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Abstract 

Maintaining strict consistency of replicated data can be 
prohibitively expensive for many distributed applications 
and environments. In order to alleviate this problem, 
some systems allow applications to access stale, impre-
cise data. Due to relaxed correctness requirements, many 
applications can tolerate stale data but require that the 
imprecision be properly bounded. 
    This paper describes ReBound, a system that provides 
an adaptive framework for supporting and exploiting data 
precision vs. efficiency tradeoffs in symmetric replication 
environments via distributed precision control. Previous 
work proposed efficient precision control algorithms that 
support continuous read requests tagged with custom 
numerical precision ranges. ReBound generalizes and 
extends previous work with a new algorithm for continu-
ous reads, support for ad-hoc reads, and light-weight 
adaptation mechanisms for coping with dynamically 
changing update patterns. This paper also presents pre-
liminary experimental results, based on a prototype im-
plementation, that demonstrate the performance advan-
tages of exploiting precision vs. efficiency tradeoffs. 

1. Introduction 
Replication is crucial for effectively supporting distrib-
uted applications that involve data sharing. The cost of 
maintaining strict consistency of replicas may be imprac-
tical in many environments. On the other hand, many 
applications do not require strict consistency and can con-
tinue to operate with stale data, as long as the divergence 
from the accurate, up-to-date data is properly bounded. 
For such applications, it is possible to exploit the tradeoff 
between the precision of the replicated data (as observed 
by the applications), and overall system efficiency. 

As a motivating scenario, consider a monitoring appli-
cation that involves a distributed sensor network: sensor 
units transmit their readings to their closest base stations, 
which forward the values to the client application. As the 
sensor values are generated in real-time, it may be very 
expensive to transmit all the readings. At the same time, 
this may not be necessary because the monitoring appli-

cation does not, in most cases, require exact values, but is 
only interested in certain trends. For instance, an applica-
tion monitoring the average temperature value of a given 
region may tolerate an imprecision of 3 Fahrenheit. 
This flexibility can be effectively utilized by the base 
stations to reduce the volume of data transmitted to the 
monitoring clients. As another example, consider an in-
ventory-based mobile sales application, where mobile 
sales people sell consumable or financial products using 
personal digital assistants with wireless interfaces. The 
product inventories accessed by the sales force are typi-
cally limited, and the products should not be oversold. It 
is, however, impractical or uneconomical to keep the 
sales people connected and, thus, up-to-date regarding the 
inventories at all times. On the other hand, a sales trans-
action does not need to have the accurate number of prod-
ucts available in the inventory as long as this number is 
larger than the number of items that is being sold at any 
instant. For instance, if a transaction involves selling 
three units of a particular product, the exact number of 
units left in the inventory does not matter as long as at 
least three units are still available for sale. 

±

Both scenarios involve (1) numerical data that are rep-
licated and updated at multiple network locations (which 
we refer to as a symmetric replication environment); (2) 
environments where maintaining strict data consistency is 
prohibitive due to large system scale, high volume of up-
dates, or communication restrictions; and (3) applications 
that can tolerate bounded imprecision in the data they 
observe. In fact many other distributed applications and 
servicessuch as wide-area network management [16], 
commodity distribution [7], distributed load balancing 
[22], and airline reservation systemsdemonstrate simi-
lar characteristics. 

In this paper, we present the design, implementation, 
and evaluation of ReBound, an adaptable system that pro-
vides a flexible framework to support and exploit data 
precision vs. efficiency tradeoffs in symmetric replication 
environments. Figure 1 illustrates the basic ReBound sys-
tem model. Multiple servers replicate and update numeri-
cal data items. Clients submit read operations that specify 
precision ranges on the data they cache (a client may be 
an individual node or a proxy style super-client that 
represents multiple nodes). These ranges indicate bounds 
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on the quantitative deviation of the data read by the cli-
ents from the accurate, up-to-date values maintained at 
the servers. 

ReBound supports two types of read requests: con-
tinuous and ad-hoc. Continuous reads require that the 
data cached at the clients always meet the specified preci-
sion constraints. Ad-hoc reads have one-time semantics 
and indicate a single refresh of the client cache such that 
the cached data meets the required precision bounds im-
mediately after the refresh. 

Recently, Yu and Vahdat proposed an efficient dis-
tributed precision control model [22] for symmetric 
replication environments in the context of the TACT 
project [21]. TACT’s model supports static (i.e., fixed) 
continuous bounds by efficiently bounding the updates 
that are committed at servers and are unknown (i.e., not 
yet propagated) to clients. 

In this paper, we essentially build on and extend the 
distributed precision control model presented in [22]. In 
particular, we propose two server-side algorithms that 
support both continuous and ad-hoc bounds. Similar to 
TACT’s algorithm, our algorithms maintain continuous 
precision bounds by limiting update commitment at serv-
ers. Upon receiving an update, local commit criteria are 
used to decide whether to commit the update or not. If the 
criteria are met, the update is immediately committed. If 
not, the server must perform remote communication: it 
either pushes unknown updates to a proper subset of cli-
ents (this is the approach taken by TACT), or pulls infor-
mation from a subset of servers. In our first algorithm, 
Share-Bound, the client-specified precision bounds are 
shared and cooperatively maintained by the servers. In 
our second algorithm, Partition-Bound, the precision 
bounds are explicitly partitioned across the servers. In 
fact, we show that Yu’s algorithm is a specific instance of 
the Partition-Bound algorithm. 

ReBound employs simple but practical adaptation 
mechanisms. Specifically, we use per-replica weights, 
which define the autonomy of the servers in terms of the 
volume of updates they can commit locally, and enable 
dynamic, pair-wise redistribution of these weights to cope 

with changing update patterns across servers. Our algo-
rithms also address and handle ad-hoc bounds―ReBound 
exploits the already registered continuous precision 
bounds, if available, to efficiently select a proper subset 
of servers whose unknown updates need to be pushed to 
the clients to satisfy the specified bound. serverserver
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Figure 1: ReBound basic system model 

In summary, we make the following contributions. 
First, we present an adaptable system for precision con-
trol of numerical data in symmetric replication environ-
ments. Our model generalizes and extends previous work 
by proposing decentralized precision control algorithms 
that efficiently maintain continuous and ad-hoc precision 
bounds. To the best of our knowledge, our protocols are 
the first to support ad-hoc reads with precision constraints 
in these environments. Furthermore, our protocols incor-
porate light-weight adaptation mechanisms that facilitate 
dynamic load balancing. Second, we present initial ex-
perimental results, based on the ReBound prototype, that 
demonstrate the practicality and the potential performance 
advantages of our protocols. 

The rest of the paper is organized as follows. In Sec-
tion 2, we give an overview of ReBound, describing its 
framework and system model. In Section 3, we describe 
our precision control algorithms in detail. In Section 4, 
we describe server-client and server-server synchroniza-
tion in ReBound. In Section 5, we briefly describe the 
ReBound architecture. In Section 6, we describe the ex-
perimental environment and methodology, and present 
our experimental results. We briefly discuss scalability in 
Section 7, discuss related work in Section 8, and conclude 
in Section 9. 

2. ReBound Overview 

2.1.  Framework 
In ReBound, clients specify their desired quantitative 

precision requirements in terms of numerical ranges on 
the values of cached data items. Servers that replicate and 
update these items cooperatively maintain the specified 
ranges. 

We first define the value of an update as the amount 
by which the update changes the value of the correspond-
ing data item. We define a precision bound on a data item 
r with respect to a set of clients C and a set servers S as 
the sum of the values of updates, u, on r that the servers 
in S can commit without ensuring that all c in C has ob-
served u. More formally, the algorithms we propose en-
sure that the following inequality hold at all times: 

( )
i is Sl value U h∈≤ ≤∑  

where l ≤ 0 ≤ h are, respectively, the lower and upper 
bounds to be preserved, and value(Ui) is the sum of the 
values of the updates committed by si∈S and not yet re-
flected to the caches of all clients c. Intuitively, the above 
constraint limits the total value of updates the servers can 
commit without refreshing client caches, essentially limit-

 



 

ing the numerical imprecision of the values of the data 
cached at clients. 

We define two types of precision constraints based on 
the types of read operations with which they are associ-
ated. A continuous precision constraint is one that is reg-
istered to servers only once and then continuously en-
forced. An ad-hoc constraint, on the other hand, is speci-
fied and enforced only once. Support for continuous 
ranges is typically sufficient for most applications that we 
target. Ad-hoc constraints are, however, desirable in sce-
narios where higher precision than that already provided 
by the continuous ranges is required (e.g., when the sen-
sor monitoring application requires a more accurate tem-
perature reading for a specific region). 
2.2. System Model  

Overview. Our basic system model is similar to that 
investigated in [21]. We assume that there are n servers 
and m clients in the system, and denote the set of servers 
and clients with S and C, respectively. Servers replicate 
and update numerical data items, whereas clients cache 
data items. An update u changes the value of an item by 
an amount equivalent to its value, value(u), which can be 
positive or negative. Clients cache read-only versions of a 
subset of these items, and can set precision constraints on 
the items they cache (we use the terms bounds, ranges, 
and constraints interchangeably in the rest of the paper). 
Servers that replicate an item cooperate to maintain any 
precision bounds defined on that item.  

A server commits an update when it ensures that the 
update does not violate any client-specified constraints. 
The server that accepts an update u is called the initiating 
server of u. Updates are always propagated and main-
tained in the order they are committed at their respective 
initiating servers. A server reflects the updates it commits 
to other servers by propagating the corresponding update 
records, which are consequently applied to the remote 
databases (note that we do not propagate data item im-
ages). Servers can perform update propagation using any 
information propagation mechanism supported by the 
underlying communications environment. Because our 
framework is general, and is designed specifically for 
wide area, we assume pair-wise, epidemic style synchro-
nization sessions [8, 18, 21] for update and control 
information propagation. 

Data structures. For simplicity of exposition, we as-
sume that a single data item that is replicated by all serv-
ers and cached by all the clients in the system. We also 
assume that servers and clients are assigned unique, 
global identifiers. In our model each server si maintains 
two views (which can be trivially combined in a single 
view): a server view and a client view that summarize the 
updates that other servers and clients have seen, respec-
tively. We represent the server view of si as a vector vi 
such that svi[j,k] gives the number of updates committed 
by server k and known to server j (as far as si knows). 
Similarly, we represent the client view of si as a vector cvi 

such that cvi[j,k] gives the number of updates committed 
by server k and known to client j (as far as si knows). 

Views are updated when a server commits a new up-
date locally, or during update propagation. When si com-
mits a new update locally, it sets svi[i,i] = svi[i,i] +1. 
When si propagates the updates unknown to client j, it 
sets cvi[j,k] = svi[i,k], ∀sk∈S. When a server sl propagates 
its server view, svl, to si, si updates its views such that 
svi[j,k] = max(svi[j,k], svl[j,k]), ∀sj,sk∈S, and cvi[j,k] = 
max(cvi[j,k], cvl[j,k]), ∀cj∈C, ∀sk∈S. 

 Each server si maintains a commit log, which is a se-
quence of updates either committed by si, or committed 
by another server and propagated to si. We represent the 
sequence of updates committed by sk in si’s log with 

[1], [2], [3],..., [ [ , ]]i i i i i i
k k k k kU u u u u v i k=< >  

We say that an update u is unknown with respect to the 
client set C if u is not yet observed by all clients c∈C. We 
define the function Ui(j,k) as the sequence of unknown 
updates committed by sk as seen by node j in si’s view. 
More formally, 

( , ) [ 1], [ 2], [ 3],..., [ ]i i i i i
k k k kU j k u x u x u x u y=< + + + >  

where x = min(cvi[m,k]), ∀cm∈C, and y = svi[j,k]. 
The value of a sequence of updates U = <u1, u2, …, 

un>, value(U), is the sum of the values of the updates in 
the sequence; i.e., 

1( ) ( )n
iivalue U value u==∑  

We now define the minimum and maximum suffix of a 
sequence U as, respectively, the suffix subsequences of 
U, 

1 2min( ) , , ,...,k k k nU u u u u+ +=< >

1 2max( ) , , ,...,l l l nU u u u u+ +=< >
,and   

 
with minimum and maximum values. 

In addition, each server si maintains, for each regis-
tered constraint, lower and upper bound weights 

0 , 1i iw w− +≤ ≤ .0  
such that ,∀i=1…n: 

1 1 1.0n n
i ii iw w− +

= == =∑ ∑  
These weights are abstract measures of the autonomy of 
servers in committing updates: in general, the more 
weight a server holds, the more updates it can commit 
locally. An important system-wide invariant is that the 
sum of the weights of all servers adds up to a constant 
value. This invariant needs to be maintained at all times 
to ensure the correctness of the protocol. 

3. Decentralized Precision Control 
In this section, we describe two distributed algorithms 

for enforcing the continuous precision constraints as de-
scribed above. Both algorithms work by efficiently limit-
ing the sum of the values of updates that can be commit-
ted by the servers without synchronizing with the clients. 
The key insight to the algorithms is to treat the allowed 

 



 

The local bounds at each server si bound the sum of 
the values of the updates that si can commit without con-
tacting other servers and refreshing client caches. PB does 
not require that a server to take into account the updates 
committed by other servers when computing local ranges. 
Since global ranges are partitioned and are thus independ-
ent, it is sufficient for each server to limit only its own 
updates to ensure that the global ranges are maintained 
properly. 

1. While local_commit_criteria(r, u, [l, h]) not satisfied 

2.    Push_to_clients(); and/or    
                 // push unknown updates to clients (to advance vi) 

3.    Pull-from-servers(); 
                // redistribute bounds (to relax local commit criteria)  

4. Set r = r + value(u); 

Figure 2: Basic algorithm executed by a server to 
commit an update u on item r 

Server si commits a new update u using the following 
local commit criteria: 

precision bounds as global resources to be consumed by 
the servers, and distribute these resources across the serv-
ers. In the rest of the paper, we use the term global range 
to indicate the client-specified precision range. 

In the first algorithm, Partition-Bound (PB), each 
global range is partitioned among servers, whereas in the 
second algorithm, Share-Bound (SB), each global preci-
sion range is shared among servers. Servers are assigned 
per-bound weights that indicate the size of their share in 
the global precision range. Given the global range, each 
server computes its local range based on its view of the 
system and its weight. A local range essentially indicates 
the sum of the values of updates that the server can com-
mit locally, without having to synchronize with any other 
client or server. 

In both algorithms, each server initially attempts to 
commit a new update based on local information. If this is 
not possible, the server must perform synchronization to 
advance its view or increase its weight (thereby expand-
ing its local range). A server can advance its view by 
pushing unknown updates to clients or servers. A server 
can increase its weight through pair-wise weight redistri-
bution, which involves one server pulling some amount of 
weight from another. While the pulling server’s weight 
increases (expanding its local range), the pulled server’s 
weight decreases by the same amount (shrinking its local 
range). This style of sum-preserving weight redistribution 
was first explored by the Deno shared-object system [4, 5, 
6]. 

Figure 2 illustrates the basic procedure executed by a 
server si to commit a new update u. We now discuss two 
algorithms that primarily differ in the way they compute 
their local update commit criteria. 
3.1. The Partition-Bound (PB) Algorithm 

In this algorithm, the global precision range, [l, h], is 
explicitly partitioned as local ranges across the servers 
using the local weights at each server. The local bounds at 
a server si are computed as: 

i il w−= l

<

>

)))

)))

and  i ih w h−=

 val  (min( )) ( ) ( ) 0i
i iue U value u l if value u+ ≥

(max( )) ( ) , ( ) 0i
i ivalue U value u h if value u+ ≤  

In other words, si can commit u if the sum of the val-
ues of the unknown updates committed by si (including u) 
does not exceed si’s local bounds, and thus, does not in-
validate the shared global bounds. 

We note here that the TACT precision control algo-
rithm [22] is a specific instance of the PB where all the 
weights are uniformly partitioned across servers (i.e., wi = 
1/n, ∀i=1…n). 
3.2. The Share-Bound (SB) Algorithm 

In this algorithm, the global precision range, [l, h], is 
shared by the servers in the system. Upon accepting a 
new update u, a server si checks whether the commitment 
of u will violate the shared global range. For this purpose, 
si computes a local range, [li, hi], based on (1) the global 
range, (2) si’s local knowledge about the updates commit-
ted by the other servers in the system, and (3) si’s weight, 
which define si’s portion in the global range. Since si’s 
local knowledge may not be up-to-date, si conservatively 
computes its own local bounds by assuming an upper 
bound on the ranges of other servers. These local bounds 
then indicate the sum of the values of updates that si can 
commit entirely locally, i.e., without contacting any other 
server or client.  

Each server si computes its local precision range as 
follows: 

( (min(

( (max(

i
i j

j ii
i

i i j
j i

w l value U
l
h w h value U

−

≠

+

≠

 −
   =   −   

 

∑

∑
 

Without loss of generality, consider the local upper bound 
as computed above. Intuitively, the value 

(max( ))i
jj ih value U≠−∑  

indicates the total maximum value of updates that can be 
committed without exceeding the global upper bound h 

(the sum of the values of updates committed by si is fac-
tored in the later). This is because the value 

(max( ))i
jvalue U  Note that the sum of the local bounds across the serv-

ers always sum up to the global bounds:  provides an upper bound on the value of the committed 
updates committed by sj and potentially unknown to the 
corresponding client (according to si’s view). 1

n
iil l==∑ and  1

n
iih h==∑

 



 

Server si then computes its share of this value by using its 
upper bound weight, and thus computing the total maxi-
mum value of updates that it can commit locally. 

Fixing the sum of all weights in this manner, as we 
discuss in Section 4.2, enables light weight, server-server 
bound redistribution while maintaining the correctness of 
algorithm. The commit criteria used by SB is the same 
used by PB (described above). 

4. Update Synchronization 

4.1. Refreshing Client Caches 
One way to accommodate a new update is to suffi-

ciently advance the server’s view of the clients regarding 
the updates unknown to those clients. This can be accom-
plished by refreshing the caches of a proper subset of 
clients by pushing a subset of the updates unknown to 
those clients. More specifically, server si chooses a subset 
of clients C such that the propagation of unknown 
updates to each client in Ci will advance the view of si, 
and therefore potentially decrease 

i C⊆

i
jU  for some j=1…n.  

The minimum quantitative view advance si requires, 
referred to as min_advi, in terms of the decrease in the 
sum of the values of the unknown updates required to 
commit a new update u can be computed as follows 
(based on the local commit criteria presented in Section 
3.2 and Section 3.1). 

For the Share-Bound algorithm: 
If value(u) < 0 then: 
min_ ( ( (min( )))

                      (min( )) ( ))

i
i i j

j i
i
i i

adv w l value U

value U value u l

−

≠
= − +

+ −
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else:                       

 
min_ ( ( (max( )))

                            (max( )) ( ))

i
i i j

j i
i
i i

adv w h value U

value U value u h

+

≠
= − +

+ −

∑

The corresponding equations for the Partition-Bound 
algorithm are: 

If value(u) < 0 then:  
min_ ( (min( )) ( ))i

i i iadv w U value u l−= + i−

i−

 
else:  

min_ ( (max( )) ( ))i
i i iadv w U value u h+= +  

4.2. Bound Redistribution 
An alternative to pushing updates to refresh client 

caches is to relax local constraints by tightening remote 
constraints. This is efficiently and practically accom-
plished by a pair-wise weight redistribution mechanism: a 
server that needs to increase its local weight, thereby re-
laxing its local bound, contacts other servers, and requests 
some amount of weight. The contacted server computes 
the amount it can give away and responds with that 
amount. In effect, the weights of the contacted servers, 
and therefore their bounds, are redistributed between the 
two servers. This operation is light weight in that only 

two servers are involved, and since the total amount of 
weight in the system remains fixed, correctness of the 
protocol is not affected (provided that the responding 
server computes the response amount properly, which we 
discuss below). This style of sum-preserving weight re-
distribution mechanisms was first explored in the context 
of the Deno system [5, 6], and was observed to exhibit 
very interesting dynamic properties [4]. 

Given an update u that cannot be committed locally at 
si, the minimum amount of extra weight for the upper 
bound, min_wi

+, si requires in order to commit u is (based 
on the commit criteria presented in Sections 3.2 and 3.1) 
is as follows: for Share-Bound: 

(max( )) ( )
min_

(max( ))

i
i

i ii
j

j i

value U value u
w w

h value U
+ +

≠

+
= −

−∑
 

For the Partition-Bound algorithm: 
(max( )) ( )

min_
i
i

i i
w U w u

w w
δ

+ +
+

+
= −  

The corresponding weights for the lower bounds can 
be computed similarly. Note that the required weight 
might be larger than 1.0 due to the already committed 
updates. Since the total weights held by all servers are 
fixed at 1.0, it may not be possible to commit the new 
update solely by weight redistribution. In such a case, 
client caches must be refreshed before committing new 
updates. 

When a server si is contacted for bound redistribution, 
si computes the maximum lower and upper bound weights 
that it can give away, extra_wi

- and extra_wi
+ such that  0 

≤ extra_wi
- ≤ wi

-, 0 ≤ extra_wi
+≤ wi

+, based on the commit 
criteria presented in Sections 3.2 and 3.1, as follows: For 
Share-Bound 

(min( ))
(min( ))

_

_ (max
(max( ))

i
i

i i
j

j ii
i

i i
i i

j
j i

value U
w

l value U
extra w

extra w value U
w

h value U

−

−
≠

+
+

≠

 
− −    =      − 
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For Partition-Bound, the corresponding values are: 
(min( ))

_

_ (max( ))

i
i

i
i

i
i i

i

value U
wextra w l

extra w value U
w

h

−
−

+
+

 
−  

 =      − 
 

 

As we can see from the above equations, si may give 
away only some of its weight if some of the updates it 
committed are still unknown to the clients; i.e., 
value(Ui

i)≠0. Intuitively, the reason is that the sum of the 
values of the unknown updates can be thought of as con-
suming some of the precision range available to the 
server, making the corresponding amount of weight un-
available. If this weight were to be given away and then 
consequently used by another server, the total amount of 

 



 

weight in the system used at any one time might poten-
tially exceed the fixed 1.0 value, thereby eliminating any 
global precision bound guarantees. 
4.3. Supporting Ad-Hoc Precision Bounds 

In this section, we describe how our algorithms sup-
port one-time precision bounds specified by ad-hoc read 
operations. In both algorithms, the server that received 
the read, say s, pulls unknown updates from a sufficiently 
large quorum of servers, and pushes those updates to the 
client that issued the ad-hoc read. More specifically, s 
needs to form a read quorum, Q ⊆ S, such that the re-
maining set of non-quorum servers, NQ = S − Q, cannot 
commit updates whose sum of weights will invalidate the 
limit set by the client. In such a case, s does not need to 
expand Q anymore by pulling from non-quorum servers: 
the ad-hoc bounds are then satisfied when s pushes those 
updates committed by the servers in Q as a response to 
the client’s read request. Figure 3 depicts the basic quo-
rum formation algorithm executed by a server si to com-
mit an ad-hoc read submitted by client c. 

Assume that a client c wants to read an item r with a 
precision of [lo, ho] (the subscript ‘o’ implies a ad-hoc 
bound). Two scenarios are possible: (1) there are no reg-
istered precision bounds on r; or (2) there already exist 
registered continuous precision bounds, [l, h], on r. In the 
former case, the server s that received the read request has 
no option but to contact all servers (essentially forming a 
read quorum Q = S), and pull all updates unknown to c. 
This is necessary because no continuous bounds are 
maintained in the system and, thus, there is virtually no 
limit on the sum of the values of updates that can be 
committed locally by any server. 

In the latter case, s can exploit the fact that a continu-
ous bound is being maintained in the system to more effi-
ciently execute the read operation. Note that the case 
where the ad-hoc bounds are more relaxed than the corre-
sponding continuous bounds (i.e., [l, h] ⊆ [lo, ho]) is triv-
ial: client c can simply complete the read using the data 
on its cache because the data is already guaranteed to 
satisfy the precision bounds. 

 Server si decides that the read quorum, Q ⊆ S, is suf-
ficiently large to guarantee the ad-hoc bound, [lo, ho], 

given the already registered continuous bounds, [l, h], if 
the following local conditions are satisfied: 1. Set Q = {si} 

2. While local_read_quorum_criteria (r, c, [lo, ho], Q)  
                  not satisfied 
             i.   Select a new quorum server sq ∉ Q 
             ii.  Pull from  sq those updates unknown to c 
             iii. Set Q = Q ∪ {sq} 

3. Push all updates unknown to c 
Figure 3: Basic algorithm executed by server si to 
commit an ad-hoc read operation specified by a 
client c with precision bounds [lo, ho] (on item r). 

For Share-Bound: 
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Intuitively, the left side of each condition computes, 
based on si’s view, the sum of the values of the updates 
that can be committed by a non-quorum server sk, 
summed over all non-quorum servers sk∉Q. For each 
such sk, the formula computes the local bound of sk (indi-
cating the total value of updates that can be committed by 
sk) less the sum of values of updates that sk already com-
mitted. The result then gives, for each sk∉Q, the total 
value of updates that can further be committed by sk. No-
tice that the sum 

kk Q w+
∉∑  

in the formula (consider the upper bound case) cannot be 
directly computed by si, since, by definition, sk is not a 
quorum server and its weight may not be available to si. 
However, since the sum of weights across all servers is 
fixed to 1.0, si can compute the sum indirectly using the 
weights of quorum servers as: . 1.0k qk Q q Qw w+ +

∉ ∈= −∑ ∑
The corresponding conditions for Partition-Bound are: 

         ∑ ∑   and  ( (min( )) ( )i i
i ii il value U value U l− +

         ∑ ∑  ( (max( )) ( )i i
i ii ih value U value U h− +

5. ReBound Architecture 
This section briefly describes the basic components of 

a ReBound server. The Server Manager is in charge of 
coordinating the activities of the various components and 
implementing the basic server API that accepts updates 
and continuous/one-time reads to data items it maintains. 
The Precision Controller implements the precision con-
trol algorithms used by ReBound. In particular, it main-
tains a bound list that contains the precision ranges regis-
tered at the server, and a server view that compactly 
summarizes the committed updates propagated in the sys-
tem. The Policy Manager is responsible for implementing 
efficient divergence control policies. This component 
implements different synchronization policies that specify 
when, with whom, and what data to pull or push. The 
Update Manager handles the local execution of updates. 
It maintains an update queue that contains all active (ini-
tiated but not-yet-committed) updates. The Storage Man-
ager provides access to the object store that stores the 
committed versions of all replicated items. The object 
store is currently implemented as an in-memory database. 
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Figure 5: Local commit ratio vs. continuous 

bound size (UR=0.2, RR=0.0) 

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 5

Bound_size

C
om

m
it 

la
te

nc
y 

(s
ec

s)

0

PB SB SC

 
Figure 4: Commit latency vs. continuous 

bound size (UR=0.2, RR=0.0) 

The current ReBound prototype runs on top of Linux and 
Windows32 platforms. 

6. Performance Evaluation 

6.1. Environment and Methodology 
We now present our performance evaluation that aims 

to provide a basic understanding of the relative perform-
ance characteristics of different protocols and demon-
strate potential performance advantages of using them. 
Even though our protocols are specifically designed for 
wide-area environments, we conducted our preliminary 
experiments on a local area network to get repeatable 
results. In the experiments, we used a cluster of 10 Linux 
machines, each having two 400 MHz Pentium II’s, and 
256 MBytes of memory. The machines are connected via 
a 100Mbps Ethernet network and communication is per-
formed on top of UDP/IP. We artificially injected a 100 
milliseconds one-way latency to each outgoing message 
in order to emulate typical communication latencies over 
wide area.  

In the experiments we present here, we assume that the 
database consists of a single data item, and that the clients 
registered a single continuous precision bound to the 
servers. Each server independently initiates updates based 
on a uniform update rate. We assume that each update 
has unit value. Each client independently initiates ad-hoc 
reads based on a uniform read rate, and submits the read 
to a randomly selected server. The ad-hoc bounds are also 
assumed to be equal (i.e., lo = ho), and we use the variable 
bound ratio to define the ratio of the ad-hoc bounds to the 
continuous bound (i.e., ho/h). The main experimental pa-
rameters and settings are shown in Table 1. We note that 
under these settings, without any bound redistribution, PB 
basically emulates Yu’s algorithm [22].  

The primary performance metrics we used are: (1) 
commit latency, which indicates the time between the 
initiation of an update or ad-hoc read and the time to 
commit; (2) local commit ratio, which indicates the ratio 
of all committed updates that are committed at their initi-

ating server without the need for any synchronization; 
and (3) read quorum size, which indicates the number of 
servers contacted to satisfy the bounds specified by an ad-
hoc read (including the server that initially received the 
read request). 

In the experiments, we employed a simple policy that 
uses compulsory server-client push, which is initiated 
only if an update or an ad-hoc read cannot be committed 
locally. This choice makes sense in our setting because all 
the messaging latencies are the same, and the push opera-
tion is guaranteed to advance the server’s view, whereas 
the server-server pull is not. Our policy does not make 
pro-active push/pull decisions (i.e., background update 
propagation and view advance), which potentially would 
improve the performance of our algorithms significantly. 
Similarly, servers to be added to a read quorum (when 
handling ad-hoc queries) are chosen randomly. The num-
bers we present below are the averaged results of ten in-
dependent runs of executing 500 updates/reads in the sys-
tem.  
6.2. Enforcing Continuous Precision Bounds 

Figure 4 shows the commit latency results of our algo-
rithms and a hypothetical write-all type strict consistency 
protocol, labeled SC, as a function of bound size. The SC 
protocol is a conventional write-all [2] style protocol that 
pushes an update to all clients prior to committing the 

Notation Description Setting 
UR Mean global update  

generation rate 
0.1,0.2  
updates/s  (uniform) 

RR  Mean global read  
generation rate 

0.1 reads/s  
(uniform) 

|S| Number of servers 5 
|C|  Number of clients 5 
msg_latency One-way message latency 100ms 
bound_size Continuous bound size: 

l or h (both set equal) 
[0, 50] 

bound_ratio Ratio of ad-hoc bound  
size to continuous bound 

[0, 1] 

Table 1: Primary experimental parameters and 
settings 
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Figure 7: Read quorum size vs. ad-hoc bound ratio 

 (UR=0.1, RR=0.1, bound_size=10) 
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Figure 6: Commit latency vs. ad-hoc bound ratio 

 (UR=0.1, RR=0.1, bound_size=10) 

update. Note that our algorithms demonstrate write-all 
behavior when the local bounds at each server are suffi-
ciently small (i.e., smaller than the value of an update). 
This is the reason why the three algorithms converge at a 
bound size of five, below which none of the servers can 
locally commit any updates. Our precision control algo-
rithms have lower latency than the strict consistency pro-
tocol, and the gap increases significantly with increasing 
bound size. Clearly, the improvement comes at the ex-
pense of data precision. The figure also reveals that PB 
achieves lower latency values than SB, especially for rela-
tively small to moderate bound sizes. The difference be-
tween the PB and SB curves quantifies the conservative-
ness of SB’s local commit criteria relative to that of PB. 

Figure 5 provides further insight by plotting the corre-
sponding local commit ratio curves. It is evident that SC 
cannot commit any updates locally as it requires pushing 
updates to all clients first. SP and PB, on the other hand, 
can commit updates locally most of the time, and local 
commit ratio increases with increasing bound size. PB 
commits more updates locally than SB does due to its less 
conservative local commit criteria, which essentially en-
ables higher server autonomy. 
6.3. Enforcing Ad-Hoc Precision Bounds 

We now investigate reads that specify ad-hoc precision 
bounds. Figure 6 presents the commit latency results for 
increasing ad-hoc bound ratios. For purposes of this ex-
periment, we define bound ratio to be the ratio of the ad-
hoc bound to the continuous bound as lo/l = ho/h, where [l, 
h] is the continuous bound already registered to the sys-
tem. As discussed earlier, if no continuous bound are reg-
istered, the server that accepted the read request needs to 
pull the unknown updates from all other servers (i.e., 
form a read quorum containing all servers).  

As expected, the latency increases for both algorithms 
as the bound ratio decreases (i.e., as the read requires 
higher precision). Unlike the results presented in Section 
6.2, the bound sharing algorithm consistently achieves 
lower latency than the bound partitioning algorithm. In 

fact, the conservativeness of SB’s local commit criteria, 
which has negative affect on performance when support-
ing continuous bounds, help SB in this case as the non-
quorum servers also use the same conservative criteria to 
compute their local ranges. Since PB’s criteria is less 
conservative, the sum of the values of the unknown up-
dates that can be committed by the non-quorum servers 
can be more than that in SB, requiring more servers to be 
contacted and included in the read quorum for the preci-
sion bound to be ensured. 

Figure 7 shows the local commit ratio results for PB, 
SB, and a hypothetical variant of our bound partitioning 
algorithm, static quorum. Static-quorum is similar to PB 
in that the global registered bounds are partitioned across 
all servers, but differ in that servers do not utilize infor-
mation regarding the updates seen from other servers. We 
observe that SB commits more updates locally than PB, 
due to its more conservative commit criteria. The differ-
ence between the curves for PB and static quorum quanti-
fies the benefits of exploiting views in this case. 
6.4. Adaptation Experiments 

We conducted several other experiments that investi-
gate the potential performance improvements attainable 
through adaptation, which is efficiently enabled through 
our server-server weight redistribution mechanism. The 
results of the experiments (which we do not present here 
due to space considerations) reveal that the system can 
effectively adapt to changing factors such as update-rate 
distribution, and that adaptation has the potential to yield 
significant performance gains in real applications (see [3] 
for complete results). 

7. Scalability Issues 
The basic system model (described in Section 2.2) as-

sumes that each server maintains views for all clients that 
register precision bounds. This requires O(n×m)storage 
(per data item), where n is the number of servers and m is 
the number of clients. Clearly, this is not a practical ap-
proach as we expect to support a large number of clients 

 



 

and a large number of data items. The issue here is not 
only storage and synchronization of these potentially 
large views, which we address below, but also the com-
munication required to keep track of and refresh each 
individual client. In order to effectively scale, we propose 
a proxy-based grouping approach. In this approach, proxy 
servers sit between the clients and servers and act as in-
termediate smart caches. Clients submit their requests to 
the closest proxy, which then becomes responsible for 
executing the requests by communicating with the serv-
ers. In this model, the servers need to keep track of, 
communicate with, and refresh the caches of the proxies 
only (each proxy essentially becomes a virtual super-
client). It is also possible to organize proxies into hierar-
chies to further improve scalability. This model, however, 
is outside the scope of this paper and we plan to investi-
gate it as part of our future work (see Section 9).  

It is also possible to use various techniques to reduce 
the server-side view storage and synchronization over-
heads at the expense of some accuracy in the representa-
tion of precision bounds. One such technique might be to 
logically group multiple client bounds into a single one, 
and then represent the entire group’s bounds with the 
tightest bounds in the group. Yu and Vahdat investigated 
a similar and complementary approach where all clients 
are enforced to use the same precision bounds for the 
same data items [22]. 

8. Related Work  
There has been significant research on maintaining 

consistency constraints on numerical replicated data. 
Early work, such as the demarcation protocol [1], typi-
cally addressed the general problem of maintaining integ-
rity constraints in traditional distributed database envi-
ronments. The demarcation protocol is not designed to 
support fine-grained, continuous or ad-hoc reads with 
precision bounds. Epsilon-serializability [11, 20] is a 
generalization of conventional serializability [2], where a 
limited amount of inconsistency is allowed by multiple 
reads in a query. Similar to the demarcation protocol, 
epsilon-serializability addresses a much more general 
problem, and thus cannot exploit many features specific 
to our problem. The protocols proposed for the demarca-
tion protocol and epsilon-serializability, being designed 
for general transaction processing, heavily rely on lock-
ing-based techniques, which are prohibitive for the types 
of environments and applications we address. 

Bounded ignorance [13], precision caching [12], and 
several materialized view maintenance algorithms (e.g., 
[10]) have addressed numerical error bounding in a mas-
ter-copy model, where only a single node accepts updates 
to data items. Olston and Widom [16] recently proposed 
tunable algorithms that provide precision vs. performance 
tradeoff for aggregation queries over replicated data. This 

work also does not consider symmetric replication envi-
ronments. 

The most recent and relevant work on distributed pre-
cision control that addressed symmetric replication envi-
ronments is that of Yu and Vahdat [22], which described 
an efficient algorithm for numerical error bounding for 
replicated network services. The basic model we present 
here is essentially based on Yu’s model, but generalizes 
and extends it in the following ways: First, Yu’s algo-
rithm addresses only continuous bounds, but does not 
addresses ad-hoc, per-read bounds. Second, Yu’s algo-
rithm is partitioning-based: it can actually be regarded as 
a specific instance of PB where the bounds are statically 
and uniformly partitioned across servers at startup time. 
Finally, Yu’s algorithm does not address dynamic bound 
redistribution, which is a crucial mechanism for adapting 
to dynamically changing update patterns. 

Also relevant are escrow-based [17] protocols pro-
posed for efficient distributed resource management (e.g., 
[9, 14, 15, 19]. These protocols are typically based on 
global state snapshot algorithms [15] or quorum locking 
techniques [14], restricting their efficiency and practical-
ity in wide-area environments. Of particular relevance is 
the Data-value partitioning approach [19], which basi-
cally partitions the numerical values of database items 
and stores each of the constituent values at different serv-
ers. 

9. Conclusions and Future Work 
We presented the design and implementation of Re-

Bound, a system that provides a practical, flexible 
framework for efficiently supporting distributed applica-
tions that access numerical replicated data and that can 
tolerate bounded data imprecision. Our work generalizes 
and extends previous work that proposed efficient algo-
rithms for bounding imprecision in replicated network 
services. In particular, ReBound provides support for not 
only continuous bounds but also ad hoc bounds. Further-
more, ReBound incorporates practical, low-overhead ad-
aptation mechanisms can be used to dynamically and 
asynchronously adjust to the update patterns as observed 
by the servers in the system. 

We described two algorithms, Share-Bound and Parti-
tion-Bound, which maintain continuous precision bounds 
by limiting the sum of the values of the committed up-
dates that are unknown to clients. In Share-Bound, the 
registered bounds are shared among servers, whereas in 
Partition-Bound, the registered bounds are partitioned 
across servers. For both algorithms, we presented local 
update commit criteria that, if satisfied, ensure that the 
registered bounds will still be met after the commitment 
of an update. If a server’s local update commit criteria are 
not satisfied, then it has to synchronize with other servers 
or clients. The algorithms handle ad-hoc bounds by ex-
ploiting the already registered continuous precision 

 



 

 

bounds, if available, to efficiently select a proper subset 
of servers whose unknown updates need to be pushed to 
the clients. We also described light-weight adaptation 
mechanisms based on pair-wise weight distribution 
among servers.  

Using the ReBound prototype, we presented a prelimi-
nary performance evaluation of our algorithms under 
various workloads and scenarios. The results revealed 
that ReBound could effectively lower the precision of 
data delivered to the clients for significantly improved 
system performance. 

In this paper, we focused only on efficient precision-
control mechanisms, and did not address policy issues. As 
future work, we are planning to investigate dynamic pre-
cision control policies that provide answers to the follow-
ing questions: when to contact other servers?; which 
servers to contact?;  and what updates to push or pull? 
Scalability might become an important issue especially 
when supporting a large client population. 

As discussed in Section 7, we are currently investigat-
ing proxy-based hierarchical organizations to effectively 
scale up to large number of clients and data items. In this 
model, proxies are responsible for executing the requests 
of their client set by communicating with the servers. We 
are exploring policies for setting appropriate aggregate 
proxy precision bounds in order to minimize the overall 
necessary proxy-server pull and server-proxy push com-
munication. If the proxy precision bounds are set too 
loose, then the proxy would have to make frequent ad-hoc 
reads. If the bounds are set too tight, on the other hand, 
then the servers would have to frequently refresh the 
proxy. Adaptive precision bound setting in the presence 
of changing update patterns and precision requirements, 
thus, seem to be an interesting research direction. 
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