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Abstract—This paper describes the design and evaluation of
Spore, a secure cloud-based file system that minimizes trust and
functionality assumptions on underlying servers. Spore differs
from other systems in that system relationships are formalized
only through signed data objects, rather than in complicated
protocols executed between clients and servers. This approach
allows Spore to bootstrap a file system from a single object,
providing integrity and security guarantees while storing all data
as simple, immutable objects on untrusted servers.

We use simulation to characterize the performance of this
system, focusing primarily on the cost incurred in compensating
for the minimal server support. We show that while a naive
approach is quite inefficient, a series of simple optimizations can
enable the system to perform well in real-world scenarios.

I. INTRODUCTION

Data “clouds” are useful for building highly-available,
location-transparent access to data. Such clouds are usually
based on large commercial server farms, or clusters of such
farms. The resulting storage and bandwidth is therefore almost
unlimited. Further, clouds are often both logically and geo-
graphically dispersed, preventing most single points of failure
from threatening the entire system. For example, Google
claims a record of five nines of uptime for its High Replication
datastore as of May 2011 [1].

However, clouds are generally untrusted, are accessed over
untrusted networks, and export differing guarantees and func-
tionality. Cloud-based storage is inherently insecure, as the
storage is under control of someone else (the cloud providers).
While sophisticated and high-performing applications can and
have been built on specific cloud systems using high-level
services, the highest common denominator in the services of
these systems is surprisingly low.

These two problems are intertwined. A great deal of recent
research in distributed systems [2], [3], [4], [5] revolves around
the idea of building secure, distributed object and file systems
over remote data services, i.e., clouds. However, these systems
usually rely on high-level guarantees and functionality specific
to individual vendors. These can be used to export much of
the protocol work, including the all-important task of ordering
communication and updates, to the untrusted servers. These
protocols structure the work in such a way that although im-
portant functionality occurs on untrusted hardware, mistrusting
clients can verify the servers’ performance after the fact.

The problem we are attacking is slightly different. Given
the plethora of services, a natural question is to what extent
the performance and trustworthiness of the entire system is
dependent on these services. In other words, how low can
service provider role be set without sacrificing performance
and trust in the resulting system?

We provide a partial answer by describing and characteriz-
ing the performance of Spore, a secure distributed file system
that attempts to minimize the trust and functionality it assumes
in data stores. In particular, we assume every part of the system
not under control of a single client is untrusted, including the
network, servers, and other clients.

Spore avoids complex protocols and webs of trust between
clients and servers by formalizing all system state, including
read and write keys, server designations, and group member-
ship, in a series of trust statements embedded in Spore objects.
These same objects also include all file and directory data in
the file system.

The system is bootstrapped from a single trusted object
called the spore. The spore can designate a set of keys and
objects as trusted, and these, in turn, can designate others as
trusted. In effect, the file system is structured like an inductive
proof, with trust in the entire system growing organically from
the base case of a spore.

Spore assumes only a simple put/get/list interface (Sec-
tion III-A) from the data sources it uses, a mapping between
a name and an object. Further, Spore does not require ob-
jects to be mutable, and therefore may be implemented over
write-once systems such as Chord [6]. This last assumption
constrains the way objects are located, requiring the system
to provide alternate methods of investing trust in objects that
might not yet exist. However, it could also allow objects to be
stored and disseminated in a variety of novel ways, include
single-write media like CDs, embedded into an online image
using steganographic techniques [7], or perhaps in the digital
version of the New York Times.

Our main contributions, then, are two-fold:

• We describe the design of Spore, an existence proof of
a trusted system built on untrusted distributed resources
assumed to have only extremely limited functionality.
Spore makes fewer assumptions about cloud functionality
and trust than any comparable system of which we are
aware.

• Second, we characterize the performance of a naive ap-
proach to Spore, which is quite poor. However, we show
that this performance can be greatly improved through a
series of simple optimizations: caching, periodic runs of
cleaner agents, and probabilistic searches.

If Spore is able to provide trusted services, it will effectively
provide a lower bound on the performance of systems with
similar functionality in similar environments. As such systems
take advantage of higher-level guarantees and functionality,
their performance can only improve.



II. SYSTEM MODEL

The purpose of the Spore project is to design a distributed
file system that will allow a group of users to share data. The
system is composed of client devices (which we here define
as “a holder of a trusted public key”) which access data on
behalf of users, and a potentially malicious set of servers.
The servers may be anything from cloud services, to local
file systems, to peer-to-peer systems. They are not trusted,
and not expected to export any higher-level functionality other
than allowing immutable singleton objects to be stored and
retrieved. The clients collaborate by storing objects on known
servers, with names derived from agreed-upon conventions. In
the aggregate, the clients construct a rooted object graph of
the immutable objects. The graph embeds both the hierarchical
structure of a file system, and a series of security statements
that control access to objects lower (farther from the root)
in the graph. Though not essential to the correctness of the
system, the system may include cleaner agents, which are
clients with trusted keys that perform maintenance operations
on the object graph. A cleaner agent periodically traverses
the graph, improving subsequent performance by creating
new versions of directories that point to the most recent
versions of their children. The cleaner agent could also be
useful in building system-wide snapshots (Section III-F) and
in supporting key revocation (Section IV-D).

A. Goals
We designed Spore to satisfy the following goals:
• No assumptions about servers - The system is designed

to allow data to be stored on any type of server. We
require only that servers allow objects to be stored, and
later retrieved, using arbitrary names. Service-specific
drivers could be used translate put and get requests
into the API of individual servers. In particular, we do
not require servers to implement arbitration or ordering
services, as is expected in Sporc [4] or SUNDR [5], or
connect objects in any way.

• No assumptions about clients - Clients interact with the
rest of the system solely by reading and writing system
objects. Clients do not communicate directly with each
other except when communicating the location of the
original spore, or when communicating symmetric keys
for read access.

• Minimize information leakage - Eliminate information
leakage to the extent possible. Connections and rela-
tionships between objects should not be divulged, for
example. Though access to data cannot be disguised, the
names used should not betray any information.

• Data confidentiality - Unauthorized users should not
be able to access system data. Encrypting data protects
against the server exposing data to unauthorized clients.
However, we further prevent users whose access has been
revoked from accessing future updates.

• Tolerate forks - Forks can occur whenever servers are not
able to enforce strong notions of consistency. Our servers
enforce nothing, forks must be tolerated, and mechanisms
that can be used to resolve them should be provided.

• Usable performance - We are building this system on
less capable building blocks previous system. The main
goals have to do with flexibility, resilience, and security.
Our performance goal is to show that a system can
meet our objectives with performance good enough to
be usable without requiring manual management.

Our goal is to use Spore to prevent malicious agents
from preventing conforming clients from making progress. We
assume Byzantine faults [8], [9]. In other words, malicious
agents can be “insiders”, i.e. holders of trusted keys, and they
can cooperate.

All network and cloud resources are untrusted. For cloud
resources, this means that any request can be either answered
correctly, answered incorrectly, or ignored. Further, clouds are
not trusted to protect the data.

We rely on the availability of strong cryptographic mecha-
nisms, i.e., means of creating, using, and verifying public keys
and signatures. We do not rely on a public key infrastructure
(PKI).

A “client” is any entity able to find a spore and interpret its
contents. In practice, a client will have at least a symmetric
key for decrypting object data, and possibly a public key-pair
to commit new writes to the system.

A “server” can be any service that returns set of objects
(as an opaque bundle of bits) in response to a request with
a specific name. Possible server types include cloud systems,
peer-to-peer networks such as Chord [6], and local file sys-
tems.

III. SPORE DESIGN

This section describes the design of the Spore distributed file
system. Though Spore is a file system, the principles discussed
here are applicable to other types of distributed systems
as well. We chose to implement a file system because the
inherent need for versioning makes it an extremely challenging
application to implement on untrusted storage, and using only
immutable objects.

The system contains only a single type of entity: the object.
Spore objects may be of any size. Since we assume only
put/get/list interface (Section III-A), we do not rely on objects
being mutable. This immutability simplifies reasoning about
caching and replication.

Table I lists many of the types of data that may be material-
ized in a Spore object. These include file system meta-data, file
contents, links to other objects, and the cryptographic keys and
statements necessary to build a trusted system. Throughout this
paper we discuss objects as if there are distinct types. However,
a real implementation would have only a single type that can
play many roles, sometimes many roles in the same object
instance.

A. Versioning, and Naming

The immutability of objects necessarily implies that Spore
is a versioning file system. Each modification to a “file”
requires the creation of at least one new object containing
the new changes, and requires some method of finding the
new object versions from the old. Directories must also be



Name Explanation
data file system data
meta-data file system meta-data
explicit links to child objects, if a directory
implicit links names of subsequent version objects
security statements public keys, write keys, revocation, revocation lists, etc
hints list of network addresses and protocols that might

be useful in locating and accessing spore objects
snapshot hashes precisely identifying reachable object versions
signature valid signature of hash of the above

TABLE I: Data that can be included in an object. A spore is an object like any other, except that it is signed by the master key.

dir1 dir2

dir3foo1

foo2 bar1

1. MKDIR dir
2. CREAT foo
3. EDIT foo
4. CREAT bar

Fig. 1: Object graph resulting from (1) creation of dir1, (2) creating
foo1 while updating dir to dir2, (3) editing foo to create foo2,
and (4) creating bar1, and updating dir again. Note that the latest
version of dir (dir3) still points to foo1.

versioned, new versions being created at least at each child
creation or deletion. Conventional versioning file systems [10],
[11], [12] avoid this issue by implementing directories as logs.
However, a dynamic log cannot be implemented using a single
immutable object.

Figure 1 describes a sequence of actions that create a
directory containing two files, and the resulting object graph
for this sequence. The file “foo” is created as version foo1;
modifying this file creates a new object representing foo2.
Each creation or deletion of a file also requires the directory
to be versioned. Creating foo causes the creation of directory
version dir2; creating bar causes dir3.

Assuming the sequence of actions described above, foo2

already existed before the last version of the directory was
created. However, foo2 was not necessarily known to the
client that creates bar1, so dir3 does not include a direct
link to this version. Nonetheless, the latest version of foo
can be found by traversing the graph regardless of the path
taken.

This example shows directories, files, and versions tied
together by directed edges. However, the parent of an object
in this graph is necessarily created before the object itself.
Given that the parent is immutable, the parent must somehow
specify this link before its target exists.

We term this an implicit edge. Each object instantiating a
specific file version specifies how to derive the name of the
“next” version for that same file. The “latest” version of a file

is found by traversing these edges until no valid object with
the correct pre-defined name can be found.

Note that we have assumed so far that versions of a single
logical file or directory are named sequentially, e.g., foo1

is followed by foo2. In practice, a secure wide-area file
system might not wish to divulge the relationships between
objects. Names are public because servers are untrusted,
and can be expected to give out information without user
authentication. We can instead use any arbitrary randomizing
function to map from the name of one version to the next. The
sole requirements are that this mapping is unpredictable and
deterministic. In our proposed implementation, Spore objects
name consecutive versions using an HMAC function with a
supplied key. Creation of an object representing a new version
of an existing file implies that the link from the file’s parent
directory object is now out of date. However, the latest version
of a file can always be found by traversing implicit edges.

Spore tolerates forks by merging forked object versions with
application-specific actions (Section III-C). However, the nam-
ing scheme discussed so far could allow concurrent updates
to overwrite each other, and hence prevent applications from
seeing all forked versions. Spore prevents this by appending
the hash of an object’s contents to the object’s name as it is
stored. With this scheme, an object corresponds to all objects
in the storage service having the true object name as a prefix.
As a result, retrieving an object requires a put/get/list interface
with the server.

B. Skip lists

Clients find the “latest” version of a file by sequentially
asking for each version, starting from the last version they
might have cached. For example, given foo2 in the cache, a
client will send requests for foo3, foo4, etc. until a version is
not found. Runs of modifications to a single object can create
a long series of version objects for a given file.

Spore probabilistically skips ahead in the search, with
power-of-two jumps somewhat analogous to the way skip lists
work. In the above example, the client might probabilistically
check for foo18, then foo34, etc. This approach costs little,
but helps greatly in minimizing the long tail of cost distribu-
tions.

C. Consistency

Tightly coupled systems can support strong notions of
consistency by relying on servers to enforce orderings and



arbitrate access. Spore servers have no higher level functional-
ity. The strongest remaining consistency that can be supported
is fork consistency [5]. Intuitively, fork consistency splits data
views whenever two updates occur to the same object version.
Fork consistency is the inevitable result of any system in which
servers can misbehave.

Since Spore cannot prevent forks, it must tolerate them.
Effectively, this means that the system must be able to tolerate
reads returning multiple results. Forks can be automatically
merged only when operations are known to be transitive, such
as text edits (Sporc [4]) or distinct file creations and deletions
(FICUS [13]).

We take the more general approach of allowing users with
application-specific information to arbitrate among, or merge
conflicting updates. Two conflicting updates can be merged by
giving them a common successor. Recall that version n+1 of a
file is, by default, named using a deterministic HMAC function
of version n. By allowing this default to be overridden in
special cases, conflicting updates can name the same successor.

Many distributed systems support eventual consistency [14]
by either having a primary server for each object, or requiring
servers to eventually agree on ordering. Spore has neither, and
therefore cannot support eventual consistency.

Surprisingly, however, the causal relationships that comprise
causal consistency [15] could be supported by encoding them
in objects. For example, COPS [16] provides causal con-
sistency by explicitly encoding dependencies among objects.
Dependences are limited by differentiating among “contexts”,
which seem to correspond to distinct threads or processes. A
Spore client could encode similar dependences automatically,
allowing the system to support causal consistency.

D. Replication and Server Choice

Spore does not explicitly support replication, but immutable
objects allow efficient client-directed replication because there
is no need to maintain consistency across objects. Clients
can therefore replicate objects by storing copies on multiple
servers. Note that many servers, such as RAID-based local
systems or remote clouds, are replicated internally. Since these
servers are untrusted, however, the client should explicitly
replicate high-value data.

The Spore object graph is location independent. If foo2 is
the name of the “next” version of foo, and properly signed
object with that name will suffice. The object’s location is not
relevant.

On the other hand, location is relevant to a client trying to
find the latest version of an object. We assume that objects
encode sets of potential locations for successor objects. These
sets should be small, as all must usually be checked when
looking for the latest version of an object. However, searches
at multiple sites can be done in parallel, and client-directed
replication as above makes finding objects more likely.

E. The Cleaner

A spore system will often include at least one cleaner agent,
which performs periodic maintenance on the object graph. An
agent periodically traverses the graph, improving subsequent

dirA1 dirA2

dirA3
dirB1

dirB2dirA4

dirB3

foo1

foo2

foo3

foo4

bar1

bar2

Fig. 2: The cleaner creates dirA4 and dirB3 to link the most recent
directory versions to the most recent versions of contained files.

performance by creating new versions of directories that point
to the most recent versions of their children. The cleaner agent
can be any client that possesses a trusted key giving write
access to the whole tree.

The example of Figure 2, minus dirA4, dirB3, and all
dotted edges, could result from a simple sequence of write
operations. Without dirA4, each client attempting to retrieve
the most recent version of foo must traverse each of the four
versions, plus some number of directory versions. Similarly,
retrieving bar without dirB3 requires traversing all dirA
objects, both dirB objects, and both bar versions. By adding
new versions of dirA and dirB, the cleaner is able to reduce
the path from the root to the most recent versions of both foo
and bar slightly. More usefully, caching dirA4 would make
subsequent searches for foo and bar much more efficient.

The cleaner agent could also be useful in supporting snap-
shots (Section III-F), and key revocation (Section IV-D).

F. Immutability, and Snapshots

Spore detects tampering with objects by appending hashes
of each object to its name. No client, authorized or not,
can modify an object without the tampering being detected.
However, objects can still be deleted by other clients on some
servers, or deleted arbitrarily by servers, whether malicious or
not.

While Spore cannot prevent deletions, it can probabilisti-
cally detect them. The mechanism is to gather lists (or graphs)
of object names, together with hashes of their entire contents.
Encoding such a list into a new object could be used to provide
a snapshot either of the sub-graph rooted at that node, or the
node’s ancestors in the hierarchical file system space. For the
latter, naming a version of a parent node effectively creates a
snapshot of the parent directory at a specific time.



A complete run of the cleaner agent discussed above is a
depth-first traversal of the entire graph, creating a new version
of each directory on the way back up. When creating this
directory, the cleaner could add hashes of children to the
new versions of each directory. After a complete traversal, the
aggregate of the per-directory hashes is equivalent to a Merkle
tree with additional naming information. This is not quite a
snapshot, as the data is still vulnerable to misbehaving servers.
However, it encompasses sufficient information to precisely
recreate the snapshot later if the data is still available.

IV. SECURITY

Security in a distributed data system usually implies ways
to prevent unauthenticated clients from reading or writing
data. Spore differs in that servers, the holders of data, are
neither trusted nor expected to implement any sophisticated
functionality, even arbitration or ordering [5], [4]. Hence,
servers do not necessarily perform client authentication before
returning data, so the presumption must be that malicious
outsiders can gain access to any object. We prevent breaches of
data confidentiality through the usual expedient of encrypting
all data with a symmetric cipher, such as AES. All objects
need not be encrypted with the same key, but the keys used
must be described further up the Spore graph.

Similarly, outsiders can also create new objects, even cor-
rectly encrypting them if they have read access to the system.
However, these objects are only recognized as valid if they are
signed with trusted keys, as described below. Hence, while
outsiders can create new objects, these objects will not be
recognized as part of the system.

A. Trust

The live system consists of a set of valid, trusted objects.
The system is bootstrapped by initially investing trust in
a single object: the spore. Each trusted object potentially
contains data, as well as explicit or implicit descriptions of
other trusted objects.

The security architecture is primarily a combination of
principals (public keys) and statements (objects). Statements
come in two flavors: trust statements and structural statements.
Trust statements can specify that other keys and objects are
also to be trusted. A trust statement might state that “key X
is trusted”, or that object “foo.c,v2” is valid if signed by a
trusted key. By contrast, structural statements codify rules on
how clients identify and interpret trusted objects and keys.
For example, a structural statement might list data repositories
where valid objects might be found.

Only statements and keys established in the ancestors of
a given object are relevant for finding and interpreting that
object. A key made trusted in bar1 of Figure 1 is only useful
for creating new versions of bar1. Such a key could not be
used for creating new versions of either bar1’s parent or foo,
for example.

The goal of all these statements is to allow conforming
clients to avoid being misled by misbehaving clients. The
system has no way of preventing outsiders, or even a client
with read but not write access, from creating correctly named

objects. However, the lack of a trusted signature on such
objects prevents clients from treating them as valid.

Read access is represented by possessing one or more
symmetric keys. Write access is represented by holding the
private key corresponding to a public key encoded in one
of the system objects. The keys used for reading are either
communicated out-of-band (any user’s access to the system
must be bootstrapped somehow), or encrypted with the user’s
public key and included in an object version.

In some sense, we are trying to construct a distributed
system like an inductive proof. The base case consists of a
master key, and the spore:

• The master key is trusted - Any object signed directly by
the master key is a spore, creating a new file system.

• A signed spore is trusted. The spore sets up initial policies
for the resulting file system: servers, public keys of
initially trusted writers, the root directory.

Given the master key and the spore, the rest of the system
grows organically using two types of inductive steps, as
follows:

• A trusted key can be used to assert that a given object
is trusted - An object is valid and trusted if and only if
it is correctly signed by a trusted key and it conforms to
rules established by ancestor objects. An example of the
latter might be “any object with name “foo” is trusted if
signed by a trusted key”.

• A trusted object can assert that a given key is trusted -
Objects are only trusted if signed by a trusted key. Lists
of such keys can be defined in objects.

We distinguish between three types of keys in the system.
The (single) master key is used to sign the initial spore, and
is also used to make other keys trusted (able to create valid
new objects), or untrusted (revocation). A trusted (write) key
is one that allows a client to create and sign a new object in
the system. Symmetric session keys are used to encrypt the
data.

In more detail, trusted objects may make the following type
of security-related statements:

• public key validation - As above, an object may state
that a given public key is trusted and is usable for object
creation, and/or making other keys trusted.

• name validation - An object, perhaps named “foo,v1”,
might state that any properly signed object named
“foo,v2” is also part of the system, and trusted.

• session keys - An object might list a set of symmetric
keys that can be used to encrypt and decrypt data.

• revocation lists - A revocation list contains a list of public
keys not valid at objects reachable from the object con-
taining the list. Only the master key can sign revocation
lists.

B. Malicious Clients

Clients with write access must trust each other not to
overwrite all objects with random data. We mitigate this need
through a combination of a naming scheme and a versioning
model (Section III-A). Even though misbehaving clients could



inject erroneous data into the system, versioning would still
provide earlier writes to and by conforming clients.

C. Malicious Servers

Servers can attempt to violate correctness by responding
with incorrect data. Clients can avoid this problem by only
accepting data with proper signatures.

A malicious server could also respond negatively to queries
for data which it stores, or had stored previously. A client can
detect the latter issue through probabilistic audits of data that
it had previously stored [17], [18].

The most difficult to detect type of misbehavior is when a
server intermittently claims not to have a specific object that,
in fact, it does. Left unchecked, this type of misbehavior can
result in forks of object version histories. The usual approach
to detecting this misbehavior is to require clients and servers
to sign all requests; two clients can later compare signed
statements from the same server to see if they match [4].
However, this approach relies on servers being able to issue
valid signatures and clients to communicate with each other,
neither of which is an option in Spore. We purposefully
require only low-level functionality from servers, and clients
can identify each other only through public keys, not through
Internet addresses.

Instead, we propose to use audits through anonymous third-
party entities to verify server responses. The audits can take
two forms. The first is similar to the first option discussed
above. Clients can periodically audit servers to ensure data
stored at the servers is being returned by queries. Requests
would be sent through a third party in order to prevent the
server from correlating the request with the previous store.
The third party could be anything, including other clients (if
known), Tor nodes, other local resources controlled by the
same user, etc.

Clients cannot verify negative query responses by later
attempting the same request through a third party, as the
data could arrive in the interim. However, clients could use
anonymous third parties to back-check positive responses to
data that was stored by other clients. A subsequent negative
response for the same data, through a third party, could
indicate either that the server is lying, or that it has evicted
the data. Either outcome is worth knowing.

These protocols would have to be cognizant of potential
inconsistencies in the underlying server. For example, if one
of the “servers” is a cloud service, a put and a subsequent
get might be served by different nodes. A negative response
to the get might lead us to erroneously conclude that the
cloud provider is malicious. Azure does guarantee consistency
among nodes [19], but others currently do not. However,
services like S3 and Rackspace do appear to propagate updates
throughout a region within a few seconds [20].

D. Key Revocation

Key revocation requires the establishment of a revocation
list, which contains public keys that are no longer trusted.
Inserting revocation lists high into the file system hierarchy

would ensure that the revocations are seen by clients traversing
the hierarchy, but Spore objects are immutable.

However, a single traversal of the cleaner agent potentially
creates a new version for every directory in the file system
hierarchy. In Figure 2, for example, a revocation list placed in
dirA4 could be in the path traversed by any client attempting
to reach foo or bar from the root. One drawback of this
approach is that it relies on constructing paths to leaf objects
by preferring directory objects to file version objects. To reach
the most recent version of foo, for example, the search
should proceed from dirA2 to dirA3, rather than to foo1.
Revocation lists can be inserted into any of these new directory
versions, including the latest version of the spore.

Revoked clients can be prevented from reading subsequent
versions of an object by changing the session key used to
encrypt content. The new session key can be encrypted with
authorized public keys and included in a subsequent version.

Both skip lists and the cleaner agent can cause clients to
miss key revocations. However, a client can probabilistically
skip optimizations and traverse the whole hierarchy in order to
avoid missing any security related updates. Additionally, we
could create conventions about revocation list use, such as that
the lists will be in a specific part of the namespace, or will be
pushed as high as possible in the file system hierarchy. With
this latter approach, clients would bias their probabilistic skips
against skipping the high levels.

V. PERFORMANCE EVALUATION

In this section we evaluate the performance of a Spore
file system via trace-driven simulation. The next sub-section
describes our experimental setup, as well as the set of traces
we used to drive the simulator. The rest of the section discusses
individual experiments.

A. Setup

Simulation Platform: We ran all simulations on Linux
machines with an Intel Core 2 Duo processor, 2GB RAM,
and 500GB Western Digital 7200RPM hard drive.

Traces: Table II summarizes our three traces, each chosen
to highlight different aspects of the system’s performance.

The emacs trace consists of system calls made during a
randomized copy of the emacs version 23 source tree to a
new directory. The trace consists of approximately 4k system
calls, dominated by creat and write calls.

The rails [21] trace is derived from developer activity
on the Ruby on Rails web application framework. Rails
source code is hosted on GitHub, a web-based hosting service
based on the Git revision control system. According to the
website [22], Rails is the most watched repository, as well as
the third most forked, on their entire site. We extracted all
changes to Rails over the last three years from the git log, and
created a corresponding system call trace. Git logs contain
only write operations. We use these writes as a backdrop
to a synthetic reader trace based on the measured edit rate
(popularity) of each file of the repository. From the popularities
of the top 1000 files we constructed a synthetic trace averaging
a single read for each two writes of the writers’ trace. We chose



Emacs
Rails

CodaWriters Reader
System calls 4510 64774 35106 47644

Dominant types creat/write write read/access read/write

TABLE II: Summary of the traces we used to drive the evaluation of Spore. The first row shows the number of systems calls that each
trace consists. The second row shows the system call that dominates each trace
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Fig. 3: Baseline: none of the simple optimizations are included.

this strategy because the git log does not contain entries for
git-fetch/git-pull operations. The writers’ trace contains 65k
write system calls, while the reader trace contains 34k read
and access system calls.

The Coda [23] trace is the write-intensive Dvorak trace
from CMU [24]. This trace, while old, was chosen because
it is derived from execution of a real distributed file system
that targets disconnected operation and mobile computing. The
Dvorak trace has the highest rate of file writes in of any of
the available traces.

B. Simulator
Our simulator is implemented in Ruby 1.9.2 and it con-

sists roughly of 2.5K lines of code. We implemented three
optimizations in the simulator: client caches, the cleaner, and
skip lists. Unfortunately, two of our traces omit file and write
sizes, making simulation of a cache problematic. We therefore
model the cache as being able to contain a specific number of
whole files. Note that latencies in a wide-area system make
local disks useful as a cache, effectively increasing cache size
from several hundred megabytes to many gigabytes. However,
none of our traces is able to benefit from caches this large.

We use three different cleaner load levels: clean-none,
clean-low, and clean-high. Clean-low cleans a sin-
gle directory at one twentieth the rate of a single client’s file
access rate, whereas clean-high means the cleaner cleans
a directory at a rate of one to five.

We use a single metric to evaluate our approach: the number
of “get” calls required to fetch a remote file. Clients in conven-
tional systems retrieve an object by sending a single request to
known server, thereby requiring only a single get, or remote
message exchange. However, the simplifying assumptions of

a Spore file system lead to potentially many versions of
directories and files, each of which must be traversed at least
once by the remote client. Figure 3 shows a CDF of the
number of gets required to retrieve files, assuming no cache,
no skip lists, and no cleaner. The majority of file fetches take
more than one hundred gets, across all traces, and a few
fetches take more than a thousand, clearly an unusably high
number. Though the traces are deterministic, the skip list and
cleaner techniques are probabilistic, so we average across five
runs for each curve.

C. Backup
Figure 4a shows CDFs of various cache sizes for the emacs

trace, without skip lists and with the cleaner off. Caching has
an enormous effect on the number of gets, with medium
cache allowing more than half of the fetches to take only a
single get.

The figure also points out the additional pressure versioning
puts on a Spore cache. Our simple cache model contains both
file versions and directory versions, and does not distinguish
between any of them in size (other than metadata). While each
file in the copy has only a single version, each directory has
as many versions as children.

Figures 4b and 5 show the effect of the cleaner and skip
lists, respectively, with no cache. Cleaner activity creates new
directory structures that point to the most recent versions of
files. Clean-low results in fetches taking about half the
time than without the cleaner, with a similar improvement to
clean-high.

Skip lists make a slightly smaller improvement, an effect
consistent across all of our traces. Skip lists do impose a
cost (the extra probabilistic probes), but we never observed
a situation where the aggregate cost outweighed the gain. We
therefore use skip lists in the rest of our experiments.

D. Multiple Writers, Single Reader
Figure 6 shows the performance impact of the cleaner

and differing cache sizes on the rails GitHub trace. The
high churn of the three-year traces makes larger cache sizes
extremely useful. The cleaner has a very consistent effect of
moving curves to the left, and helping to chop of the tail of
distributions.

Several of the curves in Figure 6b have slight irregularities.
In Figure 6b, for example, the 1k CDF briefly crosses the
line of the 2k CDF, despite our use of a vanilla LRU cache
replacement policy, which does not suffer from Belady’s
anomaly.

The explanation is that a file version in the cache affects
the path chosen to reach the most recent version of a file.
Consider the example in Figure 2 again, and assume that both
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Fig. 4: Absolute gains from different techniques in copying Emacs.
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Fig. 6: Sensitivity to cache size and the cleaner in the rails GitHub trace.
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Fig. 5: Absolute gain for emacs with skip list.

foo1 and dirA4 are in the client’s cache. Our current fetch
procedure would proceed to foo2, foo3, and then to foo4,
when a better approach would be start from dirA4.

Figure 7 shows cause for optimism that a Spore-like design
would be usable in practice, as coda is a trace from a real

distributed system. Even extremely small caches dramatically
improve system performance. The cleaner reduces the number
of gets on the low and no-cache cases, but an equally
important effect is that of reducing the tails of the distributions
by a factor of four or more, even with large caches.

E. Discussion

Our primary metric is the number of get messages. We
used this rather than latency to get a direct measurement of
the improvements due to the different optimizations.

Spore’s storage requirements are in direct proportion to
object replication factors. This cost could be reduced by using
erasure-coding, as in DepSky [25]. However, this would limit
Spore’s failure tolerance to a constant number.

The system performs poorly with a naive approach. How-
ever our results, especially with the coda trace, show that sim-
ple optimizations can dramatically improve that performance.

The skip lists have a relatively slight but always positive
effect on performance. Analysis of our logs shows that this
effect could be improved. Our current skip list approach wastes
queries looking for versions very far in advance of the last
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Fig. 7: Relative performances of different cache sizes in Coda trace with respect to existence of cleaner.

known version. Adjusting probe distances to match measured
runtime characteristics could eliminate most of this waste,
while improving the hit rate.

The cleaner is also uniformly positive in effect, and would
provide even more benefit to multiple clients. In addition
to the performance gains, the cleaner also helps by creating
snapshots, and in allowing revocation lists to be inserted high
in the file hierarchy. Cleaners also create garbage, however,
requiring more storage to hold all the cleaner-created data and
adding to system cost. We theorize that some of this can be
addressed through garbage collection.

Our approach includes a number of simplifications. First, the
assumption of all files and directories taking approximately the
same space in the cache is clearly unrealistic. The aggregate
effect is probably to underestimate average performance, be-
cause the current approach allows directory versions (typically
very small) to swamp the cache.

We currently do not cache file system data in the sense that
is usually done. File attributes and data are usually cached
in kernel buffers for some period of time, allowing repeated
access to file meta-data to be satisfied with querying the file
system proper. The simple strategy in this paper models a
client that always checks for new versions, even if that exact
check was done on the previous operation. Again, this leads
us to underestimate system performance.

Our emphasis on performance from the point of view of a
single client obscures the fact that, unlike caches and skip
lists, the cleaner benefits all clients using the system. Our
model also underestimates the effectiveness of the cleaner, as
we currently model the cleaner as having the same cache size
as clients. Though the cleaner’s access would have a great deal
of spatial locality, larger caches still improve the cleaner’s
effectiveness. Given its privileged status in the system, the
cleaner’s cache sizes should probably be decoupled from those
of the clients’.

On the other hand, we do not model fetch attempts at
multiple servers, and the cost of updating multiple servers.
In both cases the queries can be parallelized, but would still
result in increased overhead.

We also do not look at the performance costs of misbehaving
servers.

VI. RELATED WORK

The majority of our discussion of related work is sprinkled
throughout this paper. To summarize, however, the most re-
lated prior work falls into two categories: cloud storage, and
file system versioning.

SUNDR [5] and FAUST [2] were among the first projects
that investigated untrusted servers. SUNDR defined the notion
of fork consistency, and showed that a system of cooperating
clients can limit the damage done by malicious server to that of
creating unintended fork. Both inform clients about potential
forks without being able to recover from them.

SPORC [4] provides an embedded access control mecha-
nism that protects clients’ privacy, and also proved the system
resilient to all faults other than unintended forks. Addition-
ally, SPORC uses operational transformations to merge forks
automatically for specific types of applications.

Depot [3] builds a system from untrusted clouds. The
system prevents malicious servers from doing harm by tight
coupling between servers and clients, and between clients.
Depot imposes high CPU and messaging overheads on clients.

DepSky [25] provides a storage service across multiple
cloud providers. Their emphasis is on providing higher failure
resilience by explicitly replicating each data object across
multiple clouds. Spore’s object placement is done by clients
making a coherent erasure-coding technique difficult. How-
ever, systematic replication across servers, as in DepSky, could
easily be implemented by clients.

These systems comprise the state of the art in cloud storage
with untrusted servers. Spore differs in assuming no trust be-
tween any of the entities of the system. Servers are untrusted,
clients do not trust or communicate with other clients. Prior
systems rely on servers performing complex and important
tasks, checking for correctness after the fact. Spore servers are
as thin as possible, and rely on nothing more than a put/get/list
interface over REST or SOAP, as is provided by most of the
available commercial storage services [26].



Many systems have exposed versioning in the file sys-
tem [27], [28], [11], [10], and described ways to minimize
the attendant costs. However, most do so in the context of a
single machine. Spore’s wide-area nature precludes most of
the optimizations discussed in these papers.

VII. CONCLUSIONS

Spore began as an exercise in designing a system with
the least possible trust and functionality invested in servers.
Somewhat surprisingly, we found that we could build a usable
system by formalizing state entirely in signed and encrypted
objects, and reasoning about system properties by following
paths through the object graph. We do not advocate this archi-
tecture for general use, but feel that the minimal requirements
might make it appropriate for a number of environments where
other systems would not suffice.

The system is secure in that only clients with keys can read
system data, and only authorized clients can write data that
will be read by correct clients. Individual objects may be lost,
as the underlying servers are untrusted, but forming names
with hashes of object content allows correct clients to detect
and avoid data that has been tampered with.

We are currently extending this work in a number of
directions. The cleaner-based snapshots could be used to make
probabilistic guarantees of file system integrity. Packing ob-
jects into larger segments [29] could reduce gets, especially
for single-client or producer-consumer systems. Our skip list
implementation needs to be tuned to runtime characteristics.
Our current cache replacement algorithm is oblivious to the
type and use of any of the objects. We might, for example,
prefer directories to files, or prefer directories higher in the
tree to those lower.
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