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ABSTRACT
This paper presents an investigation into local mechanisms and
scheduling policies that allow guest processes to efficiently ex-
ploit otherwise-idle workstation resources. Unlike traditional poli-
cies that harvest cycles only from unused machines, we target
policies that exploit resources even from machines that have ac-
tive users. We present a set of kernel extensions that allow these
policies to operate without significantly impacting host processes:
1) a new guest process priority that prevents processes from
stealing any processor time from host processes, 2) a new page
replacement policy that imposes hard bounds on the number of
physical pages that can be obtained by guest processes when host
processes are active, and 3) a new page-out strategy that adap-
tively increases the pageout rate of guest processes when new host
processes are started.

We evaluate both the individual impacts of each mechanism, and
their utility in supporting Linger-Longer, an aggressive cycle-
harvesting policy.
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1. INTRODUCTION
This paper investigates local mechanisms and scheduling policies
that allow guest processes to efficiently exploit otherwise-idle
workstation resources. The opportunity for harvesting cycles in
idle workstations has long been recognized [13], since the major-
ity of workstation cycles go unused. In combination with ever-
increasing needs for cycles, this presents an obvious opportunity
to better exploit existing resources. Two long-term trends are
increasing this opportunity. First, increased connectivity across
the Internet allows for utilization of resources in much wider do-
mains. Second, new software technologies are making it possible
to better exploit heterogeneous sets of workstations. For example,
new Java compilers promise to allow write-once/run-anywhere
applications to perform within a small factor of the best host-code
compilers for traditional languages. These two trends vastly in-
crease the set of candidates for wide-area computing.

Systems like Condor [11] exploit this opportunity by allowing
guest processes to run on idle participating machines. Existing

systems focus on coarse-grained idle periods when users are away
from their workstations.  Returning users, or the start of any sig-
nificant local processes, cause guest processes to be migrated off
the local machine in order to avoid impacting the local user.

The thesis of this paper is that such policies waste many opportu-
nities to exploit cycles because of overly conservative estimates of
resource contention. We show that the potential negative impact
of guest processes can be severely limited through the use of a
few, simple modifications to existing kernel policies. We have
developed a strict priority scheduling system that ensures that
local processes receive priority in both processing cycles and
memory. This paper describes these mechanisms and presents
both a micro-benchmark study to demonstrate their efficacy, and
an application-oriented workload study to show the overall impact
of our policies on typical interactive workloads.

The resulting systems are suitable for use with Linger-Longer [16]
policies. Linger-Longer delays migrating guest processes off of
machines in the hope of exploiting fine-grained idle periods that
exist even while users are actively using their computers. These
idle periods, on the order of tens of milliseconds, occur when
users are thinking, or waiting for external events such as disks or
networks. Our new scheduling policies are able to effectively use
these idle periods in a way that does not delay the activity of a
workstation’s primary user.

We presented the design of Linger-Longer in a previous paper.
This simulation study showed the potential of our approach to
improve the throughput of sequential compute-bound processes.
In trace data collected from a variety of organizations, we showed
that over 75% of the time nodes have a CPU utilization less than
10%. We also showed via simulation that we could improve the
throughput of a compute bound batch workload by 60% compared
with the scheduling policies used by the Wisconsin Condor sys-
tem and the Berkeley NOW project.

This paper presents the design, implementation and performance
evaluation of policies that allow the use of Linger-Longer on col-
lections of Linux workstations. Section 2 reviews the Linger-
Longer policy, summarizes our previous simulation results, and
describes the additions to local schedulers required to support
Linger-Longer.  Section 3 describes our implementation of
mechanisms that meet these constraints in the Linux 2.0.32 oper-
ating system. Section 4 reports on the results of our mico-
benchmarks of the kernel extensions and a case-study of distrib-
uted shared memory (DSM)-based parallel applications on a Lin-
ger-Longer cluster.  Section 5 reviews related work in the field,
Section 6 presents future work, and finally Section 7 summaries
our conclusions.

2. FINE-GRAIN CYCLE-STEALING
This section introduces the concept of fined-grained cycle steal-
ing, the Linger-Longer approach to realizing it, and the require-
ments that this approach imposes on local schedulers.  The key
feature of fine-grained cycle stealing is to exploit brief periods of

Copyright© 1999 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that copies this
notice and the full citation on the first page or initial screen of the docu-
ment. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise,
to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Publications
Dept., ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.



2

idle processor cycles while users are either thinking or waiting for
I/O events.  Once we have a mechanism that can take advantage
of these short idle periods, the longer idle periods exploited by
previous systems can be handled automatically.  We refer to the
processes run by the workstation owner as host processes, and
those associated with fine-grained cycle stealing as guest proc-
esses.

In order to make fine-grained cycle-stealing work, we must limit
the resources used by guest processes and ensure that host proc-
esses have priority over them. Guest processes must have close to
zero impact on host processes in order for the system to be palat-
able to users. To achieve that goal requires a scheduling policy
that gives absolute priority to host processes over guest processes,
even to the point of starving guest processes. This also implies the
need to manage the virtual memory via a priority scheme. The
basic idea is to tag all pages as either guest or host pages, and to
give priority on page replacement to the host pages. The complete
mechanism is presented in Section 3.2.

A key question in evaluating the overhead of priority-based pre-
emption is the time required to switch from the guest process to
the host process. There are three significant sources of delay in
saving and restoring the context of a process: 1) the time required
to save registers state, 2) the time required (via caches misses) to
reload the process’s cache state, and 3) the time to reload the
working set of virtual pages into physical page frames. We defer
discussion of the latter overhead until Section 3.2. On current
microprocessors, the time to restore cache state dominates the
register restore time. Our simulations showed that if the effective
context-switch time is 100 microseconds or less, the overhead of
this extra context-switch is less than 2%. With host CPU loads of
less than 25%, host process slowdown remains under 5% even for
effective context switch times of up to 500 micro-seconds.

In addition, our simulations of sequential processes showed that a
linger-based policy would improve average process completion
time by 47% compared with previous approaches. Based on job
throughput, the Linger-Longer policy provides a 50% improve-
ment over previous policies.  Likewise our Linger-Forever policy
(i.e. disabling optional migrations) permits a 60% improvement in
throughput.  For all workloads considered in the study, the delay,
measured as the average increase in completion time of a CPU
request, for host (local) processes was less than 0.5%.

Previous systems automatically migrate guest processes off of
non-idle machines in order to ensure that guest processes do not
interfere with host processes. A key idea of our fine-grained cycle
stealing approach is that migration of a guest process off of a node
is optional. Guest processes can often co-exist with host processes
without significantly impacting the performance of the latter, or
starving the former.

3. LINUX KERNEL EXTENSIONS
This section introduces the modifications to the local Linux
scheduler necessary to support the Linger-Longer scheduling
policy. These extensions are designed to ensure that guest proc-
esses can not impede the performance of host processes. We first
describe the general nature of our kernel modifications, and then
describe how we modified the scheduler and virtual memory sys-
tem of Linux to meet our needs.

One possible concern with our approach is the need for kernel
modifications.  In general, it is much harder to gain acceptance for
software that requires kernel modifications.  However, for the
type of system we are building, such modifications are both nec-
essary and reasonable. First, guest processes must be able to stay
running, yet impose only an unnoticeable impact on foreground
local processes. There is no practical way to achieve this without
kernel modifications. Additionally, we feel that kernel modifica-
tions are a reasonable burden for two reasons. First, we are using

the Linux operating system as an initial implementation platform,
and many software packages for Linux already require kernel
patches to work. Second, the relatively modest kernel changes
required could be implemented on stock kernels using the kernInst
technology [18]. KernInst allows fairly complex customizations of
a UNIX kernel at runtime via dynamic binary re-writing. All of
the changes we have made could be implemented using this tech-
nique.

Current UNIX systems support CPU priority via a per-process
parameter called the nice value. Via nice, different priorities can
be assigned to different processes. These priority levels are in-
tended to reflect the relative importance of different tasks, but
they do not necessarily implement a strict priority scheme that
always schedules the highest priority process. The nice value of a
process is just a single component that is used to compute the
dynamic priority during execution. As a result, sometimes a lower
static priority process gets scheduled over higher static priority
processes to prevent starvation, and to ensure progress of the
lower priority processes. However, we need a stricter concept of
priority in CPU scheduling between our two classes of processes.
Guest processes should not be scheduled (and can even starve)
when any host process is ready no matter what its run time prior-
ity is. Meanwhile, the scheduling between the processes in the
same class should be maintained as it is under current scheduling
implementation.

While many UNIX kernels provide strict priorities in order to
support real-time deadlines, these real-time priorities are higher
than traditional UNIX processes.  For Linger-Longer, we require
just the opposite, a lower priority than normal.

Current general-purpose UNIX systems provide no support for
prioritizing access to other resources such as memory, communi-
cation and I/O. Priorities are, to some degree, implied by the cor-
responding CPU scheduling priorities. For example, physical
pages used by a lower-priority process will often be lost to higher-
priority processes. LRU-like page replacement policies are more
likely to page out the lower-priority process’s pages, because it
runs less frequently. However, this might not be true with a
higher-priority process that is not computationally intensive, and a
lower priority process that is. We therefore need an additional
mechanism to control the memory allocation between local and
guest processes. Like CPU scheduling, this modification should
not affect the memory allocation (or page replacement) between
processes in the same class.

We chose Linux as our target operating system for several rea-
sons. First, it is one of the most widely used UNIX operating sys-
tems. Second, the source code is open and widely available. Since
many active Linux users build their own customized kernels, our
mechanisms could easily be patched into existing installations by
end users. This is important because most PCs are deployed on
people’s desks, and cycle-stealing approaches are probably more
applicable to desktop environments than to server environments.

3.1 Starvation Level CPU Scheduling
The Linux scheduler chooses a process to run by selecting the
ready process with the highest runtime priority, where the runtime
priority can be thought of as the number of 10ms time slices held
by the process. The runtime priority is initialized from a static
priority derived from the nice level of the process. Static priorities
range from -19 to +19, with +19 being the highest1. New proc-
esses are given 20+p slices, where p is the static priority level.
The process chosen to run has its store of slices decremented by
one.  Hence, all runnable processes tend to decrease in priority
until no runnable processes have any remaining slices. At this
                                                          
1 Nice priorities inside the kernel have the opposite sign of the
nice values seen by user processes.
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point, all processes are reset to their initial runtime priorities.
Blocked processes receive an additional credit of half of their
remaining slices. For example, a blocked process having 10 time
slices left will have 20 slices from an initial priority of zero, plus
five slices as a credit from the previous round. This feature is
designed to ensure that compute-bound processes do not receive
undue processor priority compared to I/O bound processes. The
algorithm is summarized in Figure 1a.

This scheduling policy implies that processes with the lowest
priority (nice -19) will be assigned a single slice during each
round, while normal processes consume 20 slices. When running
two CPU-bound processes, where one has normal priority and the
other is niced to the minimum priority, -19, the latter will still be
scheduled 5% of the time. While this degree of processor conten-
tion might or might not be visible to a user, running the process
could still cause contention for other resources, such as memory.

We implemented a new guest priority in order to prevent guest
processes from running when runnable host processes are present.
The change essentially establishes guest processes as a different
class, such that guest processes are not chosen if any runnable
host processes exist. This is true even if the host processes have
lower runtime priorities than the guest process. The modified
scheduling algorithm is shown in Figure 1b.

Second, we verified that the scheduler reschedules processes any
time a host process unblocks while a guest process is running.
This is the default behavior on Linux, but not on many BSD de-
rived operating systems. One potential problem of our strict prior-
ity policy is that it could cause priority inversion. Priority inver-
sion occurs when a higher priority process is not able to run due to
a lower priority process holding a shared resource. This is not
possible in our application domain because guest and host proc-
esses do not share locks, or any other non-revocable resources.

3.2 Prioritized Page Replacement
Another way in which guest processes could adversely affect host
processes is by tying up physical memory. Having pages resident
in memory can be as important to a process’s performance as
getting time quanta on processors.  Our approach to prioritizing
access to physical memory tries to ensure that the presence of a

guest process on a node will not increase the page fault rate of the
host processes.

Unfortunately, memory is more difficult to deal with than the
CPU. The cost of reclaiming the processor from a running process
in order to run a new process consists only of saving processor
state and restoring cache state. The cost of reclaiming page frames
from a running process is negligible for clean pages, but quite
large for modified pages because they need to be flushed to disk
before being reclaimed. The simple solution to this problem is to
permanently reserve physical memory for the host processes. The
drawback is that many guest processes are quite large. Simula-
tions and graphics rendering applications can often fill all avail-
able memory. Hence, not allowing guest processes to use the ma-
jority of physical memory would prevent a large class of applica-
tions from taking advantage of idle cycles.

We therefore decided not to impose any hard restrictions on the
number of physical pages that can be used by a guest process.
Instead, we implemented a policy that establishes low and high
thresholds for the number of physical pages used by guest proc-
esses. Essentially, the page replacement policy prefers to evict a
page from a host process if the total number of physical pages
held by the guest process is less than the low threshold. The re-
placement policy defaults to the standard clock-based pseudo-
LRU policy up until the upper threshold. Above the high thresh-
old, the policy prefers to evict a guest page. The effect of this
policy is to encourage guest processes to steal pages from host
processes until the lower threshold is reached, to encourage host
processes to steal from guest processes above the high threshold,
and to allow them to compete evenly in the region between the
two thresholds. However, the host priority will lead to the number
of pages held by the guest processes being closer to the lower
threshold, because the host processes will run more frequently.

In more detail, the default Linux replacement policy is an LRU-
like policy based on the “clock” algorithm used in BSD UNIX.
The Linux algorithm uses a one-bit flag and an age counter for
each page. Each access to a page sets its flag.  Periodically, the
virtual memory system scans the list of pages and records which
ones have the use bit set, clears the bit, and increments the age by
three for the accessed pages. Pages that are not touched during the
period of a single sweep have their age decremented by one. Only

While (1) {
    If exists p such that p.state = RUNNABLE

Foreach process p
    p.quanta = 20 + p.niceLevel + 1/2 * p.quanta

    While exists a process p such that (p.state = RUNNABLE) and (p.quanta > 0)
Select p with largest p.quanta
    Decrement p.quanta;
    Run p;

}
(a) original scheduler

While (1) {
    If exists p such that p.state = RUNNABLE

Foreach process p where is a host process
    p.quanta = 20 + p.niceLevel + 1/2 * p.quanta

    While exists p such that p.state = RUNNABLE and p.quanta > 0 and p.priority = HOST
Select p with largest p.quanta
    Decrement p.quanta;

        Run p;
    If not exists p such that p.state = RUNNABLE and p.priority = HOST

If exists q such that q.state = RUNNABLE and q.priority = GUEST
    Run q;

}

(b) modified scheduler

Figure 1: Modified Linux Scheduler.
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pages whose age value is less than a system-wide constant are
candidates for replacement.

We modified the Linux kernel to support this prioritized page
replacement. Two new global kernel variables were added for the
memory thresholds, and are configurable at run-time via system
calls. The kernel keeps track of resident memory size for guest
processes and host processes. Periodically, the virtual memory
system triggers the page-out mechanism. When it scans in-
memory pages for replacement, it checks the resident memory
size of guest processes against the memory thresholds. If they are
below the lower thresholds, the host processes’ pages are scanned
first for page-out. Resident sizes of guest processes larger than the
upper threshold cause the guest processes’ pages to be scanned
first. Between the two thresholds, older pages are paged out first
no matter what processes they belong to. The modifications to the
page replacement algorithm are shown in Figure 2.

Correct selection of the two parameters is critical to meeting the
goal of exploiting fine-grained idle intervals without significantly
impacting the performance of host processes. Too high of value
for the low threshold will cause undue delay for host processes,
and too low of value will cause the guest process to constantly
thrash.  However, if minimum intrusiveness by the guest process
is paramount, the low memory threshold can be set to zero to
guarantee the use of the entire physical memory by foreground
process.

4. EVALUATION
We conducted a series of micro and macro benchmark studies in
order to evaluate the performance of kernel modifications. Unless
otherwise specified, all experiments were run on a cluster of eight
266-MHz Pentium II workstations running Linux 2.0.32, con-
nected by a 1.2 Gbit/sec Myrinet. We start with a series of tests
that demonstrate the need for our mechanisms by comparing the
performance of synthetic programs both with and without our
policies enabled. We conclude with a couple of brief case studies
that demonstrate that we can run parallel DSM applications as
guest processes while interactive applications are running on
workstations.

4.1 Motivation
We first investigated the impact of simply using the UNIX nice
command to provide local processes with higher priority than
guest processes. To do this, we constructed a compute bound test
program that simply ran an empty loop a fixed number of itera-
tions. We ran two copies of this process. The first simulates a host
process by running with the default nice value, and the other
simulates a guest process by running at the lowest possible prior-
ity, nice level -19.  The CPU utilizations resulting from this ex-
periment for four different versions of UNIX are shown in Table
1. The table shows the percent of the processor that each process
received. With the exception of OSF-1, the guest process received
a significant amount of processing time (ranging from 8% to
40%). This simple experiment demonstrates the need for our more
sophisticated priority mechanism.

Table 2 shows a simple example of memory thrashing caused by
allowing a guest process to compete with host processes for

physical memory. In all cases, both processes have working sets
of approximately 128 MB, while the total physical memory of the
machine is only 192 MB. Both processes take 82 seconds to run in
isolation. When they are run serially (first row), the total running
time is just 164 seconds. The second row shows that if the two are
started simultaneously, and with equal priorities, the processes
thrash and lose efficiency. We stopped the processes after five
hours. The third row shows the expected result of late-arriving
guest process being unable to steal pages from the host process,
and effectively being serialized after the host process. However, it
does slow down the host process by about 8%. The last row, how-
ever, shows that changing the order in which the processes arrive
dramatically changes the result. The host process takes a long
time to steal enough pages from the guest process in order to hold
its working set. We again stopped the execution after about five
hours. The reason is that the guest process had modified its pages
before the host process starting requesting memory. Each initial
page fault by the host process is delayed while a guest page is
flushed to disk. Meanwhile, the guest process also has page faults
that require host pages to be flushed to disk. Therefore, neither
process makes much progress since CPU priority does little to
prevent trashing when two processes desire more memory that the
system has.

This last case is quite common. For example, a user returning to
his workstation and starting GNU emacs would often see this
behavior if her workstation is running a large guest simulation.
Therefore, handling this case efficiently is essential to reduce the
impact of guest processes on host processes.

4.2 Micro-benchmarks
Before moving to application studies, we validated our kernel
extensions by testing each modification in isolation. We first vali-
dated our scheduling modifications by comparing CPU utilization
of a CPU-intensive guest process competing with that of a host
process for three different scheduling policies. Our independent
variable is the percent utilization of the host process in the ab-
sence of any competing processes. The CPU-intensive guest proc-
ess is representative of typical guest processes, such as scientific
simulations, decision support(data mining), and graphics render-
ing. This process also provides us with a worst-case (in terms of

If guest.memory < LowWater
If exists host page whose age > limit

Replace host page
Return

Else if guest.memory > highWater
If exists guest page

Replace guest page
Return

Scan for page whose age > limit and replace page

Figure 2: Modified Page Replacement Policy.

OS Host Guest

Solaris (SunOS 5.5) 84% 15%

Linux (2.0.32) 91% 8%

OSF1 99% 0%

AIX (4.2) 60% 40%

Table 1: CPU utilization with single host and
guest (niced at level 19) processes.

Policy and Setup Host time
(secs)

Guest time
(secs)

Run serially (host then guest) 82 164

Started at the same time, run
w/ equal priority > 5 hours > 5 hours

Host starts at 0, guest at 10,
guest niced to -19 89 176

Guest starts at 0, host at 10,
guest niced to -19 > 5 hours > 5 hours

Table 2: Completion times for two 128 MB processes running
on a machine with 192 MB of physical memory.
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contention for the CPU) test of scheduling policies.

Figure 3 shows the resulting behavior. Ideally, CPU utilization of
the host processes would track linearly with the utilization of the
job in isolation. The ‘equal’ lines show the default case where
guest processes are treated identically to host processes. The
‘nice-h’ line shows that host process utilization is unaffected by
the presence of a niced guest process up to approximately 90%
utilization. The drop-off at this point corresponds to the 91% limit
shown for Linux in Figure 3. Note that ‘linger-h’, included for
comparison, accurately tracks expected utilization up to 99%. The
data shows that a guest process is unable to significantly interfere
with CPU utilization of a host process with the Linger-Longer
modifications.  Similar modifications to the other systems dis-
cussed in Table 1 would presumably show analogous curves, with
the difference being that ‘nice-h’ utilization would flatten out at
84% for Solaris and at only 60% for AIX.

We validated our memory threshold modifications by tracking the
resident memory size of host and guest processes for two CPU-
intensive applications with large memory footprints. The result is
shown in Figure 4. The chart shows memory competition between
a guest and a host process. The application behavior and memory
thresholds shown are not meant to be representative, but were
constructed to demonstrate that the memory thresholds are strictly

enforced by our modifications to Linux’s page replacement pol-
icy. The guest process starts at time 20 and grabs 128MB. The
host process starts at time 38 and quickly grabs a total of 128 MB.
Note that the host actually touches 150 MB. It is prevented from
obtaining all of this memory by the low threshold. Since the guest
process’ total memory has dropped to the low threshold, all re-
placements come from host pages. Hence, no more pages can be
stolen from the guest. At time 90, the host process turns into a
highly I/O-bound application that uses little CPU time. When this
happens, the guest process becomes a stronger competitor for
physical pages, despite the lower CPU priority, and slowly steals
pages from the host process. This continues until time 106, at
which point the guest process reaches the high threshold and all
replacements come from its own pages.

We also repeated the experiment shown in Table 2 with our mem-
ory priority system enabled.  The results are shown in Table 3.
When the host process starts first and then the guest process (this
is the behavior seen when a user is working, but not using the
processor heavily and a guest process then arrives), the use of our
modified virtual memory policies reduces the delay seen by the
host process from 8.0% seen when nice is used to 0.8%.  For the
case when the guest process start and then the user process, the
delay with nice was larger than a factor of 200 (we gave up after
waiting five hours).  In contrast, using linger priority only had a
delay of about 8%. These two results demonstrate the ability of
our kernel modifications to limit the overhead experienced by
guest processes.

One final aspect of application behavior that needs to be ad-
dressed is the slow reclamation of dirty pages from a guest proc-
ess by a later-starting host process. This is the problem illustrated
by the last row in Table 3. The host process is delayed by the one-
at-a-time flushing of dirty guest pages to disk. While this is a
special case, we argued in Section 4.1 that it can be quite com-
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policy at all, ‘nice’ implies that that guest process is niced with
parameter -19, and ‘linger’ refers to use of the Linger-Longer
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Policy and Setup Guest time
 (secs)

Host time
 (secs)

Host
Delay

Host starts then guest,
    Guest niced -19 176 89 8.0%
    Linger priority 165 83 0.8%
Guest starts then host
    Guest niced -19 > 5 hours > 5 hours > 200
    Linger priority 255 99 8.1%

Table 3: Benefits of memory priority for large footprint
processes.
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6

mon, and is probably the most visible problem of cycle-stealing
distributed schedulers. We addressed this problem by adding a
trigger mechanism to the pageout process that notices when a new
host process starts causing pageouts of guest pages. The trigger
mechanism artificially increases the rate at which pages are
flushed to disk, analogously to block prefetches. We implement
this policy by temporarily increasing the number of pages that the
VM system tries to page out at a time (called maxpages) on a fault
that is triggered by a host process reclaiming pages from guests.
Figure 5 shows the impact of using different multiplicative factors
for the desired free list length. When the initial value is used, the
host process is delayed by a factor of 3.5 compared to time it
would take without the guest process being present.  However,
once we increase this value to about 50 times its original value,
the system pages out most of the pages used by the guest process
quickly, and the delay is only about 20%.  While this delay seems
large, the test program ran only two iterations, and so most of the
time was spent getting its working set into memory. A real appli-
cation would run longer.

4.3 Application experiments
This section presents a study of Linger-Longer’s effect on parallel
applications on our test cluster. We use the Musbus interactive
UNIX benchmark suite [12] to simulate the behavior of actual
interactive users. Musbus simulates an interactive user conducting
a series of compile-edit cycles. The benchmark creates processes
to simulate both interactive editing (including appropriate pauses
between keystrokes), UNIX command line utilities, and compiler
invocations. We varied the size of the program being edited and
compiled by the “user” in order to change the mean CPU utiliza-
tion of the simulated local user. In all cases, the file being ma-
nipulated was at least as large as the original file supplied with the

benchmark.

The guest applications are Water and FFT from the Splash-2
benchmark suite [22], and SOR, a simple red-black successive
over-relaxation application [2]. Water is a molecular dynamics
code, while FFT implements a three-dimensional Fast Fourier
transform. All three applications are run on top of CVM [9], a
user-level DSM system. These three applications are intended to
be representative of three common classes of distributed applica-
tions. Water has relatively fine-grained communication and syn-
chronization, FFT is quite communication-intensive, while SOR is
mostly compute-bound.

In the first set of experiments, we ran one process of a four-
process CVM application as a guest process on each of four
nodes. We varied the mean CPU utilization of the host processes
from 7% to 25% by changing the size of the program being com-
piled during the compilation phase of the benchmark.  The results
of these tests are shown in Figure 6. The left graph shows the
slowdown experienced by the parallel applications. The solid lines
show the slowdown using our Linger-Longer policy, and the
dashed lines show the slowdown when the guest processes are run
with the default (i.e., equal priority). As expected, running the
guest processes at starvation level priority generally slows them
down more than if they were run at equal priority with the host
processes. However, when the Musbus utilization is less than 15%
the slowdown for all applications is lower with lingering than with
the default priority. For comparison, running sor, water, and fft on
three nodes instead of four slows them down by 26%, 25%, and
30%, respectively. Thus for the most common levels of CPU utili-
zation, running on one non-idle node and three idle would im-
prove the application’s performance compared to  running on just
three idle nodes. Our previous study[16] showed that node utili-
zation of less than 10% occurs over 75% of the time even when
users are actively using their workstations.

The right side of Figure 6 shows the slowdown experienced by the
host Musbus processes.  Again, we show the behavior when the
guest processes are run using our Linger-Longer policy and the
default equal priority. For all three parallel guest applications, the
delay seen when running with Linger-Longer was not measurable.
However, when the guest processes were run with moderate CPU
utilization (i.e., over 10%), all three guest processes started to
introduce a measurable delay in the host processes when equal
priority was used. For Water and SOR, the delay exceeds 10%
when the Musbus utilization reaches 13%. At the highest level of
Musbus CPU utilization, the delay using the default priority ex-
ceeds 10% for all three applications and 15% for two of the three
applications.

Figure 7a shows the impact on the CVM applications when com-
peting with a host Musbus application running on more than one
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of the four nodes. The applications slow remarkably uniformly
until four nodes, at which point the slowdown levels off. The
Musbus application was set to generate a 13% load in all cases.
For comparison, we show the slowdown with both lingering and
using nice.  In both cases, the slowdown for each application was
almost identical.  Even though the slowdown compared to all idle
nodes reaches 60% when 3-4 non-idle nodes are used, this is still
an improvement over what other policies would have allowed
(running on one or zero nodes respectively).

Figure 7b shows the slowdown of the Musbus processes with
guests at equal priorities as the number of nodes with Musbus
processes increases. We do not show the linger and nice cases
because there is no slowdown. The fact that there is any change in
the slowdown of purely sequential applications as the number of
non-idle nodes changes is rather unintuitive. This is explained by
the fact that the behavior of the parallel application (which does
interact with all nodes) changes as the number of non-idle nodes
changes, and the guest parallel processes compete for the proces-
sors with the sequential processes. In particular, increasing the
number of host processes decreases the efficiency of the parallel
DSM applications. They use more cycles, and therefore impose
more of a load on their host processors.

5. RELATED WORK
Previous work on exploiting available idle time on workstation
clusters used a conservative model that would only run processes
when the local user was away from their workstation, and no local
processes were runnable.  Condor [11], LSF [24], and NOW [3]
use variations on a “social contract” to strictly limit interference
with local users. However, even with these policies, there is some
disruption of the local user when they return since the guest proc-
ess must be evicted and the local state restored. The Linger-
Longer approach permits slightly more disruption of the user, but
tries to limit the delay to an acceptable level. One system that
used non-idle workstations was the Stealth distributed scheduler
[10]. It implemented a priority-based approach to running guest
processes. However none of the tradeoffs in how long to run guest
processes, or the potential of running parallel programs were in-
vestigated. In the IRIX operating system[17], the Miser feature
provides deterministic scheduling of batch jobs. Miser manages a
set of resources, including logical CPUs and physical memory,
that Miser batch jobs can reserve and use in preference to interac-
tive jobs. This strategy is almost opposite of our approach, which
promotes interactive jobs.

Prior studies that investigated running parallel programs on shared
workstation clusters also employed fairly conservative eviction
policies. Dusseau, et al. [7] used a policy based on immediate
eviction.  They were able to use a cluster of 60 machines to
achieve the performance of a dedicated parallel computer with 32

processors. Acha et al. [1] used a different approach that reconfig-
ured the parallel job to use fewer nodes when one became un-
available. This approach permitted running more processes on a
given cluster, although the performance of any single job would
be somewhat reduced. PVM [8] is the most widely used package
to run programs on clusters, but does not include a scheduling
policy, although Pruyne and Livny [15] have investigated adding
one.

Process migration and load balancing have been studied exten-
sively. MOSIX [4] provides load-balancing and preemptive mi-
gration for traditional UNIX processes. Chowdhury et al. [5]
characterized when to reconfigure sequential workloads.
DEMOS/MP [14], Accent [23], Locus [20], and V [19] all pro-
vided manual or semi-automated migration of processes.

Verghese et. al [21] proposed a way to isolate the performance of
applications running on an SMP system. While their approach
requires changes to similar parts of the operating system, their
primary goal was to increase fairness to all applications, while our
goal is to create an inherently unfair priority level for guest proc-
esses.

6. FUTURE WORK
Access to two additional resource classes needs to be prioritized:
I/O and network.  Neither is likely to be as critical as managing
the processors and virtual memory. However, we encountered one
case that demonstrates the need for this feature. When we at-
tempted to run the CVM application using a single shared 100
Mbps (non-switched Ethernet) and the Musbus benchmark with
all of its files located on an NFS mounted filesystem, we noticed
an 18% slowdown in the Musbus benchmark despite the fact that
we were using the linger priority. This was primary due to con-
tention for the shared Ethernet segment (we confirmed this by
running the same test but replacing the Ethernet with Myrinet for
the CVM application).  As a result, we plan to implement this
feature in the near future.  In particular, we are likely to employ
the network priority system proposed by Druschel and Peterson
[6] and the I/O priority policy proposed in [21].

It is possible to further enhance the virtual memory system to
increase the speed at which pages are reclaimed from the guest
processes by the host processes. In particular, dirty guest pages
require writing back to the swap device before they can be allo-
cated to the host process.  One extension that we are planning
would trigger the VM system to aggressively write dirty pages to
disk for guest processes when this can be done without causing
resource contention with the host process. This can be thought of
as a background cleaning process, analogous to the cleaner in log-
structured file systems. Due to the potential increase in I/O re-
quirements for this modification, we have deferred its implemen-
tation until the I/O priority has been implemented.
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7. CONCLUSIONS
We have shown that it is possible to achieve fine-grained cycle
stealing on workstations without significantly impacting host
processes. We presented the design, implementation, and per-
formance of a set of kernel extensions that provide this vital safety
net even in the presence of guest processes that aggressively de-
mand resources. Despite our increased emphasis on host process
performance, however, our modified kernel allows parallel guest
applications to perform well even when one or more of the work-
stations are running host processes.

We have addressed three specific points of resource contention. A
new guest class of processes prevents guest processes from steal-
ing any processor time from host processes. This change alone
can have an effect of 8% on our Linux systems, and up to 40% on
other operating systems. We implemented a new replacement
policy that imposes hard upper and lower limits on the number of
physical pages that can be obtained by guest processes when host
processes are active. Finally, we implemented a new pageout
strategy that adaptively increases the pageout rate of guest proc-
esses when new host processes are started, and showed that this
policy can reduce the delay of host processes by a factor of 2.8 for
large memory jobs.
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