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Abstract

We present the design and evaluation of an on-the-
fly data-race-detection technique that handles applications
written for the lazy release consistent (LRC) shared memory
model. We require no explicit association between synchro-
nization and shared memory. Hence, shared accesses have
to be tracked and compared at the minimum granularity of
data accesses, which is typically a single word.

The novel aspect of this system is that we are able to
leverage information used to support the underlying mem-
ory abstraction to perform on-the-fly data-race detection,
without compiler support. Our system consists of a mini-
mally modified version of the CVM distributed shared mem-
ory system, and instrumentation code inserted by the ATOM
code re-writer.

We present an experimental evaluation of our technique
by using our system to look for data races in four unaltered
programs. Our system correctly found read-write data races
in a program that allows unsynchronized read access to a
global tour bound, and a write-write race in a program
from a standard benchmark suite. Overall, our mechanism
reduced program performance by approximately a factor of
two.

1 Introduction

While potentiallyvery useful, data-race detection mecha-
nisms have yet to become widespread. Part of the problem is
surely the restricted domain in which most such mechanisms
operate, i.e. parallelizing compilers. Such restrictions are
deemed necessary because data-race detection is generally
NP-complete [17], and exponential searches over a domain
the size of the number of shared accesses in a program exe-
cution are prohibitively expensive.

This paper presents the design and evaluation of an
online data-race detection technique for explicitly parallel
shared-memory applications. This technique is applicable

for shared memory programs written for the lazy-release-
consistent (LRC) [9] memory model. Our work differs from
previous work [3, 4, 5, 7, 16, 15] in that data-race detection
is performed both on-the-flyand without compiler support.
In common with other dynamic systems, we address only
the problem of detecting data races that occur in a given ex-
ecution, not the more general problem of detecting all races
allowed by program semantics [17].

Our general approach is to run applications on a modified
version of the Coherent Virtual Memory (CVM) [11, 12] sys-
tem, a distributed shared memory (DSM) system that sup-
ports LRC. DSMs support the abstraction of shared mem-
ory for parallel applications running on CPUs connected by
general-purpose interconnects, such as networks of work-
stations or distributed memory machines like the IBM SP-2.
The key intuition of this work is the following:

LRC implementations already maintain enough
ordering information to make a constant-time de-
termination of whether any two accesses are con-
current.

Hence, a DSM that implements LRC can perform the entire
process on-the-fly with acceptable overhead.

Modifying CVM to implement data-race detection con-
sisted of (i) adding instrumentation to detect read accesses,
(ii) integrating this information into existing CVM structures
that already contain analogous information about write ac-
cesses, and (iii) running a simple race-detection algorithm
at existing global synchronization points. The task of this
last point is made much easier by leveraging off of order-
ing information already maintained to support consistency
guarantees.

We used this technique to check for data races in im-
plementations of four common parallel applications. Our
system correctly found races in two. TSP, a program that
solves the Traveling Salesman Problem, has a large number
of data races that result from unsynchronized read accesses
to a global tour bound. The reads are left unsynchronized to
improve performance; out-of-date tour bounds may cause



redundant work to be performed, but do not violate cor-
rectness. Water-Nsquared, of the Splash2 [22] benchmark
suite, had a data race that constituted a real bug. This bug
has been reported to the Splash authors and fixed in their
current version.

While overhead is still potentially exponential, we de-
scribe a variety of techniques that greatly reduce the num-
ber of comparisons that have to be made. Those portions of
the race-detection procedure that have the largest theoreti-
cal complexity are only the third or fourth-most expensive
portion of the overall technique for the applications that
we studied. Specifically, we show that i) we can statically
eliminate over 99% of all load and store instructions as po-
tential race participants, ii) we dynamically eliminate over
70% of all program execution from consideration by using
LRC ordering information, and iii) the slowdown from using
data-race detection in our system is approximately a factor
of two for the applications studied. While this overhead is
clearly too high for the system to be used all of the time, it is
low enough for use when traditional debugging techniques
are insufficient.

2 Problem Definition

The goal of this work is to create a system that detects
race conditions online. Since our strategy relies on LRC
consistency, our system is clearly applicable only for appli-
cations that will run properly on release-consistent systems,
i.e. properly-labeled [6] or DRF1 [1] applications. The
following definitions are assumed throughout the rest of the
paper.

Definition 1 A data race is defined as a pair of memory
accesses in some execution, such that:

1. Both access the same shared variable,

2. At least one is a write,

3. The accesses are not ordered by system-visible syn-
chronization or program order.

In the sense discussed by Netzer [18], the races found by our
system areactual data races, i.e. they are races that occur
while the program is running on our system. In common
with most other implemented systems, both with and without
compiler support, we make no claim to detect allfeasible
data races, i.e. all data races allowed by the semantics of the
program. As such, a program running to completion on our
system without data races is not a guarantee that subsequent
executions will be free of data races as well. In practice,
however, we expect most data races to reveal themselves
when given an appropriate input set.

Figure 1 shows a portion of a single execution in which
two processes access shared variablex, and synchronize
through synchronization variableL. Bothw1-r1 andw1-r2

P1 P2

Lock(L)
w1(x)
Unlock(L) if (flag) f

r1(x)
g
r2(x)
Lock(L)
r3(x)
Unlock(L)

Figure 1. Race Conditions

are feasible data races, assuming we have no knowledge
of the value offlag. However, ifflag is equal to zero
during an execution,w1-r2 is the onlyactual data race, the
only data race that occurs and would therefore be caught
by our system. The access pairw1-r2 is still potentially a
bug for some other execution, but would not be flagged by
CVM during this execution. Shared accessesw1 andr3 do
not constitute a data race, as they are ordered byP1’s unlock
andP2’s lock.

In order for our system to distinguish betweenw1-r1

andw1-r3 in Figure 1, the system must be able to detect
and understand the semantics of all synchronization used by
the programs. In practice, this requirement means that pro-
grams must use only system-providedsynchronization. Any
synchronization implemented on top of the shared memory
abstraction is invisible to the system, and could result in
spurious race warnings.

However, the above requirement is no stricter than that
of the underlying DSM system. Programs must use system-
visible synchronization in order to run on any release-
consistent system. Our data-race detection system imposes
no additional consistency or synchronization constraints.

Given the above definition for data races, our system will
detect all data races that occur during a given execution.

3 Lazy Release Consistency and Data Races

3.1 Lazy Release Consistency

Lazy release consistency [9] is a variant ofeager release
consistency (ERC) [6], a relaxed memory consistency that
allows the effects of shared memory accesses to be delayed
until selected synchronization accesses occur. Simplifying
matters somewhat, shared memory accesses are labeled ei-
ther asordinary or as synchronization accesses, with the
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latter category further divided intoacquire andrelease ac-
cesses. Acquires and releases may be thought of as conven-
tional synchronization operations on a lock, but other syn-
chronization mechanisms can be mapped on to this model
as well. Essentially, ERC requires ordinary shared memory
accesses to be performed only when a subsequent release
by the same processor is performed. ERC implementations
can delay the effects of shared memory accesses as long as
they meet this constraint.

Under LRC protocols, processors further delay perform-
ing modifications remotely until subsequent acquires by
other processors,and the modifications are only performed
at the other processor that performed the acquire. The cen-
tral intuition of LRC is that competing accesses to shared
locations in correct programs will be separated by synchro-
nization. By deferring coherence operations until synchro-
nization is acquired, consistency information can be piggy-
backed on existing synchronization messages.

To do so, LRC divides the execution of each process
into intervals, each identified by aninterval index. For
example, Figure 2 shows an execution of two processors,
each of which have two intervals. Interval 1 ofP1, denoted
�

1
1, contains a release synchronization access and a write to

shared variablex. Each time a process executes a release
or an acquire, a new interval begins and the current interval
index is incremented. Intervals of different processes are
related by ahappens-before-1 partial ordering [1]:

1. intervals on a single processor are totally ordered by
program order,

2. interval�i
p precedes interval�j

q if �j
q begins with the

acquire corresponding to the release that concluded
interval�i

p, and

3. the transitive closure of the above.

LRC protocols append consistency information toall syn-
chronization messages. This information consists of struc-
tures describing intervals seen by the releaser but not the
acquirer. For example, the message granting the lock toP2

in Figure 2 contains information about all intervals seen by
P1 at the time of the release that had not yet been seen by
P2, i.e. �1

1.

3.2 Data Race Detection in an LRC System

The happens-before-1 relation orders intervals, and by
implication, accesses within intervals. Sincehappens-
before-1 is a combination of synchronization order (the re-
lease byP1 precedes the acquire byP2), and program order,
it is clear that the write tox in �

1
1 of Figure 2 precedes (via

thehappens-before-1 relation) the write in�2
2 (interval 2 of

P2).
We can now re-define Definition 1 as follows:

Definition 2 A data race is defined as a pair of memory
accesses in some execution, such that:

1. Both access the same shared variable,

2. At least one is a write,

3. The accesses are not ordered with respect to happens-
before-1.

More informally, a data race is a pair of accesses that do
not have intervening synchronization, such that at least one
of the accesses is a write. In Figure 2, if the second write of
P1 were to variablex, it would constitute a data race with
the access in�2

2, because intervals�2
1 and�2

2 are concurrent
(not ordered).

In general, detecting data races requires comparing each
access against every other access. With an LRC system,
however, we can limit comparisons only to accesses in pairs
of concurrent intervals. For example, interval pair�

1
1-�2

2 in
Figure 2 is not concurrent (among others), and so we do not
have to check further in order to determine if there is a data
race formed by accesses of these intervals. Furthermore, for
each concurrent interval pair, we only perform word-level
comparisons if we have first verified that the pages accessed
by the two intervals overlap.

For example, assume that the second write byP1 in Fig-
ure 2 is to a variabley that is located on the same page as
x. A comparison of pages accessed by concurrent intervals
�

2
1 and�2

2 would reveal that they access overlapping pages,
and hence we would need to perform a bitmap comparison in
order to determine if the accesses constitute false sharing or
true sharing (i.e. a data race). In this case, the answer would
be false sharing because the accesses are to different loca-
tions. However, ifP1’s second write were toz, a variable
on a completely different page, our comparison of pages
accessed by the two intervals would reveal no overlap. No
bitmap comparison would be performed, even though the
intervals are concurrent.

4 Implementation

We implemented our data-race detection on top of
CVM [11, 12], a software DSM that supportsmultiple proto-
cols and consistency models. Like commercially available



Input Set Synchronization
Memory Size Intervals Slowdown

(kbytes) Per Barrier (8 Proc)

FFT 64 x 64 x 16 barrier 3088 2 2.08
SOR 512x512 barrier 8208 2 1.83
TSP 19 cities lock 792 177 2.51
Water 216 mols, 5 iters lock, barrier 152 46 2.31

Table 1. Application Characteristics

systems such as TreadMarks [10], CVM is written entirely
as a user-level library and runs on most UNIX-like sys-
tems. Unlike TreadMarks, CVM was created specifically as
a platform for protocol experimentation.

The system is written in C++, and opaque interfaces are
strictly enforced between different functional units of the
system whenever possible. The base system provides a set
of classes that implement a generic protocol, lightweight
threads, and network communication. The latter function-
ality consists of efficient, end-to-end protocols built on top
of UDP.

New shared memory protocols are created by deriving
classes from the basePage andProtocol classes. Only
those methods that differ from the base class’s methods need
to be defined in the derived class. The underlying system
calls protocol hooks before and after page faults, synchro-
nization, and I/O events take place. Since many of the
methods are inlined, the resulting system is able to perform
within a few percent of a severely optimized system, Tread-
Marks, running a similar protocol. However, CVM was
designed to take advantage of generalized synchronization
interfaces, as well as to use multi-threading for latency tol-
eration. We therefore expect the performance of the fully
functional system to improve over the existing base. In or-
der to simplify the comparison process, however, we do not
use either of these techniques in this study.

We made only three modifications to the basic CVM im-
plementation: (i) we added instrumentation to collect read
and write access information, (ii) we added lists of pages
read (read notices) to message types that already carry anal-
ogous information about pages written, and (iii) we added
an extra message round at barriers in order to retrieve word-
level access information, if necessary.

We use the ATOM [21] code-rewriter to instrument
shared accesses with calls to analysis routines. ATOM al-
lows executable binaries to be analyzed and modified. We
use ATOM to identify and instrument all loads and stores
that may access shared memory. Although ATOM is avail-
able only for DEC Alpha systems, similar tools are becom-
ing more common. EEL [13] provides similar support for
Sparc and MIPS systems, and several machine vendors are
working on such tools as well.

The actual instrumentation consists of a procedure call

to an analysis routine that sets a bit in a per-page bitmap if
the instruction accesses shared memory. Information about
which pages were accessed, together with the bitmaps them-
selves, is placed in known locations for CVM to use during
the execution of the application. All data structures, in-
cluding bitmaps, are statically allocated in order to reduce
runtime cost.

The overall procedure for detecting data races is the fol-
lowing:

1. CVM synchronization messages carry information
about process intervals. Each interval contains one
or morewrite notices that specify pages written during
that interval. We augmented interval structures to also
carry read notices, or lists of pages read during that
interval. Interval structures also contain version vec-
tors that identify the logical time associated with the
interval, and permit checks for concurrency.

2. Worker processes in any LRC system append consis-
tency information describing all local intervals to bar-
rier arrival messages. At each barrier, therefore, the
barrier master has complete and current information
on all intervals in the entire system. This information
is sufficient for the master to locally determine the set
of all pairs of concurrent intervals. Although the algo-
rithm must potentially compare the version vector of
each interval of a given processor with the vector of
each interval of every other processor, synchronization
and program order allow many of the comparisons to
be bypassed. Version vector comparison is a constant
time process, requiring only two integer comparisons.

3. For each pair of concurrent intervals, the read and write
notices are checked for overlap. A data race might exist
on any page that is either written in two concurrent
intervals, or read in one interval and written in the other.
Such interval pairs, together with a list of overlapping
pages, are placed on thecheck list.

4. Barrier release messages carry the check list to all sys-
tem processes. Each read or write notice has a corre-
sponding bitmap that describes precisely which words
of the page were accessed. These bitmaps are returned



to the barrier master for each page and interval on the
check list.

5. The barrier master compares bitmaps from overlapping
pages in concurrent intervals. Bitmap comparison is
a constant time process, dependent on page size. In
the case of a read-write or write-write overlap, the
algorithm has determined that a data race exists, and
prints the address of the affected variable.

We currently use a very simple interval comparison al-
gorithm to find pairs of concurrent intervals, primarily be-
cause the major system overhead is elsewhere. The upper
bound on the number of intervals per processor pair that
the comparison algorithm must compare isO(i2), wherei
is the maximum number of intervals of a single processor
since the last barrier. The algorithm needs only to examine
intervals created during the last barrier epoch. By defini-
tion, these intervals are separated from intervals in previous
epochs by synchronization, and are therefore ordered with
respect to them. Since each interval potentially needs to be
compared against every other interval (of another process in
the current epoch), the total comparison time per barrier is
bounded byO(i2p2), wherep is the number of processes.
In practice, however, the number of comparisons is usually
quite small.

Applications that use only barriers have two intervals
per process per barrier epoch. More than two intervals
per barrier are only created through additional peer-to-peer
synchronization, such as exclusive locks. However, peer-
to-peer synchronization also imposes ordering on intervals
of the synchronizing processes. For example, a lock release
and subsequent acquire order intervals prior to the release
with respect to those subsequent to the acquire. Since an
ordered pair of intervals can not be concurrent, the same
act that creates intervals also removes many interval pairs
from consideration for data races. Hence, programs with
many intervals between barriers usually also have ordering
constraints that reduce the number of concurrent intervals.

5 Performance

We evaluated the performance of our prototype by search-
ing for data races in implementations of four common
shared-memory applications: FFT (Fast Fourier Trans-
form), SOR (Jacobi relaxation), TSP (branch and bound
traveling salesman problem), and Water (a molecular dy-
namics simulation from the Splash2 [22] benchmark suite.
All applications were run on DECstations with four 250
Mhz Alpha processors, connected by a 155 MBit ATM. We
used only a single processor per machine in order to avoid
bus contention.

Table 1 summarizes the application inputs, synchroniza-
tion types, the number of intervals per barrier, and the overall

0%

20%

40%

60%

80%

100%

120%

140%

160%

FFT SOR TSP Water

%
 O

ve
rh

ea
d

CVM Mods Proc Call Access Check Intervals Bitmaps

Figure 3. Overhead Breakdown

slowdown for eight-processor runs. “Memory size” is the
size of the shared data segment. “Intervals Per Barrier”
is the average number of intervals created between barri-
ers. As the number of interval comparisons is potentially
proportional to the number of intervals squared, this metric
gives a rough idea of the worst-case cost of running the com-
parison algorithm. This number is greater than 1 for FFT
and SOR because our barrier implementation requires two
interval structures per barrier. Other synchronization mech-
anisms require only a single interval per synchronization.
As the next section will show, the comparison algorithm is
at most only the third most costly form of overhead in our
applications.

“Slowdown” is the runtime slowdown for each of the
applications, compared with an uninstrumented version of
the application running on an unaltered version of CVM.
Over the four applications, execution time slows only by an
average factor of 2.2. This number compares quite favorably
even with systems that exploit extensive compiler analysis.

Figure 3 shows the overhead added by the race-detection
mechanism relative to the running time of the unaltered bi-
nary, for each application. For example, the execution time
of the instrumented FFT binary is 108% longer than that of
the uninstrumented binary. “CVM Mods” is the overhead
added by the modifications to CVM, primarily setting up
the data structures necessary for proper data-race detection
and the additionalbandwidthused by the read notices. “Proc
Call” is the procedure call overhead for our instrumentation.
ATOM will not currently inline instrumentation; only pro-
cedure calls can be inserted into existing code. The ATOM
team is working to eliminate this restriction, and the “Proc



Call” column shows how much of the total overhead could
be eliminated as a result. “Access Check” is the additional
time spent inside the procedure call determining whether an
access is to shared memory, and setting the proper bit if so.
“Intervals” refers to the time spent using the interval com-
parison algorithm to identify concurrent interval pairs with
overlapping page accesses. “Bitmaps” describes the over-
head of the extra barrier round required to retrieve bitmaps,
together with the cost of the bitmap comparisons.

The two largest components of the overhead are the ac-
cess checks and modifications to CVM. The overheads of
the interval comparison algorithm and the bitmap checks
are usually fairly small. As we will see in the next section,
TSP has a higher rate of calls to the runtime analysis routines
than the other applications, hence the higher instrumentation
overhead. The comparison algorithm adds more overhead
for Water than the other applications because of the large
degree of fine-grained synchronization.

The following subsections describe the above overheads
in more detail.

5.1 Instrumentation Costs

We instrumented each load and store that could poten-
tially be involved in a data race. The instrumentation con-
sists of a procedure call to an analysis routine, and hence
adds “Proc Call” and “Access Check” overheads. By sum-
ming these columns from Figure 3, we can see that in-
strumentation accounts for an average of 68% of the total
race-detection overhead.

This overhead can be reduced by instrumenting fewer
instructions. This goal is difficult because shared and pri-
vate data are all accessed using the same addressing modes,
and even share some base registers. However, we eliminate
most stack accesses by checking for use of the frame pointer
as a base register. The fact that all shared data in our system
is dynamically allocated allows us to eliminate any instruc-
tions that access private data by indirection through the base
register that points to statically allocated data. Finally, we
do not instrument any instructions in shared libraries be-
cause none of our applications pass segment pointers to any
libraries. This is the case with the majority of the scien-
tific programs where data race detection is most important.
However, we can easily instrument “dirty” library functions,
if necessary.

Table 2 breaks down load and store instructions into the
categories that we are able to statically distinguish. The
first four columns show the number of loads and stores
that are not instrumented because they access the stack or
statically-allocated data, or are in library routines, including
CVM itself. The fifth column shows the remainder. These
instructions could not be eliminated as possible data-race
participants and are therefore instrumented by ATOM to

App
Load and Store Instructions

Stack Static Library CVM Inst.

FFT 1285 1496 124716 3910 261
SOR 342 1304 48717 3910 126
TSP 244 1213 48717 3910 350
Water 649 1919 124716 3910 528

Table 2. Instrumentation Statistics

make a procedure call to an analysis routine each time the
memory access is executed.

On average, we are able to statically determine that over
99% of the loads and stores in our applications are to non-
shared data. As an example, the FFT binary contained
131,668 load and store instructions. Of these, 124,716 in-
structions are in libraries. A further 1285 instructionsaccess
data through the frame pointer, and hence reference stack
data. Another 3910 are in the CVM system itself. Finally,
1496 instructions access data through a register pointing
to the base of statically allocated global memory. We can
eliminate these instructions as well, since CVM allocates
all shared memory dynamically. In the entire binary, only
261 memory access instructions remain that could possibly
reference shared memory, and hence form part of a data
race.

Nonetheless, the last two columns of Table 3 show that
the majority of run-time calls to our analysis routines are for
private, not shared, data. “Inst. Accesses Per Second” refers
to the number of instrumented loads and stores executed per
second, and the number of these calls to our instrumentation
routines that turn out to be for shared or private data. The
high rate of instrumented accesses for TSP explains the large
“Access Check” overhead for TSP in Figure 3. Accesses
to shared data are distinguished from accesses to private
data by comparing the address with that of the shared data
segments.

5.2 The Cost of the Comparison Algorithm

The comparison algorithm has three tasks. First, the
set of concurrent interval pairs must be found. Second,
this list must be winnowed down to those interval pairs for
which an overlap of pages is found (i.e. one interval of
a pair reads from pagex and the other interval in the pair
writes to pagex). Each such pair of concurrent intervals
exhibits unsynchronized sharing. However, the sharing may
be either false sharing, i.e. the loads and stores to pagex are
to different locations inx (not a data race), or true sharing,
in which the loads and stores overlap at least one location
(data race).

The first column of Table 3 shows the percentage of
intervals that are involved in at least one such concurrent
interval pair. This number ranges from zero for SOR, where



Intervals Bitmaps Msg
Inst. Accesses

Used Used Ohead
Per Second

Shared Private

FFT 15% 1% 0.4% 311079 924226
SOR 0% 0% 1.6% 483310 251200
TSP 93% 13% 1.3% 737159 2195510
Water 13% 11% 48.3% 145095 982965

Table 3. Dynamic Metrics

this is no unsynchronized sharing (true or false), to 93% for
TSP, where there is a large amount of both true and false
sharing. Note that the number of possible interval pairs is
quadratic with respect to the number of intervals, so even if
this stage eliminates only 7% of all intervals, as we do for
TSP, we may be eliminating a much higher percentage of
interval pairs.

The second column of Table 3 shows that an average of
only 6% of all bitmaps must be retrieved from constituent
processors in order to identify data races by distinguishing
false from true sharing. As page access lists of concurrent
intervals will only overlap in cases of false sharing or actual
data races, the percentage of intervals and bitmaps involved
in comparisons is fairly small.

5.3 The Cost of CVM Modifications

Figure 3 shows that almost 22% of our overhead comes
from “CVM Mods”, or modifications made to the CVM sys-
tem in order to support the race-detection algorithm. This
overhead consists of the cost of setting up additional data
structures for data-race detection, and the cost of the addi-
tional bandwidth consumed by read notices.

The third column of Table 3 shows the bandwidth over-
head of adding read notices to synchronization messages.
Individual read and write notices are the same size, but
there are typically at least five times as many reads as writes,
and read notices consume a proportionally larger amount of
space than write notices. The bandwidth overhead for Water
is much larger than for the other applications because of the
fine-grained synchronization, and hence the large number of
intervals.

The bandwidth consumed by read notices prevents us
from running larger input sets because current message sizes
are already at system maximums. Our communication code
can, and eventually will, be modified in order to accommo-
date larger messages.

6 Discussion

6.1 Reference Identification

The system currently prints the shared segment address
for each detected race condition, together with the interval
indexes. In combination with symbol tables, this informa-
tion can be used to identify the exact variable and synchro-
nization context.

Identifying the specific instructions involved in a race is
more difficult because it requires retaining program counter
information for each shared memory access. This informa-
tion is available at runtime, but such a scheme would require
saving program counters for each shared access until a fu-
ture barrier analysis phase determined that the access was
not involved in a race. The storage requirements for re-
taining this information would generally be prohibitive, and
would also add runtime overhead.

A second approach is to use the conflicting address and
corresponding barrier epoch from an initial run of the pro-
gram as input to a second run. During the second run,
program counter information can be gathered for only those
accesses to the conflicted address that originate in the barrier
epoch determined to involve the data race.

While runtime overhead and storage requirements can
thereby be drastically reduced, the data race must occur in
the second run exactly as in the first. This will happen if the
application has nogeneral races [18], i.e. synchronization
order is deterministic. This is not the case in either of
the two applications for which we found data races. A
solution is to modify CVM so as to save synchronization
ordering information from the first run, and to enforce the
same ordering in the second run.

6.2 Scalability

Figure 4 shows runtime slowdown versus number of pro-
cessors. Slowdown actually decreases as we increase the
number of processors. This seemingly anomalous result has
two causes. First, interval and bitmap comparison overhead
is serialized at the master process, and henceobservable
overhead from these sources remains constant as system
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size is increased. Instrumentation costs, however, occur in
parallel with the shared accesses. As system size increases,
therefore, per-process computation and observable instru-
mentation overhead decreases.

Second, the combination of modest problem sizes, fast
processors, and the large page size of the DECstations result
in our applications getting very modest speedups even with
the unmodified version of the single-writer protocol used in
this study. Hence, at least some of the overhead of the race
detection algorithm is probably masked by DSM overhead.
However, none of these limitations are intrinsic to our ap-
proach. Our problem sizes are small because of message
size limitations. We are modifying the underlying commu-
nication layer to alleviate this problem. The large page size
exacerbates the problems of false sharing associated with
single-writer protocols [12] protocols. We based our proto-
type on CVM’s single-writer protocol in order to minimize
complexity, but our algorithm will work identically with
CVM’s multi-writer protocol.

Finally, comparison to determine if two intervals are con-
current is a constant-time process, as each interval is marked
with a vector timestamp [14, 10]. Comparison of two con-
current intervals to determine whether their page lists over-
lap is currentlyO(n2) in the size of the lists, as they are
usually very small (i.e. less than ten). If we encountered
applications where these lists grew large, we could perform
the comparison in time linear with respect to the number
of pages in the system by implementing page lists using
bitmaps.

6.3 Global Synchronization

The interval comparison algorithm is currently run only
at global synchronization operations, i.e. barriers. The ap-

P1 P2 P3

w1(qP tr)100
w1(qEmpty)0
fmissing releaseg

fmissing acquireg
r2(qEmpty)0 w3(37): : :
r2(qP tr)37 w3(38): : :
w2(37): : : w3(39): : :
w2(38): : : w3(40): : :

Figure 5. The race w2(37) � w3(37) would not
occur in SC system

plications and input sets in this study use barriers frequently
enough, or otherwise synchronize infrequently enough, that
the number of intervals to be compared at barriers is quite
manageable. Nonetheless, there certainly exist applications
for which global synchronization is not frequent enough to
keep the number of interval comparisons to a small number.
Ideally, the system would be able to incrementally discard
data races without global cooperation, but such mechanisms
would increase the complexity of the underlying consistency
protocol [8]. If global synchronization is either not used,
or not used often enough, we can exploit CVM routines
that allow global state to be consolidated between synchro-
nizations. Currently, this mechanism is only used in CVM
for garbage collection of consistency information in long-
running, barrier-free programs.

6.4 Accuracy

Adve [2] discusses three potential problems in the accu-
racy of race detection schemes in concert withweak memory
systems, or systems that support memory models such as
lazy release consistency.

The first issue is whether to report all data races, or only
those that would also occur during sequentially-consistent
executions of the program. Their example (somewhat
simplified) is shown in Figure 5, where the notationop
(loc) val indicates a read or write operation performed
on locationloc, that respectively reads or writes value
val. If the missing synchronization operations were
present, there would not be any races.P2’s read ofqPtr,
r2(qP tr)37, would return 100 instead of some older value
(37 in this case), andP2’s subsequent writes would be to
locations 100 and above. However, given that the syn-
chronization is not present, only theqPtr andqEmpty
races would have occurred on sequentially consistent hard-
ware. Ifw1(qEmpty)0 had propagated toP2, any sequen-



tially consistent system must also have sent the results of
w1(qP tr)100. This is not the case with weak memory
systems, which can usually reorder the effects of write op-
erations between synchronization points at will. Hence, the
races betweenw2(37) andw3(37), etc., only occur on weak
memory systems.

This is an instance of a more general problem, i.e.
whether to return all data races, or only “first” data races,
those that are not affected or caused by any prior race. Our
system currently reports all races, but could be modified to
report only first races without requiring more information to
be gathered. Determining whether one race is affected by
another effectively consists of deciding whether a happens-
before-1 relationship exists between any of the operations
in one race and any of the operations in another. Since bar-
rier operations are semantically equivalent to releases by all
arriving processors to the barrier master, followed by the
barrier master releasing to all other processors, any race in
a prior barrier epoch must necessary affect all races in sub-
sequent epochs. Hence, all “first” races must occur in the
same barrier epoch. Modifying our system to perform this
check online is a trivial extension.

The second problem with accuracy of dynamic race-
detection algorithms is reliability of ordering information
in the presence of races. Race conditions could cause wild
accesses to random memory locations, potentially corrupt-
ing interval ordering information or access bitmaps. This
problem exists in any dynamic race-detection algorithm, but
we expect it to occur infrequently.

A final accuracy problem identified by Adve is that of sys-
tems that attempt to minimize space overhead by buffering
only limited trace information, possibly resulting in some
races remaining undetected. Our system only discards trace
information when it has been checked for races, and hence
does not suffer this limitation.

6.5 Further Performance Enhancements

There are several ways that overhead can be further re-
duced. First, the ATOM team has promised a new version
that allows instrumentation code to be inlined. The Shasta
project [20] has already demonstrated a version of ATOM
with this feature. Figure 3 shows that an average of 6.7% of
our overhead is caused by the procedure call. This overhead
will be eliminated when we get the new version of ATOM.

Second, we currently instrument both load and store in-
structions. This is necessary because our system is currently
built on top of a single-writer LRC protocol [12]. Convert-
ing our system to use the multi-writer protocol would allow
us to exploit existingdiffs, which summarize per-page mod-
ifications, to extract write accesses. We would then be able
to dispense with the monitoring of store instructions. Since
approximately 68% of the overhead is from instrumentation,

and 25% of all data accesses are stores, we should be able
to eliminate at least 17% of overall overhead.

A disadvantage of this approach is a slightly weaker
correctness guarantee. Diffs only containmodifications to
shared data. If a shared value is overwritten with the same
value, the data location will not be in the diff, and any data
race involving this location may not be detected.

Finally, Table 2 shows that nearly 68% of the calls to
our instrumentation routines turn out to be for private data.
Our current analysis tracks references only through the same
basic block. If the value defined before that point is used
to reference an unknown data location, we conservatively
assume that the location is shared, and hence instrument the
access. Inter-procedural analysis would allow us to elim-
inate many of these “false” instrumentations, and reduce
overall overhead. This analysis can be done with the cur-
rent ATOM system, but will be much easier with a version
promised in the near future.

7 Related Work

There has been a great deal of published work in the
area of data race detection. However, as previously men-
tioned, most prior work has dealt with applications and sys-
tems in more specialized domains. Bitmaps have been used
to track shared accesses before [5], but we know of no
other implementation of on-the-fly data-race detection for
explicitly-parallel, shared-memory programs without com-
piler support.

Our work is closely related to work already alluded to
in Section 5, a technique described (but not implemented)
by Adve et al. [2]. The authors describe a post-mortem
technique that creates trace logs containing synchroniza-
tion events, information allowing their relative execution
order to be derived, and computation events. Computation
events correspond roughly to CVM’s intervals. Computa-
tion events also have READ and WRITE attributes that are
analogous to the read and write page lists and bitmaps that
describe the shared accesses of an interval. These trace files
are used off-line to perform essentially the same operations
as in our system. We differ in that our minimally-modified
system leverages off of the LRC memory model in order to
abstract this synchronization ordering informationonline.
We are therefore able to perform all of the analysis online
as well, and do away with trace logs, post-mortem analysis,
and much of the overhead.

We have also just become aware of unpublished work
on execution replay in TreadMarks that could be used to
implement race-detection schemes. The approach of the
Reconstruction of Lamport Timestamps (ROLT) [19] tech-
nique is similar to the technique we described in Section 6.1
for identifying the instructions involved in races. Minimal
ordering information saved during an initial run is used to



enforce exactly the same interleaving of shared accesses and
synchronization in a second run. During the second run, a
complete address trace can be saved for post-mortem anal-
ysis, although the authors do not discuss race detection in
detail. The advantage of this approach is that the initial run
incurs minimal overhead, ensuring that the tracing mech-
anism does not perturb the normal interleaving of shared
accesses.

The ROLT approach is complementary to the techniques
described in this paper. The primary thrust of our work
is in using the underlying consistency mechanism to prune
enough informationonline that post-mortem analysis is not
necessary. As such, our techniques could be used to improve
the performance of the second phase of the ROLT approach.
Similarly, our system could be augmented to include an
initial synchronization-tracing phase, allowing us to reduce
our perturbation of the parallel computation.

8 Conclusions

We have presented a new on-the-fly data race detec-
tion technique that allows data-race detection in explicitly-
parallel, shared-memory programs. Our technique abstracts
synchronization ordering from consistency information al-
ready maintained by lazy-release-consistent DSM systems.
We are able to use this information to eliminate most access
comparisons, and to perform the entire data-race detection
online.

The primary costs of data-race detection in our system
are in tracking shared data accesses. We use ATOM to
instrument load and store instructions with calls to our li-
brary. We are able to statically eliminate more than 99%
of all loads and stores in binaries by identifying accesses
to stack variables and statically-allocated global variables.
Nonetheless, the majority of the runtime calls to our library
are for non-shared accesses. Overall, our applications slow
down by an average factor of approximately two.

We used our system to analyze four shared-memory pro-
grams, finding data races in two. One of the programs, TSP,
allows data races in order to improve performance without
violating correctness. The data race in the other program,
which was from a standard benchmark suite, was a bug.
We believe that the utility of our techniques, in combination
with the generality of the programming model that we sup-
port, can help data-race detection to become more widely
used.

Additional information on CVM is available at:
http://www.cs.umd.edu/projects/cvm.html.
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