

Efficient Distributed Precision Control
in Symmetric Replication Environments

Uğur Çetintemel Peter Keleher
Department of Computer Science

Brown University
ugur@cs.brown.edu

Department of Computer Science
University of Maryland

keleher@cs.umd.edu

Abstract

Maintaining strict consistency of replicated data can be
prohibitively expensive for many distributed applications
and environments. In order to alleviate this problem,
some systems allow applications to access stale, impre-
cise data. Due to relaxed correctness requirements, many
applications can tolerate stale data but require that the
imprecision be properly bounded.
 This paper describes ReBound, a system that provides
an adaptive framework for supporting and exploiting data
precision vs. efficiency tradeoffs in symmetric replication
environments via distributed precision control. Previous
work proposed efficient precision control algorithms that
support continuous read requests tagged with custom
numerical precision ranges. ReBound generalizes and
extends previous work with a new algorithm for continu-
ous reads, support for ad-hoc reads, and light-weight
adaptation mechanisms for coping with dynamically
changing update patterns. This paper also presents pre-
liminary experimental results, based on a prototype im-
plementation, that demonstrate the performance advan-
tages of exploiting precision vs. efficiency tradeoffs.

1. Introduction
Replication is crucial for effectively supporting distrib-
uted applications that involve data sharing. The cost of
maintaining strict consistency of replicas may be imprac-
tical in many environments. On the other hand, many
applications do not require strict consistency and can con-
tinue to operate with stale data, as long as the divergence
from the accurate, up-to-date data is properly bounded.
For such applications, it is possible to exploit the tradeoff
between the precision of the replicated data (as observed
by the applications), and overall system efficiency.

As a motivating scenario, consider a monitoring appli-
cation that involves a distributed sensor network: sensor
units transmit their readings to their closest base stations,
which forward the values to the client application. As the
sensor values are generated in real-time, it may be very
expensive to transmit all the readings. At the same time,
this may not be necessary because the monitoring appli-

cation does not, in most cases, require exact values, but is
only interested in certain trends. For instance, an applica-
tion monitoring the average temperature value of a given
region may tolerate an imprecision of 3 Fahrenheit.
This flexibility can be effectively utilized by the base
stations to reduce the volume of data transmitted to the
monitoring clients. As another example, consider an in-
ventory-based mobile sales application, where mobile
sales people sell consumable or financial products using
personal digital assistants with wireless interfaces. The
product inventories accessed by the sales force are typi-
cally limited, and the products should not be oversold. It
is, however, impractical or uneconomical to keep the
sales people connected and, thus, up-to-date regarding the
inventories at all times. On the other hand, a sales trans-
action does not need to have the accurate number of prod-
ucts available in the inventory as long as this number is
larger than the number of items that is being sold at any
instant. For instance, if a transaction involves selling
three units of a particular product, the exact number of
units left in the inventory does not matter as long as at
least three units are still available for sale.

±

Both scenarios involve (1) numerical data that are rep-
licated and updated at multiple network locations (which
we refer to as a symmetric replication environment); (2)
environments where maintaining strict data consistency is
prohibitive due to large system scale, high volume of up-
dates, or communication restrictions; and (3) applications
that can tolerate bounded imprecision in the data they
observe. In fact many other distributed applications and
servicessuch as wide-area network management [16],
commodity distribution [7], distributed load balancing
[22], and airline reservation systemsdemonstrate simi-
lar characteristics.

In this paper, we present the design, implementation,
and evaluation of ReBound, an adaptable system that pro-
vides a flexible framework to support and exploit data
precision vs. efficiency tradeoffs in symmetric replication
environments. Figure 1 illustrates the basic ReBound sys-
tem model. Multiple servers replicate and update numeri-
cal data items. Clients submit read operations that specify
precision ranges on the data they cache (a client may be
an individual node or a proxy style super-client that
represents multiple nodes). These ranges indicate bounds

mailto:ugur@cs.brown.edu

on the quantitative deviation of the data read by the cli-
ents from the accurate, up-to-date values maintained at
the servers.

ReBound supports two types of read requests: con-
tinuous and ad-hoc. Continuous reads require that the
data cached at the clients always meet the specified preci-
sion constraints. Ad-hoc reads have one-time semantics
and indicate a single refresh of the client cache such that
the cached data meets the required precision bounds im-
mediately after the refresh.

Recently, Yu and Vahdat proposed an efficient dis-
tributed precision control model [22] for symmetric
replication environments in the context of the TACT
project [21]. TACT’s model supports static (i.e., fixed)
continuous bounds by efficiently bounding the updates
that are committed at servers and are unknown (i.e., not
yet propagated) to clients.

In this paper, we essentially build on and extend the
distributed precision control model presented in [22]. In
particular, we propose two server-side algorithms that
support both continuous and ad-hoc bounds. Similar to
TACT’s algorithm, our algorithms maintain continuous
precision bounds by limiting update commitment at serv-
ers. Upon receiving an update, local commit criteria are
used to decide whether to commit the update or not. If the
criteria are met, the update is immediately committed. If
not, the server must perform remote communication: it
either pushes unknown updates to a proper subset of cli-
ents (this is the approach taken by TACT), or pulls infor-
mation from a subset of servers. In our first algorithm,
Share-Bound, the client-specified precision bounds are
shared and cooperatively maintained by the servers. In
our second algorithm, Partition-Bound, the precision
bounds are explicitly partitioned across the servers. In
fact, we show that Yu’s algorithm is a specific instance of
the Partition-Bound algorithm.

ReBound employs simple but practical adaptation
mechanisms. Specifically, we use per-replica weights,
which define the autonomy of the servers in terms of the
volume of updates they can commit locally, and enable
dynamic, pair-wise redistribution of these weights to cope

with changing update patterns across servers. Our algo-
rithms also address and handle ad-hoc bounds―ReBound
exploits the already registered continuous precision
bounds, if available, to efficiently select a proper subset
of servers whose unknown updates need to be pushed to
the clients to satisfy the specified bound. serverserver

serverserver

clientclient

clientclient

clientclient

clientclient

clientclient

clientclient

clientclient
serverserver--client client

update pushupdate push

clientclient--serverserver
continuouscontinuous & ad& ad--hoc hoc

read requestsread requests

serverserver

serverserver

serverserver

serverserver--serverserver

synchsynch

Figure 1: ReBound basic system model

In summary, we make the following contributions.
First, we present an adaptable system for precision con-
trol of numerical data in symmetric replication environ-
ments. Our model generalizes and extends previous work
by proposing decentralized precision control algorithms
that efficiently maintain continuous and ad-hoc precision
bounds. To the best of our knowledge, our protocols are
the first to support ad-hoc reads with precision constraints
in these environments. Furthermore, our protocols incor-
porate light-weight adaptation mechanisms that facilitate
dynamic load balancing. Second, we present initial ex-
perimental results, based on the ReBound prototype, that
demonstrate the practicality and the potential performance
advantages of our protocols.

The rest of the paper is organized as follows. In Sec-
tion 2, we give an overview of ReBound, describing its
framework and system model. In Section 3, we describe
our precision control algorithms in detail. In Section 4,
we describe server-client and server-server synchroniza-
tion in ReBound. In Section 5, we briefly describe the
ReBound architecture. In Section 6, we describe the ex-
perimental environment and methodology, and present
our experimental results. We briefly discuss scalability in
Section 7, discuss related work in Section 8, and conclude
in Section 9.

2. ReBound Overview

2.1. Framework
In ReBound, clients specify their desired quantitative

precision requirements in terms of numerical ranges on
the values of cached data items. Servers that replicate and
update these items cooperatively maintain the specified
ranges.

We first define the value of an update as the amount
by which the update changes the value of the correspond-
ing data item. We define a precision bound on a data item
r with respect to a set of clients C and a set servers S as
the sum of the values of updates, u, on r that the servers
in S can commit without ensuring that all c in C has ob-
served u. More formally, the algorithms we propose en-
sure that the following inequality hold at all times:

()
i is Sl value U h∈≤ ≤∑

where l ≤ 0 ≤ h are, respectively, the lower and upper
bounds to be preserved, and value(Ui) is the sum of the
values of the updates committed by si∈S and not yet re-
flected to the caches of all clients c. Intuitively, the above
constraint limits the total value of updates the servers can
commit without refreshing client caches, essentially limit-

ing the numerical imprecision of the values of the data
cached at clients.

We define two types of precision constraints based on
the types of read operations with which they are associ-
ated. A continuous precision constraint is one that is reg-
istered to servers only once and then continuously en-
forced. An ad-hoc constraint, on the other hand, is speci-
fied and enforced only once. Support for continuous
ranges is typically sufficient for most applications that we
target. Ad-hoc constraints are, however, desirable in sce-
narios where higher precision than that already provided
by the continuous ranges is required (e.g., when the sen-
sor monitoring application requires a more accurate tem-
perature reading for a specific region).
2.2. System Model

Overview. Our basic system model is similar to that
investigated in [21]. We assume that there are n servers
and m clients in the system, and denote the set of servers
and clients with S and C, respectively. Servers replicate
and update numerical data items, whereas clients cache
data items. An update u changes the value of an item by
an amount equivalent to its value, value(u), which can be
positive or negative. Clients cache read-only versions of a
subset of these items, and can set precision constraints on
the items they cache (we use the terms bounds, ranges,
and constraints interchangeably in the rest of the paper).
Servers that replicate an item cooperate to maintain any
precision bounds defined on that item.

A server commits an update when it ensures that the
update does not violate any client-specified constraints.
The server that accepts an update u is called the initiating
server of u. Updates are always propagated and main-
tained in the order they are committed at their respective
initiating servers. A server reflects the updates it commits
to other servers by propagating the corresponding update
records, which are consequently applied to the remote
databases (note that we do not propagate data item im-
ages). Servers can perform update propagation using any
information propagation mechanism supported by the
underlying communications environment. Because our
framework is general, and is designed specifically for
wide area, we assume pair-wise, epidemic style synchro-
nization sessions [8, 18, 21] for update and control
information propagation.

Data structures. For simplicity of exposition, we as-
sume that a single data item that is replicated by all serv-
ers and cached by all the clients in the system. We also
assume that servers and clients are assigned unique,
global identifiers. In our model each server si maintains
two views (which can be trivially combined in a single
view): a server view and a client view that summarize the
updates that other servers and clients have seen, respec-
tively. We represent the server view of si as a vector vi
such that svi[j,k] gives the number of updates committed
by server k and known to server j (as far as si knows).
Similarly, we represent the client view of si as a vector cvi

such that cvi[j,k] gives the number of updates committed
by server k and known to client j (as far as si knows).

Views are updated when a server commits a new up-
date locally, or during update propagation. When si com-
mits a new update locally, it sets svi[i,i] = svi[i,i] +1.
When si propagates the updates unknown to client j, it
sets cvi[j,k] = svi[i,k], ∀sk∈S. When a server sl propagates
its server view, svl, to si, si updates its views such that
svi[j,k] = max(svi[j,k], svl[j,k]), ∀sj,sk∈S, and cvi[j,k] =
max(cvi[j,k], cvl[j,k]), ∀cj∈C, ∀sk∈S.

 Each server si maintains a commit log, which is a se-
quence of updates either committed by si, or committed
by another server and propagated to si. We represent the
sequence of updates committed by sk in si’s log with

[1], [2], [3],..., [[,]]i i i i i i
k k k k kU u u u u v i k=< >

We say that an update u is unknown with respect to the
client set C if u is not yet observed by all clients c∈C. We
define the function Ui(j,k) as the sequence of unknown
updates committed by sk as seen by node j in si’s view.
More formally,

(,) [1], [2], [3],..., []i i i i i
k k k kU j k u x u x u x u y=< + + + >

where x = min(cvi[m,k]), ∀cm∈C, and y = svi[j,k].
The value of a sequence of updates U = <u1, u2, …,

un>, value(U), is the sum of the values of the updates in
the sequence; i.e.,

1() ()n
iivalue U value u==∑

We now define the minimum and maximum suffix of a
sequence U as, respectively, the suffix subsequences of
U,

1 2min() , , ,...,k k k nU u u u u+ +=< >

1 2max() , , ,...,l l l nU u u u u+ +=< >
,and

with minimum and maximum values.

In addition, each server si maintains, for each regis-
tered constraint, lower and upper bound weights

0 , 1i iw w− +≤ ≤ .0
such that ,∀i=1…n:

1 1 1.0n n
i ii iw w− +

= == =∑ ∑
These weights are abstract measures of the autonomy of
servers in committing updates: in general, the more
weight a server holds, the more updates it can commit
locally. An important system-wide invariant is that the
sum of the weights of all servers adds up to a constant
value. This invariant needs to be maintained at all times
to ensure the correctness of the protocol.

3. Decentralized Precision Control
In this section, we describe two distributed algorithms

for enforcing the continuous precision constraints as de-
scribed above. Both algorithms work by efficiently limit-
ing the sum of the values of updates that can be commit-
ted by the servers without synchronizing with the clients.
The key insight to the algorithms is to treat the allowed

The local bounds at each server si bound the sum of
the values of the updates that si can commit without con-
tacting other servers and refreshing client caches. PB does
not require that a server to take into account the updates
committed by other servers when computing local ranges.
Since global ranges are partitioned and are thus independ-
ent, it is sufficient for each server to limit only its own
updates to ensure that the global ranges are maintained
properly.

1. While local_commit_criteria(r, u, [l, h]) not satisfied

2. Push_to_clients(); and/or
 // push unknown updates to clients (to advance vi)

3. Pull-from-servers();
 // redistribute bounds (to relax local commit criteria)

4. Set r = r + value(u);

Figure 2: Basic algorithm executed by a server to
commit an update u on item r

Server si commits a new update u using the following
local commit criteria:

precision bounds as global resources to be consumed by
the servers, and distribute these resources across the serv-
ers. In the rest of the paper, we use the term global range
to indicate the client-specified precision range.

In the first algorithm, Partition-Bound (PB), each
global range is partitioned among servers, whereas in the
second algorithm, Share-Bound (SB), each global preci-
sion range is shared among servers. Servers are assigned
per-bound weights that indicate the size of their share in
the global precision range. Given the global range, each
server computes its local range based on its view of the
system and its weight. A local range essentially indicates
the sum of the values of updates that the server can com-
mit locally, without having to synchronize with any other
client or server.

In both algorithms, each server initially attempts to
commit a new update based on local information. If this is
not possible, the server must perform synchronization to
advance its view or increase its weight (thereby expand-
ing its local range). A server can advance its view by
pushing unknown updates to clients or servers. A server
can increase its weight through pair-wise weight redistri-
bution, which involves one server pulling some amount of
weight from another. While the pulling server’s weight
increases (expanding its local range), the pulled server’s
weight decreases by the same amount (shrinking its local
range). This style of sum-preserving weight redistribution
was first explored by the Deno shared-object system [4, 5,
6].

Figure 2 illustrates the basic procedure executed by a
server si to commit a new update u. We now discuss two
algorithms that primarily differ in the way they compute
their local update commit criteria.
3.1. The Partition-Bound (PB) Algorithm

In this algorithm, the global precision range, [l, h], is
explicitly partitioned as local ranges across the servers
using the local weights at each server. The local bounds at
a server si are computed as:

i il w−= l

<

>

)))

)))

and i ih w h−=

 val (min()) () () 0i
i iue U value u l if value u+ ≥

(max()) () , () 0i
i ivalue U value u h if value u+ ≤

In other words, si can commit u if the sum of the val-
ues of the unknown updates committed by si (including u)
does not exceed si’s local bounds, and thus, does not in-
validate the shared global bounds.

We note here that the TACT precision control algo-
rithm [22] is a specific instance of the PB where all the
weights are uniformly partitioned across servers (i.e., wi =
1/n, ∀i=1…n).
3.2. The Share-Bound (SB) Algorithm

In this algorithm, the global precision range, [l, h], is
shared by the servers in the system. Upon accepting a
new update u, a server si checks whether the commitment
of u will violate the shared global range. For this purpose,
si computes a local range, [li, hi], based on (1) the global
range, (2) si’s local knowledge about the updates commit-
ted by the other servers in the system, and (3) si’s weight,
which define si’s portion in the global range. Since si’s
local knowledge may not be up-to-date, si conservatively
computes its own local bounds by assuming an upper
bound on the ranges of other servers. These local bounds
then indicate the sum of the values of updates that si can
commit entirely locally, i.e., without contacting any other
server or client.

Each server si computes its local precision range as
follows:

((min(

((max(

i
i j

j ii
i

i i j
j i

w l value U
l
h w h value U

−

≠

+

≠

 −
 = −

∑

∑

Without loss of generality, consider the local upper bound
as computed above. Intuitively, the value

(max())i
jj ih value U≠−∑

indicates the total maximum value of updates that can be
committed without exceeding the global upper bound h

(the sum of the values of updates committed by si is fac-
tored in the later). This is because the value

(max())i
jvalue U Note that the sum of the local bounds across the serv-

ers always sum up to the global bounds: provides an upper bound on the value of the committed
updates committed by sj and potentially unknown to the
corresponding client (according to si’s view). 1

n
iil l==∑ and 1

n
iih h==∑

Server si then computes its share of this value by using its
upper bound weight, and thus computing the total maxi-
mum value of updates that it can commit locally.

Fixing the sum of all weights in this manner, as we
discuss in Section 4.2, enables light weight, server-server
bound redistribution while maintaining the correctness of
algorithm. The commit criteria used by SB is the same
used by PB (described above).

4. Update Synchronization

4.1. Refreshing Client Caches
One way to accommodate a new update is to suffi-

ciently advance the server’s view of the clients regarding
the updates unknown to those clients. This can be accom-
plished by refreshing the caches of a proper subset of
clients by pushing a subset of the updates unknown to
those clients. More specifically, server si chooses a subset
of clients C such that the propagation of unknown
updates to each client in Ci will advance the view of si,
and therefore potentially decrease

i C⊆

i
jU for some j=1…n.

The minimum quantitative view advance si requires,
referred to as min_advi, in terms of the decrease in the
sum of the values of the unknown updates required to
commit a new update u can be computed as follows
(based on the local commit criteria presented in Section
3.2 and Section 3.1).

For the Share-Bound algorithm:
If value(u) < 0 then:
min_ (((min()))

 (min()) ())

i
i i j

j i
i
i i

adv w l value U

value U value u l

−

≠
= − +

+ −

∑

else:

min_ (((max()))

 (max()) ())

i
i i j

j i
i
i i

adv w h value U

value U value u h

+

≠
= − +

+ −

∑

The corresponding equations for the Partition-Bound
algorithm are:

If value(u) < 0 then:
min_ ((min()) ())i

i i iadv w U value u l−= + i−

i−

else:

min_ ((max()) ())i
i i iadv w U value u h+= +

4.2. Bound Redistribution
An alternative to pushing updates to refresh client

caches is to relax local constraints by tightening remote
constraints. This is efficiently and practically accom-
plished by a pair-wise weight redistribution mechanism: a
server that needs to increase its local weight, thereby re-
laxing its local bound, contacts other servers, and requests
some amount of weight. The contacted server computes
the amount it can give away and responds with that
amount. In effect, the weights of the contacted servers,
and therefore their bounds, are redistributed between the
two servers. This operation is light weight in that only

two servers are involved, and since the total amount of
weight in the system remains fixed, correctness of the
protocol is not affected (provided that the responding
server computes the response amount properly, which we
discuss below). This style of sum-preserving weight re-
distribution mechanisms was first explored in the context
of the Deno system [5, 6], and was observed to exhibit
very interesting dynamic properties [4].

Given an update u that cannot be committed locally at
si, the minimum amount of extra weight for the upper
bound, min_wi

+, si requires in order to commit u is (based
on the commit criteria presented in Sections 3.2 and 3.1)
is as follows: for Share-Bound:

(max()) ()
min_

(max())

i
i

i ii
j

j i

value U value u
w w

h value U
+ +

≠

+
= −

−∑

For the Partition-Bound algorithm:
(max()) ()

min_
i
i

i i
w U w u

w w
δ

+ +
+

+
= −

The corresponding weights for the lower bounds can
be computed similarly. Note that the required weight
might be larger than 1.0 due to the already committed
updates. Since the total weights held by all servers are
fixed at 1.0, it may not be possible to commit the new
update solely by weight redistribution. In such a case,
client caches must be refreshed before committing new
updates.

When a server si is contacted for bound redistribution,
si computes the maximum lower and upper bound weights
that it can give away, extra_wi

- and extra_wi
+ such that 0

≤ extra_wi
- ≤ wi

-, 0 ≤ extra_wi
+≤ wi

+, based on the commit
criteria presented in Sections 3.2 and 3.1, as follows: For
Share-Bound

(min())
(min())

_

_ (max
(max())

i
i

i i
j

j ii
i

i i
i i

j
j i

value U
w

l value U
extra w

extra w value U
w

h value U

−

−
≠

+
+

≠

− − = −

−

∑

∑
())

For Partition-Bound, the corresponding values are:
(min())

_

_ (max())

i
i

i
i

i
i i

i

value U
wextra w l

extra w value U
w

h

−
−

+
+

−

 = −

As we can see from the above equations, si may give
away only some of its weight if some of the updates it
committed are still unknown to the clients; i.e.,
value(Ui

i)≠0. Intuitively, the reason is that the sum of the
values of the unknown updates can be thought of as con-
suming some of the precision range available to the
server, making the corresponding amount of weight un-
available. If this weight were to be given away and then
consequently used by another server, the total amount of

weight in the system used at any one time might poten-
tially exceed the fixed 1.0 value, thereby eliminating any
global precision bound guarantees.
4.3. Supporting Ad-Hoc Precision Bounds

In this section, we describe how our algorithms sup-
port one-time precision bounds specified by ad-hoc read
operations. In both algorithms, the server that received
the read, say s, pulls unknown updates from a sufficiently
large quorum of servers, and pushes those updates to the
client that issued the ad-hoc read. More specifically, s
needs to form a read quorum, Q ⊆ S, such that the re-
maining set of non-quorum servers, NQ = S − Q, cannot
commit updates whose sum of weights will invalidate the
limit set by the client. In such a case, s does not need to
expand Q anymore by pulling from non-quorum servers:
the ad-hoc bounds are then satisfied when s pushes those
updates committed by the servers in Q as a response to
the client’s read request. Figure 3 depicts the basic quo-
rum formation algorithm executed by a server si to com-
mit an ad-hoc read submitted by client c.

Assume that a client c wants to read an item r with a
precision of [lo, ho] (the subscript ‘o’ implies a ad-hoc
bound). Two scenarios are possible: (1) there are no reg-
istered precision bounds on r; or (2) there already exist
registered continuous precision bounds, [l, h], on r. In the
former case, the server s that received the read request has
no option but to contact all servers (essentially forming a
read quorum Q = S), and pull all updates unknown to c.
This is necessary because no continuous bounds are
maintained in the system and, thus, there is virtually no
limit on the sum of the values of updates that can be
committed locally by any server.

In the latter case, s can exploit the fact that a continu-
ous bound is being maintained in the system to more effi-
ciently execute the read operation. Note that the case
where the ad-hoc bounds are more relaxed than the corre-
sponding continuous bounds (i.e., [l, h] ⊆ [lo, ho]) is triv-
ial: client c can simply complete the read using the data
on its cache because the data is already guaranteed to
satisfy the precision bounds.

 Server si decides that the read quorum, Q ⊆ S, is suf-
ficiently large to guarantee the ad-hoc bound, [lo, ho],

given the already registered continuous bounds, [l, h], if
the following local conditions are satisfied: 1. Set Q = {si}

2. While local_read_quorum_criteria (r, c, [lo, ho], Q)
 not satisfied
 i. Select a new quorum server sq ∉ Q
 ii. Pull from sq those updates unknown to c
 iii. Set Q = Q ∪ {sq}

3. Push all updates unknown to c
Figure 3: Basic algorithm executed by server si to
commit an ad-hoc read operation specified by a
client c with precision bounds [lo, ho] (on item r).

For Share-Bound:
,

,

((min()))

(min()

i
k k

k Q q Q

i
i k o

k Q

w l value U

value U l

−

∉ ∈

∉

− −

≥

∑ ∑

∑

q

q

i ≥

i ≤

,

,

[(max())]

 (max()

i
k k

k Q q Q

i
i k o

k Q

w h value U

value U h

+

∉ ∈

∉

− −

≤

∑ ∑

∑

Intuitively, the left side of each condition computes,
based on si’s view, the sum of the values of the updates
that can be committed by a non-quorum server sk,
summed over all non-quorum servers sk∉Q. For each
such sk, the formula computes the local bound of sk (indi-
cating the total value of updates that can be committed by
sk) less the sum of values of updates that sk already com-
mitted. The result then gives, for each sk∉Q, the total
value of updates that can further be committed by sk. No-
tice that the sum

kk Q w+
∉∑

in the formula (consider the upper bound case) cannot be
directly computed by si, since, by definition, sk is not a
quorum server and its weight may not be available to si.
However, since the sum of weights across all servers is
fixed to 1.0, si can compute the sum indirectly using the
weights of quorum servers as: . 1.0k qk Q q Qw w+ +

∉ ∈= −∑ ∑
The corresponding conditions for Partition-Bound are:

 ∑ ∑ and ((min()) ()i i
i ii il value U value U l− +

 ∑ ∑ ((max()) ()i i
i ii ih value U value U h− +

5. ReBound Architecture
This section briefly describes the basic components of

a ReBound server. The Server Manager is in charge of
coordinating the activities of the various components and
implementing the basic server API that accepts updates
and continuous/one-time reads to data items it maintains.
The Precision Controller implements the precision con-
trol algorithms used by ReBound. In particular, it main-
tains a bound list that contains the precision ranges regis-
tered at the server, and a server view that compactly
summarizes the committed updates propagated in the sys-
tem. The Policy Manager is responsible for implementing
efficient divergence control policies. This component
implements different synchronization policies that specify
when, with whom, and what data to pull or push. The
Update Manager handles the local execution of updates.
It maintains an update queue that contains all active (ini-
tiated but not-yet-committed) updates. The Storage Man-
ager provides access to the object store that stores the
committed versions of all replicated items. The object
store is currently implemented as an in-memory database.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 5

Bound_size

Lo
ca

l c
om

m
it

ra
tio

0

PB SB SC

Figure 5: Local commit ratio vs. continuous

bound size (UR=0.2, RR=0.0)

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 5

Bound_size

C
om

m
it

la
te

nc
y

(s
ec

s)

0

PB SB SC

Figure 4: Commit latency vs. continuous

bound size (UR=0.2, RR=0.0)

The current ReBound prototype runs on top of Linux and
Windows32 platforms.

6. Performance Evaluation

6.1. Environment and Methodology
We now present our performance evaluation that aims

to provide a basic understanding of the relative perform-
ance characteristics of different protocols and demon-
strate potential performance advantages of using them.
Even though our protocols are specifically designed for
wide-area environments, we conducted our preliminary
experiments on a local area network to get repeatable
results. In the experiments, we used a cluster of 10 Linux
machines, each having two 400 MHz Pentium II’s, and
256 MBytes of memory. The machines are connected via
a 100Mbps Ethernet network and communication is per-
formed on top of UDP/IP. We artificially injected a 100
milliseconds one-way latency to each outgoing message
in order to emulate typical communication latencies over
wide area.

In the experiments we present here, we assume that the
database consists of a single data item, and that the clients
registered a single continuous precision bound to the
servers. Each server independently initiates updates based
on a uniform update rate. We assume that each update
has unit value. Each client independently initiates ad-hoc
reads based on a uniform read rate, and submits the read
to a randomly selected server. The ad-hoc bounds are also
assumed to be equal (i.e., lo = ho), and we use the variable
bound ratio to define the ratio of the ad-hoc bounds to the
continuous bound (i.e., ho/h). The main experimental pa-
rameters and settings are shown in Table 1. We note that
under these settings, without any bound redistribution, PB
basically emulates Yu’s algorithm [22].

The primary performance metrics we used are: (1)
commit latency, which indicates the time between the
initiation of an update or ad-hoc read and the time to
commit; (2) local commit ratio, which indicates the ratio
of all committed updates that are committed at their initi-

ating server without the need for any synchronization;
and (3) read quorum size, which indicates the number of
servers contacted to satisfy the bounds specified by an ad-
hoc read (including the server that initially received the
read request).

In the experiments, we employed a simple policy that
uses compulsory server-client push, which is initiated
only if an update or an ad-hoc read cannot be committed
locally. This choice makes sense in our setting because all
the messaging latencies are the same, and the push opera-
tion is guaranteed to advance the server’s view, whereas
the server-server pull is not. Our policy does not make
pro-active push/pull decisions (i.e., background update
propagation and view advance), which potentially would
improve the performance of our algorithms significantly.
Similarly, servers to be added to a read quorum (when
handling ad-hoc queries) are chosen randomly. The num-
bers we present below are the averaged results of ten in-
dependent runs of executing 500 updates/reads in the sys-
tem.
6.2. Enforcing Continuous Precision Bounds

Figure 4 shows the commit latency results of our algo-
rithms and a hypothetical write-all type strict consistency
protocol, labeled SC, as a function of bound size. The SC
protocol is a conventional write-all [2] style protocol that
pushes an update to all clients prior to committing the

Notation Description Setting
UR Mean global update

generation rate
0.1,0.2
updates/s (uniform)

RR Mean global read
generation rate

0.1 reads/s
(uniform)

|S| Number of servers 5
|C| Number of clients 5
msg_latency One-way message latency 100ms
bound_size Continuous bound size:

l or h (both set equal)
[0, 50]

bound_ratio Ratio of ad-hoc bound
size to continuous bound

[0, 1]

Table 1: Primary experimental parameters and
settings

0

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Bound ratio

Q
uo

ru
m

 s
iz

e

PB SB static quorum

Figure 7: Read quorum size vs. ad-hoc bound ratio

 (UR=0.1, RR=0.1, bound_size=10)

0

0.2

0.4

0.6

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Bound ratio

R
ea

d
la

te
nc

y
(s

ec
s)

PB SB

Figure 6: Commit latency vs. ad-hoc bound ratio

 (UR=0.1, RR=0.1, bound_size=10)

update. Note that our algorithms demonstrate write-all
behavior when the local bounds at each server are suffi-
ciently small (i.e., smaller than the value of an update).
This is the reason why the three algorithms converge at a
bound size of five, below which none of the servers can
locally commit any updates. Our precision control algo-
rithms have lower latency than the strict consistency pro-
tocol, and the gap increases significantly with increasing
bound size. Clearly, the improvement comes at the ex-
pense of data precision. The figure also reveals that PB
achieves lower latency values than SB, especially for rela-
tively small to moderate bound sizes. The difference be-
tween the PB and SB curves quantifies the conservative-
ness of SB’s local commit criteria relative to that of PB.

Figure 5 provides further insight by plotting the corre-
sponding local commit ratio curves. It is evident that SC
cannot commit any updates locally as it requires pushing
updates to all clients first. SP and PB, on the other hand,
can commit updates locally most of the time, and local
commit ratio increases with increasing bound size. PB
commits more updates locally than SB does due to its less
conservative local commit criteria, which essentially en-
ables higher server autonomy.
6.3. Enforcing Ad-Hoc Precision Bounds

We now investigate reads that specify ad-hoc precision
bounds. Figure 6 presents the commit latency results for
increasing ad-hoc bound ratios. For purposes of this ex-
periment, we define bound ratio to be the ratio of the ad-
hoc bound to the continuous bound as lo/l = ho/h, where [l,
h] is the continuous bound already registered to the sys-
tem. As discussed earlier, if no continuous bound are reg-
istered, the server that accepted the read request needs to
pull the unknown updates from all other servers (i.e.,
form a read quorum containing all servers).

As expected, the latency increases for both algorithms
as the bound ratio decreases (i.e., as the read requires
higher precision). Unlike the results presented in Section
6.2, the bound sharing algorithm consistently achieves
lower latency than the bound partitioning algorithm. In

fact, the conservativeness of SB’s local commit criteria,
which has negative affect on performance when support-
ing continuous bounds, help SB in this case as the non-
quorum servers also use the same conservative criteria to
compute their local ranges. Since PB’s criteria is less
conservative, the sum of the values of the unknown up-
dates that can be committed by the non-quorum servers
can be more than that in SB, requiring more servers to be
contacted and included in the read quorum for the preci-
sion bound to be ensured.

Figure 7 shows the local commit ratio results for PB,
SB, and a hypothetical variant of our bound partitioning
algorithm, static quorum. Static-quorum is similar to PB
in that the global registered bounds are partitioned across
all servers, but differ in that servers do not utilize infor-
mation regarding the updates seen from other servers. We
observe that SB commits more updates locally than PB,
due to its more conservative commit criteria. The differ-
ence between the curves for PB and static quorum quanti-
fies the benefits of exploiting views in this case.
6.4. Adaptation Experiments

We conducted several other experiments that investi-
gate the potential performance improvements attainable
through adaptation, which is efficiently enabled through
our server-server weight redistribution mechanism. The
results of the experiments (which we do not present here
due to space considerations) reveal that the system can
effectively adapt to changing factors such as update-rate
distribution, and that adaptation has the potential to yield
significant performance gains in real applications (see [3]
for complete results).

7. Scalability Issues
The basic system model (described in Section 2.2) as-

sumes that each server maintains views for all clients that
register precision bounds. This requires O(n×m)storage
(per data item), where n is the number of servers and m is
the number of clients. Clearly, this is not a practical ap-
proach as we expect to support a large number of clients

and a large number of data items. The issue here is not
only storage and synchronization of these potentially
large views, which we address below, but also the com-
munication required to keep track of and refresh each
individual client. In order to effectively scale, we propose
a proxy-based grouping approach. In this approach, proxy
servers sit between the clients and servers and act as in-
termediate smart caches. Clients submit their requests to
the closest proxy, which then becomes responsible for
executing the requests by communicating with the serv-
ers. In this model, the servers need to keep track of,
communicate with, and refresh the caches of the proxies
only (each proxy essentially becomes a virtual super-
client). It is also possible to organize proxies into hierar-
chies to further improve scalability. This model, however,
is outside the scope of this paper and we plan to investi-
gate it as part of our future work (see Section 9).

It is also possible to use various techniques to reduce
the server-side view storage and synchronization over-
heads at the expense of some accuracy in the representa-
tion of precision bounds. One such technique might be to
logically group multiple client bounds into a single one,
and then represent the entire group’s bounds with the
tightest bounds in the group. Yu and Vahdat investigated
a similar and complementary approach where all clients
are enforced to use the same precision bounds for the
same data items [22].

8. Related Work
There has been significant research on maintaining

consistency constraints on numerical replicated data.
Early work, such as the demarcation protocol [1], typi-
cally addressed the general problem of maintaining integ-
rity constraints in traditional distributed database envi-
ronments. The demarcation protocol is not designed to
support fine-grained, continuous or ad-hoc reads with
precision bounds. Epsilon-serializability [11, 20] is a
generalization of conventional serializability [2], where a
limited amount of inconsistency is allowed by multiple
reads in a query. Similar to the demarcation protocol,
epsilon-serializability addresses a much more general
problem, and thus cannot exploit many features specific
to our problem. The protocols proposed for the demarca-
tion protocol and epsilon-serializability, being designed
for general transaction processing, heavily rely on lock-
ing-based techniques, which are prohibitive for the types
of environments and applications we address.

Bounded ignorance [13], precision caching [12], and
several materialized view maintenance algorithms (e.g.,
[10]) have addressed numerical error bounding in a mas-
ter-copy model, where only a single node accepts updates
to data items. Olston and Widom [16] recently proposed
tunable algorithms that provide precision vs. performance
tradeoff for aggregation queries over replicated data. This

work also does not consider symmetric replication envi-
ronments.

The most recent and relevant work on distributed pre-
cision control that addressed symmetric replication envi-
ronments is that of Yu and Vahdat [22], which described
an efficient algorithm for numerical error bounding for
replicated network services. The basic model we present
here is essentially based on Yu’s model, but generalizes
and extends it in the following ways: First, Yu’s algo-
rithm addresses only continuous bounds, but does not
addresses ad-hoc, per-read bounds. Second, Yu’s algo-
rithm is partitioning-based: it can actually be regarded as
a specific instance of PB where the bounds are statically
and uniformly partitioned across servers at startup time.
Finally, Yu’s algorithm does not address dynamic bound
redistribution, which is a crucial mechanism for adapting
to dynamically changing update patterns.

Also relevant are escrow-based [17] protocols pro-
posed for efficient distributed resource management (e.g.,
[9, 14, 15, 19]. These protocols are typically based on
global state snapshot algorithms [15] or quorum locking
techniques [14], restricting their efficiency and practical-
ity in wide-area environments. Of particular relevance is
the Data-value partitioning approach [19], which basi-
cally partitions the numerical values of database items
and stores each of the constituent values at different serv-
ers.

9. Conclusions and Future Work
We presented the design and implementation of Re-

Bound, a system that provides a practical, flexible
framework for efficiently supporting distributed applica-
tions that access numerical replicated data and that can
tolerate bounded data imprecision. Our work generalizes
and extends previous work that proposed efficient algo-
rithms for bounding imprecision in replicated network
services. In particular, ReBound provides support for not
only continuous bounds but also ad hoc bounds. Further-
more, ReBound incorporates practical, low-overhead ad-
aptation mechanisms can be used to dynamically and
asynchronously adjust to the update patterns as observed
by the servers in the system.

We described two algorithms, Share-Bound and Parti-
tion-Bound, which maintain continuous precision bounds
by limiting the sum of the values of the committed up-
dates that are unknown to clients. In Share-Bound, the
registered bounds are shared among servers, whereas in
Partition-Bound, the registered bounds are partitioned
across servers. For both algorithms, we presented local
update commit criteria that, if satisfied, ensure that the
registered bounds will still be met after the commitment
of an update. If a server’s local update commit criteria are
not satisfied, then it has to synchronize with other servers
or clients. The algorithms handle ad-hoc bounds by ex-
ploiting the already registered continuous precision

bounds, if available, to efficiently select a proper subset
of servers whose unknown updates need to be pushed to
the clients. We also described light-weight adaptation
mechanisms based on pair-wise weight distribution
among servers.

Using the ReBound prototype, we presented a prelimi-
nary performance evaluation of our algorithms under
various workloads and scenarios. The results revealed
that ReBound could effectively lower the precision of
data delivered to the clients for significantly improved
system performance.

In this paper, we focused only on efficient precision-
control mechanisms, and did not address policy issues. As
future work, we are planning to investigate dynamic pre-
cision control policies that provide answers to the follow-
ing questions: when to contact other servers?; which
servers to contact?; and what updates to push or pull?
Scalability might become an important issue especially
when supporting a large client population.

As discussed in Section 7, we are currently investigat-
ing proxy-based hierarchical organizations to effectively
scale up to large number of clients and data items. In this
model, proxies are responsible for executing the requests
of their client set by communicating with the servers. We
are exploring policies for setting appropriate aggregate
proxy precision bounds in order to minimize the overall
necessary proxy-server pull and server-proxy push com-
munication. If the proxy precision bounds are set too
loose, then the proxy would have to make frequent ad-hoc
reads. If the bounds are set too tight, on the other hand,
then the servers would have to frequently refresh the
proxy. Adaptive precision bound setting in the presence
of changing update patterns and precision requirements,
thus, seem to be an interesting research direction.

References
[1] D. Barbara and H. Garcia-Molina. The Demarcation

Protocol: A Technique for Maintaining Linear Arithme-
tic Constraints in Distributed Database Systems. In Proc.
of the Intl. Conf. on EDBT, 1992.

[2] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Con-
currency Control and Recovery in Database Systems:
Addison-Wesley, 1987.

[3] U. Cetintemel. Decentralized Data Consistency Protocols
for Mobile and Wide-Area Environments. Department of
Computer Science.

[4] U. Cetintemel and P. J. Keleher. Light-Weight Currency
Management Mechanisms in Deno. In Proc. 10th IEEE
Workshop on Research Issues in Data Engineering
(RIDE), San Diego, February 2000.

[5] U. Cetintemel and P. J. Keleher. Performance of Mobile,
Single-Object Replication Protocols. In proceedings of
the 19th IEEE Symposium on Reliable Distributed Sys-
tems (SRDS'00), Nurnberg, Germany, 2000.

[6] U. Cetintemel, P. J. Keleher, and M. J. Franklin. Support
for Speculative Update Propagation and Mobility in
Deno. In IEEE Intl. Conf. on Distributed Computing Sys-
tems (ICDCS), Phoenix, 2001.

[7] U. Cetintemel, B. Özden, M. J. Franklin, and A. Silber-
schatz. Design and Evaluation of Redistribution Strate-
gies for Wide-Area Commodity Distribution. In Proceed-
ings of the 21st IEEE International Conference on Dis-
tributed Computing Systems (ICDCS'01), Mesa, Arizona,
2001.

[8] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S.
Shenker, H. Sturgis, D. Swinehart, and D. Terry. Epi-
demic Algorithms for Replicated Database Maintenance.
In Proc. 6th ACM Symp. on Principles of Distributed
Computing (PODC), Vancouver, 1987.

[9] L. Golubchik and A. Thomasian. Token Allocation in
Distributed Systems. In Proceedings of the 12th Interna-
tional Conference on Distributed Computing Systems
(ICDCS-12), Yokohama, Japan, June 1992.

[10] A. Gupta and I. S. Mumick. Maintenance of Materialized
Views: Problems, Techniques, and Applications. IEEE
Data Engineering Bulletin, 18(2):3-18, 1995.

[11] W. Hsueush, G. E. Kaiser, C. Pu, K.-L. Wu, and P. S.
Yu. Divergence Control for Distributed Database Sys-
tems. Distributed and Parallel Databases, 3(1):85-109,
1995.

[12] Y. Huang, R. H. Sloan, and O. Wolfson. Divergence
Caching in Client Server Architectures. In Proc. Int.
Conf. Parallel and Distributed Information Systems
(PDIS), 1994.

[13] N. Krishnakumar and A. Bernstein. Bounded Ignorance
in Replicated Systems. In Proc. 10th ACM Symp. on
Principles of Database Systems (PODS), 1991.

[14] N. Krishnakumar and A. J. Bernstein. High Throughput
Escrow Algorithms for Replicated Databases. In Proc. of
the Int. Conf. on Very Large Databases, Vancouver,
Canada, 1992.

[15] A. Kumar and M. Stonebraker. Semantics Based Trans-
action Management Techniques for Replicated Data. In
Proc. of the ACM SIGMOD Int. Conf. on Management of
Data, Chicago, USA, June 1988.

[16] C. Olston and J. Widom. Offering a Precision-
Performance Tradeoff for Aggregation Queries over
Replicated Data. In Proc. of the 26th VLDB Conf., Cairo,
Egypt, 2000.

[17] P. E. O'Neil. The Escrow Transactional Method. ACM
Transactions on Database Systems, 11(4):405-430, 1986.

[18] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer,
and A. J. Demers. Flexible Update Propagation for
Weakly Consistent Replication. In 16th ACM Symposium
on Operating System Principles, Saint-Milo France, Oc-
tober 1997.

[19] N. Soparkar and A. Silberschatz. Data-value Partitioning
and Virtual Messages. In Proc. of the Symposium on
Principles of Database Systems, Nashville, 1990.

[20] K.-L. Wu, P. S. Yu, and C. Pu. Divergence Control for
Epsilon-Serializability. In Proc. of Int. Conf. on Data
Engineering, Tempe, USA, 1992.

[21] H. Yu and A. Vahdat. Design and Evaluation of a Con-
tinuous Consistency Model for Replicated Services. In
proceedings of the 4th Symposium on Operating Systems
Design and Implementation, 2000.

[22] H. Yu and A. Vahdat. Efficient Numerical Error Bound-
ing for Replicated Network Services. In Proc. of the 26th
VLDB Conf., Cairo, Egypt, 2000.

	Abstract
	References

