
1

Randomization, Speculation, and Adaptation in Batch Schedulers
Dejan Perković Peter J. Keleher

Department of Computer Science

University of Maryland
College Park, Maryland 20742
{dejanp|keleher}@cs.umd.edu

This paper proposes extensions to the backfilling job-
scheduling algorithm that significantly improve its perform-
ance. We introduce variations that sort the “backfilling order”
in priority-based and randomized fashions. We examine the
effectiveness of guarantees present in conservative backfilling
and find that initial guarantees have limited practical value,
while the performance of a “no-guarantee” algorithm can be
significantly better when combined with extensions that we
introduce. Our study differs from many similar studies in using
traces that contain user estimates. We find that actual overes-
timates are large and significantly different from simple mod-
els. We propose the use of speculative backfilling and specula-
tive test runs to counteract these large overestimations. Finally,
we explore the impact of dynamic, system-directed adaptation
of application parallelism. The cumulative improvements of
these techniques decrease the bounded slowdown, our primary
metric, to less then 15% of conservative backfilling.

1. Introduction
We present a study of batch schedulers based on the con-
servative backfilling [2] algorithm. A batch scheduler is a
scheduler for non-interactive jobs. Such a scheduler man-
ages resources on large cluster(s) of dedicated computer
nodes interconnected with high-speed networks that must
be shared among many end users. Jobs have a large vari-
ety of shapes. Some are highly parallel, while others are
sequential. Some last a few seconds, while others can last
a day. Scheduling those jobs optimally is known to be
hard.

Conservative backfilling [2], a commonly used
scheduling algorithm, performs much better than a basic
first-come-first-serve (FCFS) policy. FCFS suffers from
fragmentation, and therefore low utilization, when used
alone. Backfilling allows smaller jobs to move forward in
the schedule as long as such movement does not cause
any other scheduled jobs to be further delayed. This ca-
veat allows backfilling schedulers to guarantee a start
time for each job at the time the job is submitted. Al-
though this algorithm performs significantly better then
FCFS, a recent study by Zotkin [11] of the performance
of the EASY backfilling scheduler [3] indicated that
schedules could be significantly improved by sorting the
queue of waiting jobs by job length before backfilling.

We study a variety of backfilling enhancements that
can improve scheduling performance even beyond the
improvement reported in Zotkin [11]. Static approaches
require schedulers to assume that jobs have fixed parallel-
ism and running time estimations. Speculative ap-
proaches allow the scheduler to use modified job parallel-
ism and estimated running times. We use three static ap-
proaches: sorting queue by length, randomization (with
and without sorting the queue by length), and guarantee-
elimination, which abandons the potentially expensive
guarantees maintained in conservative backfilling. We use
two speculative approaches: speculative backfilling,
where the scheduler aggressively speculates on actual job
running time, speculative test runs, where we run long
jobs for a short time to see if they will abort, and job ad-
aptation, where the scheduler attempts in several ways to
use different job configurations in order to get better re-
sponse times.

All of these approaches can be combined to form a
single scheduler having much smaller average slowdowns
and waiting times.

2. Background and experimental setup
We briefly summarize the functioning of a backfilling
scheduler. We assume a single physical resource, i.e. a
single machine of width (number of processors) n. The
scheduler maintains a current schedule of all jobs that
have been submitted, but not yet finished running. An
easy way to visualize the schedule is as a two-dimensional
chart with width n, and a y axis that starts at time 0 and
goes up to infinity (Figure 1). The representation of a job
is the set of blocks showing the nodes that the job will
occupy in each time unit in the future. The schedule
shows four already-submitted jobs, together with their
scheduled start times. The new job will be given a start
time of 7, because it does not fit earlier. However, if job
A finishes in one time unit instead of two, the new job
could execute on the last three nodes starting at time 2.
Scheduling in advance can only be done because users
provide estimates of the running time of their jobs. Esti-
mates are notoriously imprecise, so users are encouraged
to provide generous estimates. Any jobs that exceed esti-
mated running times are killed. 0-7803-9802-5/2000/$10.00 (c) 2000 IEEE.

2

nn

C
ur

re
nt

 ti
m

e

t = 0

1

2

3

4

New job:

AA

5

6

7

Figure 1: Backfilling scheduler: The new job will be given a guaranteed start time of 7, al-
though it may start sooner if other jobs finish early.

Phase 1 Optimization:
Queue Sorting

Phase 2 Optimization:
Backfilling
w or w/o

Parallelism Adaptation

Phase 4 Optimization:
Start-time Job Widening

Current Schedule of
Running Jobs only

Current Schedule

Queue

Phase 3 Optimization:
Speculative Backfilling

Sorted Queue

Guarantees?

Y

N

Figure 2: Flow Chart of simulated optimizations – Executed whenever a new job
comes or a running job finishes earlier than it estimated.

3

Conservative backfilling [2], which we use in this
paper, employs start-time guarantees. Each job in the
schedule is guaranteed to start no later than at its cur-
rently scheduled start-time. Whenever a new job arrives,
it is scheduled at the earliest possible time so as not to
interfere with guaranteed start-times of all other jobs in
the schedule. Whenever a job finishes earlier than esti-
mated, conservative backfilling attempts to reschedule
each waiting job in the arrival order to an earlier than its
current guaranteed start-time.

We show the flow chart of the simulated optimiza-
tions in Figure 2. These optimizations are independent,
and can be combined as shown in the Figure 2. The
scheduler executes all but one of these optimizations as
well as the original conservative backfilling algorithm
sequentially every time a new job arrives or a running job
finishes earlier than it expected. For example, Queue sort-
ing can be applied with any other optimization technique
such as speculative backfilling. Conservative backfilling
would be represented only by the “Phase 2”, which would
use the unsorted queue of waiting jobs, and the “Current
Schedule” implied by the use of guarantees. All of the
optimizations will be explained in detail in the following
sections.

Our results are produced via simulation, using as in-
put a one year long trace from the Cornell Theory Cen-
ter’s 430-node cluster. The CTC trace is quite similar in
all but one respect to the Swedish Royal Institute of
Technology in Sweden and Lawrence Livermore traces
used in prior work [3, 11]. The sole difference is that the
CTC trace contains actual running time estimates sup-
plied by users. Traces in previous backfilling studies did
not contain this information. Although we use only a sin-
gle trace, this trace covers an entire year of a large center
that accommodates a wide range of users. In combination

with the similarity of this trace to the other two mentioned
above, we are confident that the CTC trace is reasonably
representative of large batch installations.

We summarize the trace characteristics in Table 1.
Note that the average overestimation factor, the ratio of
estimated to actual running times, is 176, while the me-
dian overestimation factor is only 3.9. This implies a
large number of very short jobs that had large estimates.
We find that the distribution of overestimation signifi-
cantly differs from simple models used to synthetically
generate estimated running times such as constant or uni-
formly distributed overestimation. In general, jobs that
are estimated to be long have smaller median overestima-
tion, but higher average and maximum overestimation
than jobs that are estimated to run short. We show some
trace characteristics grouped by job shapes in Table 2b.

Our primary metric is bounded slowdown although
we use delay (elapsed time between the submission and
the start of job execution) and response time (elapsed
time between the submission and the end of job execu-
tion) as well. The bounded slowdown of a job is defined
as:

),(BoundTimeingTimeActualRunnMax
SubmitTimeFinishTime

wdownBoundedSlo
−

=

We use a bound time of 10 sec. Bound time is used
to limit the influence of short jobs on average of the met-
ric.

3. Queue sorting and randomization
In addition to sorting the backfilling queue by length [11],
we introduce several new sorting criteria. The main factor
of these criteria is randomization. We use two types of
randomized orders: priority-based and fully-randomized
(referred to hereafter as random). In both cases, priori-
ties are randomly assigned to jobs and sorting reflects

Number of nodes 430
Number of jobs 79302
Average job parallelism 11
Median job parallelism 2
Average running time 10984
Average estimated running time 24324
Median estimated running time 10800
Average overestimation factor 176
Median overestimation factor 3.90

Table 1: Trace Characterization – All durations are expressed in seconds

 Number of Jobs Average Overes-
timation Factor

Number of jobs with
zero runtime

Short-Narrow (SN) 14486 22 23
Short-Wide (SW) 25702 14 2
Long-Narrow (LN) 25526 460 108
Long-Wide (LW) 13588 110 1

Table 2: Trace Characterization by Job Shapes – Jobs are grouped by median job paral-
lelism and median job overestimation factor

4

priorities. With priority, the same randomly-
assigned order assigned to a job for the entire the job is in
the queue. With random, on the other hand, priorities
change every time backfilling is done. Both priority and
randomized sorting criteria refer to these as priorities.
Each of these two sorting criteria can be further combined
with sorting by length. One way to do this is to construct
a sorting criterion that divides job priority by estimated
job running time (descending order is assumed).

The motivation for randomization in queue ordering
lies in the distribution of job shapes in the queue. Short
jobs with small parallelism (those requiring few proces-
sors) in the front of the queue are quickly backfilled and
run. The result is a queue that is frontloaded with long,
awkwardly-shaped jobs followed by short jobs with large
parallelism, and finally short jobs with small parallelism.
Any induced randomization makes the shape distribution
more uniform, with the net effect of short jobs being
moved forward in the queue. Recall that these jobs have a
disproportionate effect on average slowdowns.

4. Backfilling with no guaranteed times
Conservative backfilling, even as modified in Section 3,
employs delay guarantees. Guarantees prevent starvation
and provide an indication to users of when their jobs will
run. Since guarantees limit the ability of algorithms to
reorder jobs, we briefly investigate their value by looking
at their usefulness as a measure of actual delays. Table 3
shows the statistics on the ratio of initial guaranteed delay
to actual delay for jobs that did not start immediately in
conservative backfilling (BF). It can be observed that
both average and median ratios are large. Even more im-
portant is the wide range of these ratios: 70% of the jobs
that did not start immediately have ratios between 1.67
and 14.83 for conservative backfilling.

An average of 61% of jobs start immediately. In
other words, the majority of jobs have zero delay even
without having guarantees. We draw two conclusions.
First, guarantees might be necessary for only a minority

of the jobs, and second, guarantees are quite inaccurate as
a predictor of when jobs will run.

An algorithm that dispenses with guarantees could
do a complete rescheduling at every execution of the
backfilling algorithm. This was described in [2], but not
evaluated. The performance of this algorithm would heav-
ily depend on the sorting criterion and actual job charac-
teristics. Using arrival order, this algorithm could signifi-
cantly degrade performance by attempting backfilling of
long-wide and long-narrow jobs first while removing
guarantees of short jobs in the queue.

With a randomized order, the effects depend on the
characteristics of long-narrow jobs. If long-narrow jobs
are long enough to have longer delays than short-wide
jobs, and therefore better queue position, the no-
guarantee algorithm would reinforce the benefit for
short-wide jobs given by randomized and priory orders.
By removing guarantees for long jobs, it would allow
more short-wide jobs to be backfilled. If long-narrow job
delays are not long enough, short-wide jobs could be hurt
by removal of their guarantees and scheduling long-
narrow jobs instead. Nonetheless, both short-wide and
long-narrow jobs, which might not be as long as esti-
mated (see Table 2), would benefit by having better
chance to be at the front of the queue than in conservative
backfilling, where they would be behind the long-wide
jobs. In the case of shortest-first order, no-
guarantee algorithm could help by removing guaran-
tees for long jobs, and allowing more short jobs to be
backfilled.

One problem that we need to address is the possibil-
ity of starvation. For example, long-wide jobs could
starve if the high load situation persists forever. The users
with large jobs would certainly not appreciate possibility
of job starvation, while the users with small jobs would
care less as long as the sorting criterion is not explicitly
against short jobs. The solution to the starvation problem
is in modifying the sorting criterion to use the sum of the
target sorting criterion and a weighted delay. For exam-

Average Median 15% of jobs 85% of jobs
16.33 3.89 <1.67 <14.83

Table 3: Ratio of guaranteed and actual delays for job’s
that did not start immediately

Algorithm Sorting Criterion Abbrev for guarantee alg.
Backfilling D BF
Priority P P
Random R R
Shortest-First 1/L 1/L
Priority + Shortest-First P/L P/L
Random + Shortest-First R/L R/L

Table 4: Queue sorting algorithms – D, P, R, and L are delay, priority, ran-
dom number, and estimated job running time, respectively

5

ple, random algorithm would use
DelayWeighterRandomNumb *+ as sorting cri-

terion, where Weight is a small constant set by the sys-
tem, and RandomNumber and Delay are the current ran-
dom priority assigned to a job and its current delay. By
using a low weight, the weighted delay would not affect
jobs that are started quickly. Only in persistently highly
loaded systems would a long wide job’s delay be signifi-
cant factor in the sorting criterion. If all jobs have large
enough delays so that target criterion has low weight, the
algorithm would converge to the algorithm with guaran-
tees.

5. Performance of priority, randomized,
shortest-first, and no-guarantee algorithms
We use a naming convention for the algorithms to reflect
the formula used as sorting criterion (assuming descend-
ing order) of the algorithms. Table 4 shows the formulae
for sorting criteria and short names for each of the algo-
rithms. No-guarantee algorithms will have –NG
suffix.

Figure 3 shows the performance of guarantee
and no-guarantee algorithms with different sorting
criteria. Randomized backfilling performs better than
priority backfilling with or without guarantees. As ex-
pected, no-guarantees algorithms performed better
with all sorting criteria except arrival order.

As in [11], it can be noted that shortest-first order
significantly decreases slowdown. Priority backfilling
(with 3 priorities only) performs slightly worse than
shortest-first backfilling, while randomized performs bet-
ter. The combination of these sorting criteria and a no-
guarantee strategy gives even better results. The
bounded slowdown is decreased for 57% and 77% from
conservative backfilling, and 35% and 65% from short-
est-first backfilling for P/L-NG and R/L-NG, respec-
tively. The delay is decreased for 38% and 65% from
conservative backfilling, and 28% and 59% from short-
est-first backfilling for P/L-NG and R/L-NG, respec-
tively.

The reason why the backfilling algorithm with
shortest-first sorting criterion benefits from added ran-
domization lies in large slowdowns of large-narrow jobs
as compared to slowdowns of short jobs. These slow-

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Bounded
Slowdown

Delay Response Time

BF
BF-NG
P
P-NG
R
R-NG
1/L
1/L-NG
P/L
P/L-NG
R/L
R/L-NG

Figure 3: Comparison of algorithm mixes

0
5
10
15
20
25
30
35
40

SN SW LN LW

B
ou

nd
ed

 S
lo

w
do

w
n

BF
BF-NG
P
P-NG
R
R-NG
1/L
1/L-NG
P/L
P/L-NG
R/L
R/L-NG

Figure 4: Bounded Slowdown for four shape groups: Short-Narrow, Short-Wide,
Long-Narrow, and Long-Wide

6

downs are due to large overestimation for many long-
narrow jobs. Randomization could hurt, if most of long-
narrow jobs had smaller slowdowns than short jobs since
these have later position then short jobs in the shortest-
first ordered queue.

Figure 4 shows bounded slowdowns for each of the
shape groups. As compared to conservative backfilling,
there are improvements in all groups. Improvements for
long wide jobs are smallest since it is hard to directly help
them without sacrificing performance of most other jobs.

Overheads of these algorithms will be discussed in
section 8.

6. Speculative backfilling
Although the average number of nodes available when
there are jobs in the waiting queue is not large, even small
improvements in utilization during load bursts can lead to
large improvements in average performance. Since user
estimates of job running times tend to be much larger than
actual running times, an appealing extension of the basic
backfilling approach is to speculate that actual job run-
ning times might be shorter than estimated. By using a
shorter than estimated running time for a job, a specu-

lated running time, the job could be started, and thus have
shorter delay, when otherwise its estimated running time
would prevent it. User estimated running times, however,
may be more precise than ones the algorithm speculates,
and in such a case the job that is executed with specula-
tive backfilling may have to be killed and rescheduled
again. The speculative backfilling is implemented in a
separate phase after the regular backfilling; it iterates
through all jobs left in the queue after the regular backfill-
ing phase in the same order, and therefore, does not sig-
nificantly increase algorithm complexity. Speculative
backfilling is applicable only to batch jobs that do not
have unrecoverable side effects like synchronization with
other jobs.

In our algorithms, the speculated time increases to
fit the length of the hole. If a speculatively run job runs
longer than its speculated time, it is killed and returned to
the queue for future scheduling. That job would be eligi-
ble for future speculative execution with speculated time
equal to the average of its last speculated time and its
estimated time. The backfilling of a job copy that keeps
its guaranteed time (in guarantee algorithms) is sus-
pended.

0

5

10

15

20

25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

B
ou

nd
ed

 s
lo

w
do

w
n

BF
BF-NG
R
R-NG
1/L
1/L-NG
R/L
R/L-NG

-20%

-10%

0%

10%

20%

30%

40%

50%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Speculation Percentage

B
ou

nd
ed

 S
lo

w
do

w
n

Im
pr

ov
em

en
t

Figure 5: Speculative backfilling for different speculation percentages. Improvements are
relative to corresponding algorithms without speculation.

7

6.1 Speculative test runs
The presence of large running time overestimations in the
trace indicates the possible presence of applications that
are still in development, and therefore, have high prob-
ability to die prematurely either because of bugs or be-
cause they run in new environment. Those applications
create huge slowdowns for themselves as well as make
the backfilling schedule busy enough to create large
slowdowns for other applications.

Recognizing that the biggest problem in this class of
applications comes from jobs that are estimated to run for
a long time, we use speculative test runs for long jobs.
Speculative test runs are part of speculative execution. If
a long running job (e.g., longer then 3 hours) cannot be
speculatively started, the scheduler attempts to run it for a
short time, for example, 5 minutes, and not more then 15
even if there is space for more. If the job finishes in that
short time, speculative test runs will have significantly
improved response time and slowdown. If the job does
not finish in that time, speculative test runs will have
wasted some capacity, and the job will have to be re-

started again. The wasted capacity, however, is about 2-
10% of the minimal estimated job time required for test
runs (3 hours in the example) on the appropriate number
of nodes. Nonetheless, this is done in speculative schedul-
ing phase, so few of these wasted cycles would have been
useful anyway.

6.2 Performance
Figure 5 shows bounded slowdowns for speculative back-
filling and corresponding improvements relative to with-
out speculative backfilling. Both figures show the per-
formance for different speculation percentages. The
speculation percentage is the ratio between the speculated
and user-estimated running times.

The bounded slowdowns, as shown in the Figure 5,
tend to be smaller with smaller speculation percentage.
The reason for this is that with smaller speculation per-
centage there are more speculative backfilling attempts,
and although the success rate of the speculative backfill-
ing falls, the overall number of successful speculative
backfillings is increased. Small speculation percentages
tend to act like long test runs: they are easy to specula-

0

2

4

6

8

10

12

14

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

B
ou

nd
ed

 S
lo

w
do

w
n

BF
BF-NG
R
R-NG
1/L
1/L-NG
R/L
R/L-NG

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Speculation Percentage

Im
pr

ov
em

en
ts

 re
la

tiv
e

to
 w

/o
 T

es
t R

un
s

Figure 6: Speculative Backfilling with Test Runs. Improvements are relative to Speculative
Backfilling w/o test runs.

8

tively backfill, and if successfully completed, the bounded
slowdown improvements are much larger then the rela-
tively small cost per speculative backfilling when they do
not succeed.

Figure 6 shows bounded slowdowns for speculative
backfilling with test runs, and the corresponding im-
provements relative to the speculative backfilling without
test runs. Test runs significantly improved performance of
speculative backfilling, and especially so for large specu-
lation percentages.

Figure 6 also indicates that overall performance is
little sensitive to speculation percentages for most of the
algorithms. In all algorithms, the bounded slowdown
slightly decreases with the higher speculation percent-
ages. This is the opposite from the behavior without test
runs, as shown in Figure 5. The explanation is that when
the short test runs are used, there is little to gain with us-
ing short speculated running times to counter the time
wasted when actual running times are longer. At the same
time, with higher speculation percentage the probability
of successful speculation is higher.

7. Application adaptation
A lucrative approach to improve backfilling performance
is to shape applications according to the current load con-
ditions. During high load bursts, parallel jobs could be
narrowed to use less resources, to improve backfilling
chances, and when started, to allow more jobs to start at
the same time. In low load situations, jobs could be wid-
ened to run shorter, and therefore, occupy fewer nodes in
future.

This approach is applicable only if applications ex-
pose the possibilities for application molding. They
would have to specify both the resources required (num-
ber of nodes) and the performance (estimated running
time) for each alternative. Active Harmony [Keleher,
June 1999] provides such an interface that could be used
even for running time molding.

Under this general approach, there is a multitude of
actual techniques that can be used. In this paper, we ex-
plore only several techniques intended to improve per-
formance of the backfilling scheduler. In all experiments,
it is assumed that applications have constant efficiency
for all job alternatives that we explore.

7.1 Techniques and Performance
The first technique we consider for exploiting application
alternatives uses only one alternative all the time: either
half-size or quarter-size alternative. There is no adapta-
tion here after a job has been submitted and its parallel-
ism reduced. Figure 7 shows performance relative to con-
servative backfilling. The left set of bars in each metric is
for the case when half-size alternative is used always,
except for sequential jobs. The right sets are for the case
when quarter-size alternative is used for all jobs wider
than 4 nodes; otherwise, half-size alternative is used for
non-sequential jobs. Improvements on bounded slow-
down and delay are large, while the average response
time is significantly increased.

Reducing parallelism increases chances for jobs to
get backfilled, and therefore, decreases their delay. This
has a consequence on both short-wide jobs and jobs that
are estimated to run for long time, but fail. In that sense,
this technique acts towards the same application as specu-
lative backfilling and test runs. On the other hand, reduc-
ing job parallelism by factor 2 increases job running time,
and incurs slowdown of at least 2. As consequence, many
otherwise high slowdown jobs will have their slowdown
decreased by large margins, while long jobs will be even
longer and incur a large increase on average response
times. More parallelism reduction tends to affirm more
slowdown benefits for otherwise slower algorithms.

Using half-size or quarter-size alternatives can be
very inefficient in low load situations. In fact, many jobs
could be widened in low load situations, and therefore,
decrease its response time. The greedy adaptation exam-
ines obtainable response times for each of job’s alterna-

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

Bounded
Slowdown

Delay Response TimeR
el

at
iv

e
to

 c
on

se
rv

at
iv

e
ba

ck
fil

lin
g BF

BF-NG
P
P-NG
R
R-NG
1/L
1/L-NG
P/L
P/L-NG
R/L
R/L-NG

Figure 7: Half-sized (left sets) and Quarter-sized (right sets) jobs

9

tives at every backfilling attempt for that job, and chooses
one with the least response time (if backfilling is possible
at all). Figure 8 shows performance of greedy adaptation
when using three application alternatives for all jobs:
regular, half-size (jobs are narrowed, if possible), and
double-size (jobs are widened). Half-size alternatives
allow more jobs to run at the same time, though twice as
long as in regular alternatives. Double-size alternatives
decrease job running times by half as they use twice as
many nodes as required in regular alternatives.

Overall best greedy algorithm (one with quarter-size
instead of double-size alternative and with restrictions for
long jobs) only matches the bounded slowdowns of half-
size alternative applied always, and is still slightly worse
than when quarter-size job alternative is applied always.
We therefore examine a non-greedy adaptation algorithm,
named start time widening, on top of default half-size
alternative that can selectively widen starting jobs. After
completing regular backfilling phase, some nodes may
still be available. Start time widening uses these nodes by
increasing parallelism and decreasing estimated running
time of some of the jobs that are scheduled to start. The
scheduling algorithm uses an additional phase after regu-
lar backfilling phase to perform start time widening. By
using different phase, the scheduler avoids the problems
shown in greedy strategies for no-guarantee algo-
rithms, where long jobs may widen and prevent new short
jobs being scheduled.

Figure 9 shows bounded slowdowns and response
times for combinations of half-sizing, start time widening
and speculative backfilling. As compared with half-sized
applications, start time widening gives significant im-
provements. Start time widening and speculative backfill-
ing, when done together, are done independently and in
different scheduling phases, but still using the same back-
filling ordering as initial backfilling phase.

We can see that start-time widening improves per-
formance for most of the algorithms when applied to-

gether with initial half-sized applications as compared to
using half-sized applications only. It also reduces average
response time for no-guarantee algorithms where the ap-
plication of start-time widening has more available nodes.
Together with speculative backfilling and initial half-
sized application, however, start-time widening improves
little or even makes slightly worse bounded slowdown.
The explanation is that speculative backfilling takes most
of the available nodes and leaves little to start-time wid-
ening.

 The bounded slowdown for several of the algo-
rithms decreases to around 15% of the bounded slow-
down of conservative backfilling. The average delay for
R/L-NG algorithm decreases to 21% of the delay for con-
servative backfilling.

8. Overhead Analysis
All of the backfilling improvement techniques are inde-
pendent from each other, and thus the overhead of the
combined techniques is the sum of overheads of all ap-
plied techniques. Conservative backfilling itself has a
O(n2) complexity.

Each of queue sorting algorithms relies on sorting,
which is known to have O(n*logn) complexity. All of the
queue sorting techniques except R/L, however, can be
sorted more efficiently. For example, Priority can
only do a single insertion into already sorted queue when
a new job comes, and a single deletion when a job is
started. This has O(logn) complexity. Random could use
bucket sort to sort random numbers with known distribu-
tion to achieve O(n) complexity, too. The maximum
queue length observed in the experiments conducted for
this paper was approximately 1,000 jobs. Less then
20,000 jobs were delayed in the queue during 1 year long
period. Therefore, this kind of overhead should not be
considered large.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Bounded
Slowdown

Delay Response
Time

Parallelism

Pe
rf

or
m

an
ce

 re
la

tiv
e

to
co

ns
er

va
tiv

e
ba

ck
fil

in
g BF

BF-NG
P
P-NG
R
R-NG
1/L
1/L-NG
P/L
P/L-NG
R/L
R/L-NG

Figure 8: Greedy adaptation

10

Discarding guarantees from conservative backfilling
does not increase the theoretical complexity of the back-
filling scheduler assuming that there is no starvation (see
the last paragraph of Section 4 for more on how to avoid
starvation).

Speculative backfilling has the same complexity as
backfilling itself, though we expect it to run much faster
due to the condition that job can be speculatively back-
filled only if it is to start immediately. Similarly, start-
time widening has even smaller complexity due to use of
only jobs that are scheduled to start immediately.

Greedy adaptation, as described, has about three
times larger complexity due to requirement to find the
best obtainable response time by backfilling one of the
three available alternatives.

We find none of these techniques to have prohibi-
tive overhead that would prevent it from use.

9. Related work
Lifka [3] introduced EASY backfilling approach for
batch scheduling. Conservative backfilling, commonly
referred to as backfilling, was introduced by Feitelson and
Weil [2]. The main difference between EASY and con-
servative backfilling is that in EASY it is guaranteed that

the first job in the waiting queue will not be delayed while
in conservative backfilling all jobs are guaranteed not to
be delayed. Both algorithms achieve similar performance
[2] while preventing the starvation problem.

Several studies [1, 2, 10] showed that performance
improvements achieved by backfilling as compared to
first-come-first-served policy are significant. The simula-
tion study [1] showed that backfilling performs close, but
slightly worse, to the queue searching policies that do not
consider job running times and have starvation problem.

There is a single study [11] that uses queue sorting
in the context of backfilling. It shows that mean job slow-
downs are much better with shortest first queue sorting.
Without considering job running times, the study [1] ex-
amined different queue sorting and found that both Least-
Processor-First-Served and Most-Processor-First-Served
improve processor utilization and mean response time
slightly although increasing the response time variance.
Study [10] found significant improvements with LPFS.
Queue searching, which considers all jobs rather then
only the first in the queue, was shown [1] to outperform
FCFS and queue sorting techniques. Combinations of
queue searching and queue sorting did not yield im-
provements relative to queue searching alone.

0

0.2

0.4

0.6

0.8

1

BF BF-NG P P-NG R R-NG 1/L 1/L-NG P/L P/L-NG R/L R/L-NG

B
ou

nd
ed

 s
lo

w
do

w
n

re
la

tiv
e

to
co

ns
er

va
tiv

e
ba

ck
fil

lin
g

Half-size Half-size+w idening Half-size+speculation Half-size+w idening+speculation

0

0.2

0.4

0.6

0.8

1

1.2

BF BF-NG P P-NG R R-NG 1/L 1/L-NG P/L P/L-NG R/L R/L-NG

R
es

po
ns

e
tim

e
co

m
pa

re
d

to

co
ns

er
va

tiv
e

ba
ck

fil
lin

g

Half-size Half-size+widening Half-size+speculation Half-size+widening+speculation

Figure 9: Combination of Half-sizing, Start time widening, and Speculative backfilling

11

An important element in backfilling scheduling is
the accuracy of user estimates of their job execution
times. The study [11] shows that inaccuracy could be a
virtue with which backfilling can produce better sched-
ules. The study used the estimated times increased by
either constant factor or a random factor uniformly dis-
tributed in a range. Nonetheless, in real traces running
time overestimation is spread over a wide range.

An important issue in backfilling algorithms is pre-
dictability of wait times. Guarantees that conservative
backfilling gives to jobs allow users to perceive them as
pointers to how long their jobs will be delayed. We
showed that many of the initial guarantees are much lar-
ger then the actual delays. Study [9] has developed a
method for delay prediction that may be more useful.

There has been a lot of research on how applications
can use different number of processors in order to adjust
to current load conditions. Two main categories are adap-
tive partitioning [5, 7, 8] and dynamic partitioning [4, 6].
Adaptive partitioning algorithms make decisions on job
partition sizes before their start. Dynamic partitioning can
change job partition size during its running time. Most of
these studies use response time as metric and assume that
all jobs can run on any partition size with the same effi-
ciency. None of these studies considers job running times.

10. Conclusions
Backfilling is a widespread technique used to improve
system utilization and decrease average slowdowns for
batched schedulers. These gains are achieved by allow-
ing short jobs to run when the system is otherwise idle,
provided that they will not delay jobs that arrived earlier.

This paper has presented several strategies for im-
proving average slowdowns and delays in backfilling
schedulers. First, we characterize the effect of differently
“shaped” jobs on overall throughput, and show that ran-
domization of the queue order allows the system to move
awkwardly shaped jobs backwards in the queue, eliminat-
ing many bottlenecks and increasing overall utilization.
Second, we investigate the value of the backfilling guar-
antee, and show that the same utility can be achieved
much more cheaply through a modified sorting criteria.
Third, we investigate two classes of speculative ap-
proaches: speculating on shorter running times for jobs
with very long running-time estimates, and short bounded
“test runs”. Both approaches significantly decrease aver-
age slowdowns while largely using resources that would
otherwise have been wasted. Finally, we present results
on the impact of “job shaping,” where the width of the
job is dynamically adjusted by the system to reflect cur-
rent demand. We show that using jobs with smaller paral-
lelism and correspondingly longer running times achieves
better average bounded slowdowns than using original
job shapes.

11. References
[1] K. Aida, H. Kasahara, and S. Narita, “Job Schedul-

ing Scheme for Pure Space Sharing Among Rigid
Jobs,” in Job Scheduling Strategies for Parallel
Processing, vol. 1291, Lecture Notes in Computer
Science, D. G. Feitelson and L. Rudolph, Eds.:
Springer-Verlag, 1998.

[2] D. G. Feitelson and A. Weil, “Utilization and Pre-
dictability in Scheduling the IBM SP2 with Backfill-
ing,” in 12th International Parallel Processing Sym-
posium, 1998.

[3] D. Lifka, “ANL/IBM SP scheduling system,” in Job
Scheduling for Parallel Processin, vol. 949, Lecture
Notes in Computer Science, D. G. F. a. L. Rudolph,
Ed.: Springer-Verlag, 1995, pp. 295-303.

[4] C. McCann and J. Zahorjan, “Processor Allocation
Policies for Message-Passing Parallel Computers,”
in Proceedings of the 1994 ACM SIGMETRICS
Conference, February 1994, pp. 19-32.

[5] J. Padhye and L. Dowdy, “Dynamic Adaptive Proc-
essor Allocation Policies for Message Passing Paral-
lel Computers: An Empirical Comparison,” in Job
Scheduling Strategies for Parallel Processing, vol.
1162, Lecture Notes in Computer Science, D. G.
Feitelson and L. Rudolph, Eds.: Springer-Verlag,
1996, pp. 224-243.

[6] J. D. Padhye and L. W. Dowdy, “Dynamic versus
Adaptive Processor Allocation Policies for Message
Passing Parallel Computers: An Empirical Compari-
son,” Lecture Notes in Computer Science, vol. 1162,
1996.

[7] E. Rosti, E. Smirni, L. W. Dowdy, G. Serazzi, and
B. M. Carlson, “Robust partitioning policies for
multiprocessor systems,” Performance Evaluation,
vol. 19(2-3), pp. 141-165, March 1994.

[8] E. Smirni, E. Rosti, G. Serazzi, L. W. Dowdy, and
K. C. Sevcik, “Performance Gains from Leaving
Idle Processors in Multiprocessor Systems,” in Pro-
ceedings of the 24th International Conference on
Parallel Processing. Oconomowoc, WI, August
1995, pp. III:203-210.

[9] W. Smith, V. Taylor, and I. Foster, “Using Run-
Time Predictions to Estimate Queue Wait Times
and Improve Scheduler Performance,” in
IPPS/SPDP ‘99 Workshop on Job Scheduling
Strategies for Parallel Processing, 1999.

[10] J. Subhlock, T. Gross, and T. Suzuoka, “Impact of
Job Mix on Optimizations for Space Sharing Sched-
uler,” in Supercomputing ‘96, 1996.

[11] D. Zotkin and P. J. Keleher, “Job-Length Estimation
and Performance in Backfilling Schedulers,” in The
8th High Performance Distributed Computing Con-
ference, August 1999.

