe the different components of our ar-
chitecture.

2.1. The Index Store Layer

The lower level of our two-level architecture is the Index
Store Layer, which is charged with storing indexes reliably.
We assume that the indexes are generated using an approach
similar to the one suggested by Reynolds et al. [16]. Users
export their documents when they join the system. For doc-
ument ranking, a rank vector representing the weight of
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Figure 1. Steps involved in exporting document entries.

each term in the document is generated and the keywords
are automatically identified. (See [8] for one approach for
generating vectors for distributed ranking.) A document en-
try (typically consisting of its ID, location and its vector
representation) is then added to the index corresponding to
keyword. For example, in Figure 1, the index for keyword
K is mapped (perhaps using consistent hashing) to node N ,
and all nodes exporting a document with K will add an en-
try to the index (logically held) at N . Node N is responsible
for reliably aggregating and storing this information.

Partitioning Large Indexes Indexes for popular key-
words can grow rather large (tens of gigabytes), and should
be stored at multiple nodes due to space and reliability con-
cerns. The simplest approach to solving this problem is to
partition the index, and store it at multiple nodes. Different
partitioning schemes have been suggested [7, 22], each with
different trade-offs between network overhead, balance of
data distribution between nodes, and so on. It does not much
matter which of these schemes is used in practice, as long
as some protocol is used to partition the indexes.

Redundant Storage Node churn and failure is a frequent
event in P2P systems. If we are to build a search infras-
tructure over unreliable peers, critical data such as indexes
must be replicated. Two mechanisms are viable: keeping
multiple copies or using coding for redundant storage. Both
have been investigated in recent literature: DHT designs of-
ten replicate data at a fixed number of nodes determined
by the name-to-key mapping. Rodrigues et al. [17] derive
a relationship between the number of replicas, the failure
probability and the probability of restoring the data item.
Their results indicate that in order to recover the data with
0.9999 probability, we would need 4 replicas when 10% of
the nodes fail and 14 replicas when 50% of the nodes fail
(failing nodes chosen uniformly at random in each case).

Research by Weatherspoon et al. [24] and Rodrigues et
al. [17], however, shows that erasure codes (such as Reed-
Solomon [15] codes) are superior to replication in terms of
space and bandwidth requirements, especially when the en-
vironment is extremely dynamic. Based on the derivation
in [17], encoding the index for Apple only requires 1.72

times more space than the single copy of the index when
10% of the nodes fail, and 5.18 times the space with 50%
failures. Note that coded storage comes with an extra cost:
updates to data requires encoded blocks to be reassembled
and then recoded, as opposed to just appending to an exist-
ing replica.

In practice, we envision a hybrid scheme in which
one copy of the index is stored (partitioned among differ-
ent nodes) without encoding and replicas are stored using
erasure-coded blocks. Such a design (modulo the parti-
tioning of the large indexes) has previously been proposed
by Rodrigues [17]. Here, when a node holding a partition
fails or departs, the partition is re-created using appropriate
erasure-coded blocks. Recall that if erasure codes are used,
the entire set of codes need to be re-created for each update.
This overhead can be minimized by batching updates for
each partition and publishing the new set of encoded blocks
periodically.

Computing Relevant Results The final operation re-
quired of the Index Store is to compute (ideally once) the
relevant results of a query. Different methods can be used to
rank results; we have demonstrated one technique in [8] that
uses Vector Space Models [19]. Since information about
all possible query results are present within the Index Store
layer, there is sufficient information here to rank order query
results and extract only the top few results.

2.2. The Caching layer

We have asserted that result caching is necessary for a
large scale search infrastructure. This is because the over-
head of recomputing results by intersecting indexes is sim-
ply prohibitive. For example, even a specialized query
such as “NetDB 06” would intersect indexes with 434K
and 711M entries. A smart implementation would transfer
the smaller index (434K entries, about 10MB of data) over
the network, and this could further be reduced to 425KB
using Bloom filters (See [16]), or even lower using Com-
pressed Bloom filters [13]. However, if Bloom filters are
used, then the larger index (with 711M entries) would have
to be scanned, leading to a high processing cost per query.
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Figure 2. Steps involved in query evaluation and result caching.

Thus, the overhead, either in terms of bandwidth (if Bloom
filters are not used) or processing (if Bloom filters are used),
especially multiplied over billions of queries, is prohibitive.

The different steps involved in result caching are shown
in Figure 2. All queries are initially directed to the caching
layer. The query terms are used to locate appropriate
caches, and if the query can be satisfied within the caching
layer, results are immediately returned. Upon a miss, the
caching layer transparently locates the appropriate index
in the Index Store layer and requests the requisite number
of top results for the query. The Index Store layer com-
putes the relevant results using the procedure described in
Section 2.1, and returns the results. Finally, nodes in the
caching layer replicate popular results depending on the
query load directed towards individual caches.

Global Result Caching The challenge with caching re-
sults lies in storing the caches such that they can be ef-
ficiently located and re-used throughout the system. We
have designed a distributed data structure called the View
Tree [1] to facilitate the storage and location of these caches.
Each node in the View Tree represents the cached results of
a conjunctive query. The View Tree also enables the use
of cached sub-queries while evaluating queries. The prob-
lem of identifying the smallest set of sub-queries that can be
used to evaluate the conjunctive query, however, is NP-hard
(by reduction from Exact Set Cover [5]). Hence, we use a
set of heuristics to identify the caches useful in computing
the results of a query. Our results show that View Trees can
reduce the amount of data transferred for query evaluations
by more than 90%.

Handling Hot-Spots Differences in the popularity of
keywords results in nodes hosting popular indexes receiving
more load compared to the other nodes. While one could
tackle the problem by creating sufficient replicas, it is hard
to predict the query load of an index a priori, and the pop-
ularity of keywords changes over time. This makes static

replication of indexes inefficient. However, several load-
based dynamic replication techniques are known, includ-
ing protocols that change replica locations based on access
patterns [25], protocols that replicate on the query source–
destination path [4], our own Load Adaptive Replication
protocol tailored for P2P environments [9], protocols tai-
lored for power-law query distributions [14], and random-
ized load-adaptive replication protocols [2].

3. Related Work

Li et al. [11] question the feasibility of Web indexing and
searching in P2P systems. Their analysis shows that exist-
ing techniques for searching require more bandwidth than
is available. Our two-level structure is motivated exactly by
these observations, and we believe the techniques proposed
in this paper make distributed search viable. Our architec-
ture provides scope for innovation in a large number of ar-
eas, including lookup, storage, result computation, caching,
etc. In the rest of this section, we present an overview of
prior work in these areas.

Lookup Our architecture builds on prior work on effi-
cient lookup and storage schemes. We assume the existence
of a lookup protocol provided by the underlying P2P sys-
tem. Such lookup protocols have been studied in detail in
Chord [20], Pastry [18], Kademlia [12], Skipnet [10], etc.

Storage and Partitioning Weatherspoon et al. [24] and
Rodrigues et al. [17] study the trade-offs between erasure
codes and replication. Weatherspoon et al. show that, for
the same levels of reliability, erasure codes require much
less space compared to replication. Rodrigues et al. de-
rive the relation between reliability, probability of failure
and the number of replicas or erasure coded blocks. They
show that the cost of using erasure codes is similar to that of
replication when the failure rate is low, but yields substan-
tial savings under high failure rates. Tang et al. [22] and



Gopalakrishnan et al. [7] study different approaches to par-
titioning index data. The difference in the two approaches
lies in the amount of network traffic and the load balance
resulting due to the partitioning.

Result Computation and Caching Building a search fa-
cility over P2P systems has been an important area of re-
search. Reynolds et al. [16] were the first to propose the
use of inverted indexes for searching and the use of Bloom
filters for computing intersections. Odissea [21] shares our
vision of having a distributed infrastructure to perform full-
text searches using inverted indexes. Peers are arranged in a
Chord-like ring and store indexes that get mapped to them.
Odissea, however, does not address many of the practical
problems associated with P2P systems such as index sizes,
query load and bandwidth limitations. eSearch [22] is a
boolean query system for textual data over Chord. In eS-
earch, indexes store all the keywords in the document along
with the document entry; this eliminates the need to con-
tact the indexes of all the keywords in a conjunctive query.
eSearch, however, does not cache query results nor does it
have the ability to rank the results. Gnawali [6], in his the-
sis, proposes storing indexes that are intersections of two
keywords. The design is motivated by the fact that a large
fraction of the queries contain two or more keywords. Li et
al. [11] discuss the use of client-side caching to reduce the
amount of data transferred. They show that caching results
reduced the communication cost by 38%. We proposed [1]
the use of view trees for caching results and showed that we
can reduce the communication cost of evaluating queries by
about 90%.

Similarity Search and Ranking pSearch [23] supports
similarity-searching by mapping document vectors to a
high-dimension P2P system. The query is also mapped to
the same space and controlled flooding is employed to fetch
relevant documents. Bhattacharya et.al. [2] use similarity-
preserving hashes (SPH) to extend pSearch to any DHT-
based system. Ranking results in distributed search is an ex-
citing new area: we have presented [8] a distributed VSM-
based approach to rank query results. PlanetP [3] is a
content-based search scheme that uses gossiping to spread
the meta-data of the content stored at each node. To eval-
uate results, peers are selected by ranking them using the
gossiped information and the query is then evaluated using
VSM in these select peers.

4. Discussion and Open questions

We believe that our two-level decomposition conceptu-
ally removes the most critical barriers from the realization
of a wide-area distributed search infrastructure: that of re-
liably maintaining and accessing large indexes, and that of

efficient result computation. However, there remain many
open questions, which we classify in three broad areas:

Index Storage There is much work still needed in un-
derstanding how to store large objects in decentralized sys-
tems, including DHTs. While data partitioning is a prereq-
uisite, the amount of data that must be moved when a node
joins/leave the system may render the entire system unus-
able. The overall impact of the replication versus erasure
coding choice is not clear. While erasure codes have ad-
vantages in bandwidth and storage overhead, they require
contacting many more nodes than does replication. Further,
a deterministic scheme is needed to publish erasure coded
blocks in such a way that they can be easily retrieved, but
the best method to do this is not yet obvious. Batching can
reduce the overhead of using erasure codes. However, it
also increases the chance of losing updates due to failures.
Finally, the effect of the update period on overhead and re-
liability needs to be analyzed.

Query Distribution, Caching and Ranking The charac-
teristics of Google-like data sets and query streams need
to be tightly characterized. Highly dynamic systems and
variable access patterns can play havoc with complicated
caches. If the most relevant documents for a given query
change, the cache must be updated or the quality of the
results degrade. Clearly this issue is highly dependent on
the characteristics of the data sets and query streams used,
but traces of systems like Google are prohibitively large.
We would ideally like to create a set of relatively small
traces that are provably representative of Google-like sys-
tems. Failing this, there is still a great deal of research that
can be done studying properties of systems like the one pro-
posed in this paper, such as analyzing how quickly cached
results degrade with increasingly dynamic systems.

Security and System Model An unstated and somewhat
naive assumption in this paper has been that of an entirely
cooperative (and non-malicious) set of peers, and we have
designed the system to withstand random node failures only.
While to the best of our knowledge our architecture does
not enable any new security holes, there are any number of
attacks that can render the system essentially useless. A
number of these attacks require formulation of global pol-
icy, e.g. how to handle nodes that publish junk data to fill
up all available space? Other attacks include nodes that se-
lectively deny service to other nodes, or respond with spuri-
ous results. We believe the encoded storage techniques can
help the resilience of the system since they allow data to
be reconstructed even if a large number of nodes are ma-
licious/attacked; however, a systematic study of their re-
silience to different attacks is open. Spurious data sup-
plied by malicious nodes is not an issue if all data is self-



certifying, but in a wide-area network, it is not clear how
third-party signatures can be checked without a trusted CA
or a PKI. If a decentralized system is to be widely used for
search, all of these issues must eventually be addressed ex-
plicitly.
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