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Recent advances in network and operating system technology
allow applications to directly exploit gigabits of network commu-
nication per second. However, most such communication inter-
faces provide no efficient means of asynchronous notification to
processes of incoming messages. Instead, applications are ex-
pected to poll frequently. In addition to the burden placed on the
programmer, polls are rarely cheap enough to sprinkle indis-
criminately in all program loops. We show that the resulting
delay in handling messages can be very detrimental to applica-
tion performance.

We characterize the communication behavior of our applications
and show that the majority of notification delay is caused by a
relatively small number of large delays. This result explains why
coarse-grained timeout schemes are able to produce acceptable
performance on network interfaces that lack explicit interrupt
notifications.

We then study two methods of addressing this notification delay.
First, we show that multi-threading schemes intended to hide
other forms of communication delay are also fairly effective at
hiding notification delay. Second, we evaluate several strategies
for minimizing notification delay directly though judicious inser-
tion of network polls. Both techniques produce performance
comparable to fast software interrupts, especially important on
communication systems that do not provide interrupt capabilities,
such as PVM or MPI.

1. INTRODUCTION
Recent networks have shown enormous gains in bandwidth.
Systems sold today range from Fast Ethernet at 100
Mbits/second, to Gigabit Ethernet and the Myrinet [4] at 1 Giga-
bit/second. Zero-copy protocols and new cluster specifications
like VIA [1] often allow this bandwidth to be accessible between
user-level processes. While message latency has not totally kept
pace with bandwidth, the use of memory-mapped interface [3,
12] has allowed hardware latencies to also be reduced dramati-
cally. For example, the BIP software developed at INRIA [22]
allows round-trip latencies of small messages between user-level
applications on the order of 10 µsecs over Myrinet hardware.

Unfortunately, this improved performance is not uniformly avail-
able to different types of applications. High-performance com-
munication infrastructures built on top of such networks, such as
PVM and MPI, provide good performance for applications in
which processes communicate at the same time. However, they
provide no way to asynchronously notify applications that mes-
sages have arrived. Instead, they rely on applications polling
frequently enough to ensure timely message handling. By default,
polls of communication interfaces usually occur only when new
messages are sent. This approach is even used by most imple-

mentations of Active Messages [8], whose interface suggests
exactly the opposite.

While polling approaches are sufficient for applications that
communicate only in parallel, we argue that they perform poorly
for applications that have asynchronous request-response com-
munication patterns, including most client-server applications.
The reason is that asynchronous requests may languish at the
network interface or in protocol buffers for long periods of time
before being noticed.

We evaluate the use of two well-known techniques in addressing
this notification delay. The first technique is multi-threading.
Multi-threading has been used in many systems to mask commu-
nication costs [17, 20, 28]. The difference here is that notification
delay may be many times larger than the base communication
costs, and therefore multi-threading may be less effective. The
second technique is to use a binary code re-writer to insert poll
commands into the application code. Again, this technique has
been used before in other contexts [9, 24].

We are not proposing either of these techniques as a more desir-
able alternative to providing message-notification mechanisms
directly in the communication substrate. Indeed, our results show
that even relatively slow and expensive interrupts provide ade-
quate performance. We are only interested in providing accept-
able communication behavior in situations where such notifica-
tions are not available.

1.1 Contributions
The first contribution of this paper is a characterization of the
delays actually observed in a suite of applications. We show that
the majority of notification delays result from a small number of
large delays. These delays can dominate any gains achieved
through use of new network technologies. The impact of these
delays can be considerable. Our applications averaged more than
31% slower without interrupts than with them. This result argues
that the problem is serious, and needs to be addressed either by
including interrupts in emerging standards, or through use of the
techniques discussed below.

The second contribution of this paper is an investigation of two
popular approaches to improving the performance of applications
in the presence of communication delays. The first is to tolerate
remote request latency on the requester side, rather than trying to
ensure that the latency does not incur in the first place. We toler-
ate latency by using multi-threading to perform other work when
one thread blocks on a remote request. The use of multi-threading
to hide remote communication has been studied before [17, 20,
28]. Our emphasis is different in that we are looking at longer
delays relative to run lengths that we can use to hide the laten-
cies. One advantage of multi-threading is that its effectiveness is



not necessarily affected by loop and program structure. However,
such parallelism is not always available, and the cost of switching
between even user-level threads is often an order of magnitude
more costly than polling a network interface. Nonetheless, one
contribution of this paper is our finding that multi-threading is an
effective substitute for interrupts for our application domain.

The second approach is to increase the frequency of polling in an
attempt to ensure that messages are handled in a timely fashion.
The standard polling procedure [6, 8] is to poll after each mes-
sage send. The advantage is that these polls can be done inside
the communication library, transparently to the application. This
works well if messages are sent frequently (in the absence of
contention) or in lockstep. However, incoming messages can wait
too long if outgoing messages are sent only infrequently by local
processes.

We used the ATOM [26] binary re-writer to insert calls to poll-
ing routines at several different levels in the program structure,
ranging from once per function to polling in every basic-block.
Good placement of polling calls is a non-trivial problem because
its effectiveness can be very dependent on loop behavior. For
example, some applications spend the majority of their time in
heavily nested loops, while others spend the majority of their
time in a single, small loop. While the cost of polling is small, it
usually requires an I/O bus transaction. Hence, inserting polling
calls into innermost loops might add unacceptable overhead for
an application whose performance is dominated by a small (but
frequently executed) loop. On the other hand, not inserting polls
into heavily executed loops might result in too long of a delay.
Our results show that the best approach is to use the processor
cycle counter to limit the frequency of polls to a preset frequency.

We studied the performance of five standard shared-memory
applications using SimCVM, an instruction level simulator of the
CVM distributed shared memory system [14] running on a clus-
ter of commodity workstations.

The rest of the paper is as follows. Section 2 describes the appli-
cation domain that we are studying in detail. Section 3 describes
our simulation environment. Section 4 characterizes the commu-
nication behavior of our applications. Section 5 discusses the
performance of the multi-threading approach and Section 6 dis-
cusses the performance of the polling approach. Finally, Section
7 discusses related work and Section 8 concludes.

2. TARGET APPLICATION DOMAIN
We are interested in applications whose performance is tightly
coupled to the notification delay incurred by requests sent be-
tween the application’s processes. The notification delay is the
delay between the time that a request becomes available at a
node, and when the node actually starts to service the request.

For example, consider a database server. Each client’s perform-
ance is clearly dependent on the notification delay of its requests
at the server. However, the aggregate performance of the system
is not, as message servicing is only delayed in order to service
other requests. The order in which requests are serviced might
not matter from the perspective of the server’s overall perform-
ance.

By contrast, consider a distributed shared memory (DSM) system
[2, 13-15]. DSMs support the abstraction of shared memory to
parallel applications running on top of commodity workstations
and networks. DSM application performance is sensitive to noti-
fication delay. Consider a single process. Before the next global
barrier, the process must perform some local computation and

service any incoming data requests. It does not matter to the local
process in which order these actions are accomplished. However,
each data requester is blocked from performing useful local work
until its request has been serviced. Hence, the best overall system
performance is achieved by servicing requests as soon as possi-
ble, even at the expense of postponing local computation.

This sensitivity to notification delay is not specific to DSM sys-
tems. Notification delay becomes important whenever a group of
processes communicate to perform a common job, such that the
processes synchronously stall on requests to each other at non-
predetermined times. Examples relevant to industry include sys-
tems built with CORBA or any of the many distributed object
systems built with C++.

Notification delay has become increasingly important as other
sources of network overhead have been reduced or eliminated.
For example, recent commodity networks such as Myrinet [4]
and the Memory Channel [12] provide user-space to user-space
latencies of under ten microseconds, with bandwidths near a
Gb/sec. However, such systems rarely provide a means other than
polling for notifying processes of incoming messages. This lack
can severely impact a parallel applications performance.

As a quick example,  Figure 1 shows time blocked on remote
requests as a percentage of total execution time. These numbers
reflect eight-processor runs on three different networks, with
polling only after message sends. Blocking time with fast inter-
rupts on the “medium” network are shown for comparison. The
applications and configuration specifics are discussed below.
However, blocking time is clearly much larger with any of the
polling cases than for the interrupt case. Furthermore, the rela-
tively small improvement between the ‘slow’ network and the
‘fast’ network implies that the majority of this time consists of
the notification delay, rather than communication overhead.

Notification delay can also degrade performance indirectly by
delaying synchronization releases. This is only applicable to ap-
plications that use peer-to-peer synchronization, such as exclu-
sive locks. Some of these applications perform well with the base
polling model because they communicate frequently.

3. SIMULATION ENVIRONMENT
The simulator used in this study is SimCVM, an execution-based
simulator that models the CVM (Coherent Virtual Machine) [7]
software DSM. CVM is a user-level library that features a set of
base classes that provide a framework for implementing specific
DSM protocols. These classes include a generic protocol class, a
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class that allows a protocol to hook into the virtual memory sys-
tem to set page permissions and handle page faults, and efficient,
reliable message-passing facilities based on UDP. New protocols
are added by deriving classes from these base classes. The fact
that all protocols implemented under CVM use the same under-
lying support for functions such as handling virtual memory and
message passing allows them to be fairly compared.

The simulator consists of a modified version of the CVM library
and a set of instrumentation code that is added to an application
using the ATOM [8] binary-rewriting tool. The simulator directly
executes the code for both the applications and for CVM’s con-
sistency protocol. The simulator runs as a single UNIX process,
context-switching between multiple user-level threads to simulate
multiple processes. The instrumentation code maintains a proces-
sor cycle count for each virtual processor, and handles switching
between threads. The cost of each basic block is calculated stati-
cally and passed to an instrumentation routine inserted into the
end of each basic block. The function of this routine is to update
the logical time of the current node. The simulator models proc-
essor detail only down to cycle counts based on instruction type;
we do not simulate pipelines or multiple issues per cycle. There-
fore, it is not fair to say that our simulator reflects any single
processor. However, we have roughly based our processor cycle
counts and instruction costs on Linux running on a 200 MHz
Pentium processor.

Operations such as signal handlers (used to trap write faults and
to inform the system of incoming requests) and communication
primitives are assigned costs, expressed in cycle times, that can
be varied by parameters passed to the simulator when an applica-
tion is run. A message leaving a virtual processor is tagged with
an arrival time based on the cycle count of the sender and the
assigned message costs, and the message passing facility in the
modified CVM library delivers the message to the destination
virtual processor when it reaches the message’s arrival time.

The simulator also uses instrumentation to catch shared reads and
writes, allowing it to simulate page faults and to record which
words have been changed by which processors. This information
allows us to know when a processor has not yet propagated a
change to another processor through the DSM protocol, even
though in our simulator the “processors” are threads that actually
share the same physical copy of all shared data.

SimCVM instruments most loads and stores to check whether
they reference shared memory. Instrumented accesses that violate
current page protections are vectored to CVM’s page fault entry
point.

We simulate all interactions with the operating system and all
communication at a high level. Contention is modeled at message
destinations, but not on the interconnect itself. We use a queue to
represent each communication channel. Incoming messages are
timestamped according to the logical time at which they should
be received. The first poll after this time sees the message. Addi-
tional messages that arrive during the execution of a message
handler are handled when the first completes. When modeling
interrupt-based approaches, the incoming message queue is
checked after each basic block. We simulated three different
network configurations, chosen to reflect current UDP over ATM
connections (‘slow’), an OC-12 network (‘medium’), and gigabit
Myrinet [4] running the very-low-latency Bip [22] software
package (‘fast’).

Table 1 shows the constants used throughout the paper. These
constants were chosen to reflect the performance of CVM run-
ning on Linux 2.0.32 on 200 MHz Pentium Gateway machines.

The applications used in this study are Barnes, FFT, Water, and
Spatial from SPLASH-2 [29], and a red-black SOR. Table 2
summarizes inputs and characteristics. “Messages/sec” is the total
number of messages sent per second with the fast interrupt con-
figuration discussed below. Loop and function lengths are static
cycle counts, assuming only a single iteration per loop.

Cache and TLB effects
Our simulator can run with or without a simulation of the first-
level cache. We model a 32 KByte direct-mapped level-1 cache,
a 32-entry TLB, and assume a “perfect” second-level cache (i.e.
the standard assumption of no misses in the second level cache).
Since we simulate a software DSM, neither cache has coherence
misses.

Table 3 shows application speedups with a fixed cost of 2 cycles
per memory access, and with a variable cost where 6 cycles are
charged for each cache miss and 30 cycles for each TLB miss
[23]. We evaluated speedups for one and four threads for the
slow and fast networks, with and without interrupts. The polling
scheme polls only at messages sends.

Overall speedups for the cache runs are just slightly higher than
for the fixed-cost runs discussed below. Cache speedups are gen-
erally higher for polling than with fixed costs, while the reverse is
true for interrupts. This can be explained by noting that interrupts
often arrive before a thread would normally have blocked, re-
sulting in shortened run lengths. Shortened run lengths result in
lower hit rates, and therefore lower performance.

One motivation behind the cache comparison is to determine the
extent to which multi-threading hurts cache performance. This
would be implied if the fixed-cost numbers improved more from
one to four threads than did the cache numbers. The bottom line
is that we do not see such a trend, implying that multi-threading
can be used without concern for negative cache effects.

Source Overhead (cycles)
Mprotect 400

Block interrupts 400
Thread switch 400

Poll 20
Check for poll 5

Fast interrupt cost 1000
Bcopy 4.5 cycles/word

Diff creation 600 + 3*#words/page + .87/diff-bytes
Twin creation 33 + 3*#words/page

Diff application 25 + 1.2 * #bytes
Slow network 8000 cycles per send/rcv, 155 Mb/s,

9 cycles/byte copy costMedium network 8000 cycles per send/rcv, 600 Mb/s
Fast Network 400 cycles per send/rcv, 1 Gb/s

Processor speed 200 MHz

Table 1: Simulation parameters

Apps Input Mes- Kbytes Loop Function
Barnes 16k bodies 6154 5397 51 238
FFT 64x64x64 2712 1247 76 386
SOR 2k x 1k 543 695 105 246
Spatial 1000 2452 3988 365 874
Water 512 5520 3398 236 1029

Table 2: Application characteristics



The data shown here does not reflect operating system traps or
interrupts, which would uniformly degrade cache performance.
The effect of the operating system on cache performance is often
approximated by assuming a smaller cache size. However, we
repeated the above measurements for both 16 Kbyte caches and
256 Kbyte caches and observed the same general trends.

Given the similarity of the results, we turned the (slow) cache
simulation off for the remainder of our experiments.

4. COMMUNICATION PATTERNS
 Figure 1 shows that polling-based applications spend a large
amount of time blocked. We know that large blocking times di-
rectly reduce potential speedups, but how sensitive are applica-
tion speedups to the blocking time of individual messages? We
modified SimCVM so that we could artificially vary notification
delays seen by incoming message. Each arriving message is de-
layed in the incoming message queue until a specified interval
has elapsed, and then delivered as soon as possible. Message
delivery is further delayed only if the eventual message arrival
occurs during execution of protocol or operating system code.
The duration of these events is relatively short compared to the
delays that we are investigating. Therefore, the majority of mes-
sage delays center around our desired values.

Figure 2 shows application speedups as this delay interval is var-
ied from 0 to 2000 µsecs. Note that all messages have approxi-
mately the same notification delay for each data point. By con-
trast, during real executions the notification delay depends on the
interleaving of computation and communication. All runs use the
‘medium’ network configurations, and single-threaded applica-
tions. Speedups do not drop off sharply, even at relatively high
notification delays of 2000 microseconds. These results imply

that polling must be imposing long delays in order to produce the
large blocking times shown in  Figure 1.

Figure 3 shows a log-log plot of observed notification delays for
the base, single-threaded scheme. Recall that the base scheme
does not use interrupts, and polls only at message sends. The
majority of delays are short, but the tail of the distribution is quite
long. Figure 4 presents the same data in a plot of cumulative total
delay. This data shows that the majority of notification delay is
caused by a relatively small number of large delays. As an exam-
ple, only about 14% of total delay for water is caused by delays
of less than 10 milliseconds. In an even more extreme example,
less than 3% of delay for SOR is caused by individual delays of
less than 30 milliseconds. These results suggest that cutting off
the expensive “tail” of the delay distribution can eliminate the
majority of the delay. This is the approach taken by hardware
schemes the Polling Watchdog [18].
We plotted the distribution of message sends (and hence polls) in
order to see if they explain the large notification delays. Figure 6
shows the duration between consecutive message sends for each
application. For the base polling case, this is also the extent of
application execution between consecutive polls. Note that unlike
Figure 4, these results are not cumulative. For example, Figure 6
shows that, about 25% of the time, the interval between consecu-
tive sends for sor is approximately 100 µsecs.

Why do these long notifications exist? In SOR, the reason is that
each iteration is constructed in such a way that the barrier master
sends a data request only at the end of each iteration, while all
other nodes send requests at both the iteration’s beginning and
end. Requests arriving at the beginning of an iteration will only
be seen by the barrier master at the completion of all of its work.
Hence, the computation performed by the master is serialized

polling interrupts
app (cache) slow fast slow fast

1 4 1 4 1 4 1 4
n 3.31 4.10 3.95 5.18 4.71 4.82 6.02 6.05barnes
y 3.38 4.15 3.91 5.29 4.59 4.70 5.94 5.99
n 3.04 4.46 4.24 5.32 5.04 5.09 6.65 6.49fft
y 2.88 4.10 3.43 5.72 4.96 4.92 6.58 6.47
n 3.94 7.07 3.99 6.80 7.63 7.57 7.83 7.75sor
y 3.92 7.15 3.98 6.74 7.53 7.43 7.77 7.67
n 3.62 5.74 4.04 5.85 6.64 6.36 7.38 6.61spatial
y 3.79 5.82 4.05 6.00 6.54 6.29 7.35 6.60

water n 5.60 5.65 6.19 6.26 6.36 6.57 7.19 7.18
y 5.64 5.46 5.72 6.11 6.31 6.56 7.14 7.20

Table 3: Speedups w/ and w/o cache simulation
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with respect to the slaves. While this is an extreme example, it
provides a graphic illustration of the general problems inherent to
achieving acceptable speedups in polling environments.

5. MULTI-THREADING
Multi-threading is a technique for tolerating remote message
latencies rather than minimizing them. As with hardware sys-
tems, multi-threading in software systems can be used to reduce
the costs of remote requests by switching threads when the cur-
rent thread blocks. Assuming that the second thread has work to
perform, some or all of the latency of the first thread’s request
can be overlapped with the computation performed by the sec-
ond.

In most cases, multi-threading can be added transparently to our
DSM applications. The applications can already be parameterized
at the command line to use different numbers of processors. Data
seen by the applications consists entirely of the stack and the
shared segment (the “lightweight thread model” assumed by
SPLASH-2). Hence, whether threads are on the same or distinct
nodes is invisible to the application.

Figure 5 shows eight-processor speedups from runs with one,
two, and four threads per node, plus a single-threaded run using
fast interrupts. Message notification for the threading runs is
accomplished through our base polling model: the network is
polled after each message send. Our polling cost is set at 20 cy-
cles, just slightly more than the cost of a PCI bus transaction to
read a device register. The dip in performance for water at two
threads is caused by a loss of locality when work is broken into
smaller units [28].

The runs in   
Figure 5 reflect the ‘medium’ network model. Performance dif-
ferentials with the other two network models are qualitatively
similar, with slightly better multi-threading performance for
‘fast’, and slightly worse for ‘slow’. Thread switch costs are
modeled as the 2 µsecs incurred by the NewThreads [11] thread
package on our system. Fast interrupts are included to provide a
point of comparison. Our fast interrupts deliver signals and return
in 5 µsecs, considerably faster than the 100 µsecs or so required
by most current systems. This cost reflects a highly optimized
implementation, such as that described by Thekkath [27].
Overall, multi-threading improves polling speedup from an aver-
age of 62% of the fast interrupt speedup, to 86%. As multi-
threading can be used to hide all types of delay, not just notifica-

tion delay, the multi-threading numbers could be even higher.
Previous studies have shown that multi-threading can improve
the performance of parallel DSM applications by nearly 50%
[20, 28], speedups not reflected in our numbers. However, the
former study used source modification to get around reduction-
like operations, and much of the latter’s speedup was due to cold
misses. Our study focuses on steady-state behavior, and we did
not modify application source.

6. POLLING
We are investigating polling and multi-threading only because
many communication systems fail to provide interrupt mecha-
nisms. However, polling does have advantages. The major ad-
vantage of polling is its cost: a poll is typically one to two orders
of magnitude cheaper than an interrupt. Secondarily, the use of
polling eliminates the need for interrupt mask manipulation be-
cause messages can be prevented from arriving merely by not
issuing polls. This simplifies the construction of critical sections
because messages can only arrive at specific locations in the
code.

Another difference between polling and interrupts is that interrupt
processing occupies the processor. Delays in issuing polls do not
imply wasted cycles because the processor is presumably doing
something else during the delay interval. Even if the notification
delay were similar in both the polling and interrupt cases, the
polling approach would be able to free more cycles for local
computation.

The question of where to insert polls reflects a tension between
the need to reduce runtime overhead (fewer polls), and the need
to reduce notification delay (more polls). By default, most sys-
tems that use polling either poll after a message is sent [6, 8] or
rely on the application programmer to insert polls at appropriate
places (MPI and PVM). Neither is a good general solution. The
former relies on the frequency and distribution of incoming mes-
sages to match that of outgoing messages. The latter puts the
burden on the programmer and is error-prone. Such errors do not
affect correctness, but can result in long notification delays or
excessive overhead.

We assume polls can be inserted into the compiled code through
the use of ATOM [26], or similar tools. ATOM is a binary code
re-writer that can be used to walk the call graph, and to identify
basic blocks, functions, and loop boundaries. All are potential
sites for polls, but have distinct drawbacks. The default version of
ATOM will only insert procedure calls to instrumentation rou-
tines located elsewhere in the code. However, XATOM, the ex-
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perimental version of ATOM used in Shasta [24], can insert
arbitrary code sequences. ATOM (and XATOM) currently run
only on DEC Alphas running Digital Unix, but a port is under-
way to the i386 platform. Additionally, the Etch project [16] at
Washington has similar functionality.

One disadvantage of inserting additional polls into application
code is that application programmers can no longer assume that
code between message sends is executed atomically. However,
our technique could be extended to respect a software flag that
signals when code should be executed atomically. Use of this flag
should not change our performance advantages.

We model polls using the cost of an I/O transaction. We use an
aggressive value of 20 cycles. This value likely understates the
cost significantly on current high-end PC hardware. While cheap
compared to a software interrupt, this is expensive compared to a
typical basic block or loop iteration. The “loop length” and
“function length” columns of Table 2 show the length in cycles
of average loop iterations and average functions. For both cases,
we assume that any nested loops execute only a single iteration.
Inserting a poll into each loop iteration would add overhead from
5% to 39% for these applications. On the other hand, not instru-
menting even small loops might result in long notification delays
if the loop iterates a large number of times. All available mes-
sages are handled at each poll.

“Check” routines
We amortize the cost of polling by using a cheap “check se-
quence” to poll only when the interval since the last poll exceeds
a preset threshold. The check sequence relies on using on an on-
chip cycle counter that can be addressed as a register and ac-
cessed in one or two cycles, such as on the Pentium, Alpha, or
Cray processors.

Our model check sequence is three instructions long, consisting
of a read of the cycle counter, a comparison to a saved polling
threshold, and a taken branch over the polling code. Given the
combination of sophisticated branch prediction and branch target
prediction techniques on most current processors, the branch is
unlikely to cost much more than a cycle on average. The code
sequence could take even fewer cycles with branch folding. We
are currently assigning five cycles as a conservative estimate of
the cost of the check routines.

The check sequence does require a dedicated register to hold the
polling threshold, and a temporary register to hold the results of
the comparison. Code generators can often be directed to ignore
specific registers.

For our applications, a five-cycle check sequence adds approxi-
mately 10% loop overhead in the worst case, and less than 1% in
the best case. Set against this is significantly decreased notifica-
tion delay.

Polling Performance
Figure 7 shows processor speedups for slow, medium, and fast
simulated networks. Our first simulated configuration is  ‘base’,
which polls only at message sends. ‘Func-t’ places checks only at
the beginning of functions, with a polling threshold of 5000 cy-
cles. ‘Heur-t’ inserts checks only in functions and the outer loops
of loop nests, and again uses a threshold of 5000 cycles. This
may result in large notification delays if applications spend most
of their time in singly-nested loops. However, we have not often
observed this in practice. A “loop nest” must be entirely inside a

single function to be identified as such by our heuristic. ‘Loop-t’
inserts checks into all loops, while ‘loop’ inserts polls into all
loops. ‘Ifast’ and ‘islow’ are our simulations of fast (5 µsec) and
slow (100 µsec) interrupts. Note that we investigated several
different thresholds for ‘func-t’, ‘heur-t’, and ‘loop-t’, and found
comparable performance.

Finally, ‘wp50’ and ‘wp1m’ simulate the “polling watchdog”
[18], with timeouts of 50 microseconds and 1 millisecond, re-
spectively. The Polling Watchdog combines interrupts and poll-
ing by causing a timer interrupt to trigger if no polls happen in a
specified time. The benefit is that polling can be inserted conser-
vatively (i.e. not in loops). Interrupts occur only if the application
spends excessive time in a loop. Our simulation of the watchdog
generates a ‘fast’ software interrupt any time a message is not
detected within the appropriate interval of time after arriving at a
node. The polling watchdog requires either additional hardware
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or a programmable network card, such as FORE’s ATM cards or
the Myrinet LANAI.

Overall, most of the new polling approaches work remarkably
well. They are all far better then basic polling scheme. On aver-
age, ‘heur-t’ is more than 60% better then basic polling for the
medium network. Average performance differences between
‘heur-t’ and ‘ifast’ range are less than 0.4% for all three net-
works. Differences increase slightly with the faster networks
because overall running times decrease with network latency.
Differences between ‘loop-t’ and ‘ifast’ range from 1.4% for
‘slow’ to 2.2% for ‘fast’. The ‘loop-t’ approach might be pre-
ferred over ‘heur-t’ in practice because of its greater conserva-
tism. ‘Heur-t’s speedup is averages 11% higher than ‘loop’ which
puts polls in all loops indiscriminately. This gap is likely to in-
crease with newer hardware.

A somewhat surprising result is that the average speedup with
slow interrupts is within 5% of that of fast interrupts for all three
network configurations. This implies that even slow interrupts
provide good performance for most applications.

The good performance of the ‘heur-t’ scheme means that rela-
tively large polling costs can be tolerated without undue impact
on performance. A 100-cycle poll would add a maximum of 1%
to overall running time because it is only called every 10000
cycles. Results in Section 4 show that even larger poll costs can
be tolerated without adverse effects on performance. This is im-
portant because many interfaces can not be used with cheap
inline 20-cycle polls. For example, an MPI poll on AIX 4.2 costs
over 5 µsecs, more than 300 cycles. It may be possible to check
the status of the switch directly with access to source. However,
any such hack will not be portable, obviating the main reason for
using MPI in the first place.

The 50-microsecond polling watchdog performs within 1% of
‘ifast’ for all three networks. The one-millisecond watchdog av-
erages between three and four percent slower than ‘ifast’.

7. RELATED WORK
Neither multi-threading nor polling are new ideas. Multi-
threading has been studied not only for masking request/reply
latencies as we do, but also at the hardware level for masking
cache misses [17]. In this work, we show how multi-threading
compares in hiding the remote request latencies vs. fast software
interrupts in reducing those latencies.

The sensitivity of communication mechanisms to message la-
tency was studied by Chong [7]. The main issue studied here is
how shared memory and message passing compare to each other
with respect to network latency. For message passing, they agree
with Brewer [6] that polling performs better when performance is
dominated by communication. In addition to direct costs, inter-
rupts can lead to significant load imbalance. However, none of
their applications assume asynchronous message arrivals.

Brewer described the remote queues abstraction [5, 7] for the
same environment. Remote queues are a fine-grained mechanism
for integrating polling and interrupts. Message-passing overheads
and tradeoffs on the Alewife are quite different than on clusters
of workstations.

Martin et al. [19] examined the effects of latency, overhead, and
bandwidth on parallel application performance. They found sig-
nificant slowdowns as the communication overheads and mini-
mum message gap increase, while latency and bandwidth are the

most important factor for request/reply applications. Their work
assumed polling.

Mukherjee et al. [21] propose putting the network interface on
the memory bus, which would enable the processor to cache
status, control, and data network interface registers. This would
provide very cheap polling through access to the cache, combined
with speculative execution. The polling would then be cheap
enough to be used unconditionally in all loop iterations, and
eliminate the majority of notification delay. One drawback of this
approach is that it could only be widely implemented if memory
bus interfaces are standardized. Nonetheless, this approach
should perform better then the fast interrupts that we simulate,
and far better then basic polling mechanism used today, i.e.,
polling after message sends.

Falsafi et al [10] studied the scheduling of protocol operations on
SMP nodes. They show that using a dedicated processor within
an SMP is cost effective when the protocol is light-weight, there
are more then two processors per SMP node, or applications are
communication intensive. Dedicated processors poll constantly,
so notification delay is only dependent on the occupancy of the
dedicated processor. Our work differs in that it is directed at
heavy-weight protocols and single-processor systems.  However,
the use of dedicated processors is certainly a viable approach for
medium to large-scale multiprocessors. On smaller machines, the
loss of a processor for computation might make the cost of this
approach prohibitive.

Our work on polling is most similar to the Polling Watchdog
study [18]. Our simulation of the Polling Watchdog shows it is
nearly as effective in our domain as with bulk-synchronous ap-
plications. We showed that the reason for this effectiveness is the
extremely long tail of the distribution in delay lengths. Our study
shows that polling and multi-threading are at least as effective,
without requiring hardware assistance.

8. CONCLUSIONS
Advances in current network technology are finally catching up
with those in processor technology. Unfortunately, many new
high-performance network interfaces require explicit polling in
order to detect incoming messages or requests. The most com-
mon polling scheme consists of a poll after each message send.
We show that this scheme results in inordinately large notifica-
tion delays and poor performance for many applications.

Note that we are not arguing that our polling schemes or multi-
threading should be used instead of interrupts. Instead, the focus
of this paper is on whether the lack of interrupts and hardware-
based notification mechanisms dooms many applications to poor
performance. Happily, this is not the case.

We explore two strategies for dealing with notification delay.
Multi-threading can be used to tolerate notification delay. We
show that using four threads per node increases average perform-
ance for our applications from 62% of the best possible case (fast
software interrupts) to 86%.

Second, we evaluate several strategies for decreasing notification
delay directly by automatically inserting polls. We show that the
cost of polling can be effectively amortized by using an opti-
mized check sequence. The resulting applications perform within
1% of (very) fast interrupts. Furthermore, we show that this am-
ortization can be applied to relatively expensive polling opera-
tions, allowing the use of standard polling interfaces. Hence, the
lack of explicit interrupt support in current network interfaces
does not preclude good performance for our application domain.



Finally, we investigated the distribution of notification delays in
our applications. We found that the majority of delay is caused by
a relatively small number of large delays. Eliminating these de-
lays through a high-threshold timeout scheme, such as the one-
millisecond polling watchdog, allows the applications to perform
within a few percent of a system that supports fast interrupts.

DSM applications are currently a niche within the small niche of
parallel applications. However, the advent of Java, CORBA, and
other new distributed object technologies can only cause the im-
portance of reducing notification delay to increase. Furthermore,
our findings bode well for the use of non-dedicated networks of
workstations to run distributed applications, and complement
recent work on emergent co-scheduling [25].
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