
Multi-threading and Remote Latency in Software DSMs
Kritchalach Thitikamol and Pete Keleher

University of Maryland
(kritchal | keleher)@cs.umd.edu

Abstract
This paper evaluates the use of per-node multi-threading

to hide remote memory and synchronization latencies in a
software DSM. As with hardware systems, multi-threading in
software systems can be used to reduce the costs of remote
requests by switching threads when the current thread blocks.

We added multi-threading to the CVM software DSM and
evaluated its impact on performance for a suite of common
shared memory programs. Multi-threading resulted in speed
improvements of at least 17% in three of the seven applica-
tions in our suite, and lesser improvements in the other appli-
cations. However, we found that i) good performance is not
always achievable transparently for non-trivial applications,
ii) multi-threading can negatively interact with DSM opera-
tions, iii) multi-threading decreases cache and TLB locality,
and iv) any multi-threading speedup is dependent on available
work.

1. Introduction
This paper presents an empirical evaluation of the use of

per-node multi-threading to hide remote latencies in CVM [1],
a software distributed shared memory (DSM) system. DSMs
are software systems that emulate shared memory semantics in
software over hardware that provides support only for mes-
sage-passing. Multi-threading for latency-hiding is a well-
known technique for hiding cache miss latencies in the hard-
ware environment [2, 3]. However, the software environment
presents special challenges.

The paradigm usually assumed in DSM-related literature
is that of a distributed system containing a single thread on
each processor. This arrangement is simple, and yet allows
reasonably high processor efficiency. The primary drawback
is that DSMs usually have high remote communication laten-
cies, causing the performance of such systems to be largely
dependent on the frequency with which remote lock acquires
or data requests occur. Although the portion of this latency
contributed by local software overhead is often significant, the
majority results from time on the wire and processing at the
remote location. Hence, this time is wasted at the local proces-
sor.

The primary performance advantage of per-node multi-
threading is that multiple threads can ensure that work is avail-
able when the currently active thread stalls on a remote re-
quest. If the level of multi-threading is high-enough, all latency
other than local OS overhead can be overlapped with useful
local computation. Second, the separation of the system’s vir-

tual machine from the physical machine may allow a better
mapping of the computation on to the thread model. So-called
fine-grain programs have several advantages, including archi-
tecture independence, clarity of expression, implicit load bal-
ancing, and ease of code generation for parallelizing compilers
[4].

Three of the seven applications sped up by at least 17%,
and the others by lesser amounts. However, our performance
does not come close to the potential speedup implied by proc-
essor utilizations [5]. We have identified five contributors to
this shortfall, and present strategies for dealing with them, if
applicable:
1. Local contention for resources - The threads on a single

node often contend or block and wait for the same resource.
Any instance of multiple local threads waiting on the same
resource means that multi-threading potential is being
wasted.

 There are essentially two strategies for dealing with local
contention. First, one could create a large enough number of
threads that all of them are never blocked at the same time.
This is too expensive in our environment, but is practical in
systems where threads are very lightweight [6]. The second
approach is source modification. We used this approach in
some of our applications.

2. Reduction operations - As the single-thread-per-node model
is nearly universal, programmers tend to accumulate results
locally before communicating with other threads whenever
possible. These operations are essentially reductions. When
the single thread is split into multiple threads, each commu-
nicates local results to remote threads, resulting in extra
communication and working counter to the programmer’s
optimizations.

 Reduction operations ideally should be identified in the
source. The result would be better performance in both the
single-threaded case and similar performance in the multi-
threaded case. Since the reductions were not identified in
the source of our applications, we modified the source to
take advantage of CVM-provided local barriers. The contri-
butions of all local threads are then aggregated into a single
remote request.

3. Caches and TLBs - Context-switching between threads re-
duces the chance that caches and TLBs will retain state for a
given thread by the time it switches back in. The perform-
ance of even local computation is then degraded by in-
creased cache and TLB misses.

 A memory-system aware thread scheduler would use an

approach closer to LIFO than FIFO. Our scheduler does not
make this optimization.

4. Application perturbation - Multi-threading changes the or-
der that events occur, both within and between nodes. This
has a non-deterministic effect on performance.

5. Thread switch cost - Although not as expensive as remote
accesses, switching between local threads does have a sig-
nificant cost.

One of our primary goals was to see if multi-threading
could be added without modifying applications. Our applica-
tions are all parameterized by command-line options to handle
different numbers of nodes. Hence, the system can usually add
per-node multi-threading transparently to the application with-
out affecting correctness. However, as discussed above, multi-
threading may not be transparent to application performance.

The rest of this paper proceeds as follows. Section 2 de-
scribes the programming model assumed by CVM, and the
changes made to support multi-threading. Section 3 describes
the implementation of multi-threading in CVM and the impli-
cations of various design choices, and Section 4 describes our
performance. Finally, we conclude in Section 5.

2. Programming Model
The majority of DSM-related literature assumes a loca-

tion-transparent programming model in which the number of
threads and processors is specified as part of the input. Appli-
cation behavior other than performance is assumed to be inde-
pendent of the number of system threads. Systems consist of a
number of threads that can transparently access one or more
shared segments. Synchronization is usually accomplished
through system calls to the DSM.

While not specified in the programming model, most of
these systems locate a single thread on each physical processor
in the system. The advantage of this scheme is its simplicity.
More than a single thread per node would introduce the fric-
tional costs implied by thread switching. A single thread per
node simplifies handling the scope of heap and stack-allocated
data. This data is usually private to each thread; only desig-
nated, shared segments are visible to more than a single proc-
essor. The single-threaded scheme also has the advantage of
making the relationships between threads uniform. Sharing
between any pair of threads costs the same as any other pair.
Hence, the programmer or compiler that distributes the data
need only to accommodate a single level of sharing.

Multi-threaded nodes add an additional level to the hierar-
chy of memory access times, i.e. threads that are co-located on
a single node share an affinity that is not present between
threads located on different nodes. To understand the problem,
consider an example in which a simple matrix application allo-
cates the computation in contiguous chunks of rows to each
thread. With only a single thread per processor, the distribu-
tion automatically benefits from any spatial locality in the
computation, as all rows on a single node are contiguous. In
the multi-threaded case, care must be taken to allocate con-
secutive chunks of the matrix to threads on the same node.

Otherwise, locality exploited by the single-threaded system is
potentially not present in the multi-threaded case.

The division into multiple threads can be problematic
even if contiguous matrix chunks are allocated to all threads
on the same node. For example, consider the case where each
thread moves linearly through its portion of the matrix, and
there are two threads per node. If data is shared on the bound-
ary between each pair of threads, that data will be accessed at
the beginning of an iteration by the second thread, and at the
end of the iteration by the first. Between the time of the second
thread’s access and that by the first, the data may have been
displaced from local memory because of consistency actions or
lack of capacity. The multi-threaded system will then suffer
more access misses than the single-threaded system, even
though the same data is allocated to each node in both cases.

Although the above problem affects performance, it does
not affect correctness. However, the most immediate conse-
quence of per-node multi-threading is that whether two threads
see the same instances of global program data depends on
whether they are co-located on the same processor. We ad-
dress this discrepancy by disallowing modifications of global
data after initialization is complete. Since global data is con-
sistent across all nodes until startup has finished, we thereby
ensure that global data will be uniform across the views of all
threads.

In both the single- and multi-threaded cases, threads syn-
chronize through global locks and barriers. No process is al-
lowed to proceed past a global barrier before all processes
arrive. Global locks can be held by only a single thread at a
time.

3. Implementation

3.1 CVM
The DSM target used in this work is CVM, a software

DSM that supports multiple protocols and consistency models.
Like commercially available systems such as TreadMarks [7],
CVM is written entirely as a user-level library and runs on
most UNIX-like systems. Unlike TreadMarks, CVM was cre-
ated specifically as a platform for protocol experimentation.

The system is written in C++, and opaque interfaces are
strictly enforced between different functional units of the sys-
tem whenever possible. The base system provides a set of
classes that implement a generic protocol, user-level threads,
and network communication. The latter functionality consists
of efficient, end-to-end protocols built on top of UDP.

New shared memory protocols are created by deriving
classes from the base Page and Protocol classes. Only
those methods that differ from the base class's methods need to
be defined in the derived class. The core DSM routines call
protocol hooks before and after page faults, synchronization,
and I/O events. Since many of the methods are inlined, the
resulting system is able to perform within a few percent of a
severely optimized system, TreadMarks, running a similar
protocol. However, CVM was designed to take advantage of

generalized synchronization interfaces, as well as to use multi-
threading for latency toleration. We therefore expect the per-
formance of the fully functional system to improve over the
existing base.

Memory Consistency - CVM's primary protocol imple-
ments a multiple-writer version of lazy release consistency,
which is a derivation of release consistency[8]. In release con-
sistency, a processor delays making modifications to shared
data visible to other processors until special acquire or release
synchronization accesses occur. The propagation of modifica-
tions can thus be postponed until the next synchronization op-
eration takes effect. Programs produce the same results for the
two memory models, provided that all synchronization opera-
tions use system-supplied primitives, and that all conflicting
shared accesses are ordered by synchronization or program
order. In practice, most shared-memory programs require little
or no modifications to meet these requirements.

Lazy release consistency (LRC) [9] allows the propaga-
tion of modifications to be further postponed until the time of
the next subsequent acquire of a released synchronization vari-
able. At this time, the acquiring processor determines which
modifications it needs to see according to the definition of
LRC. To do so, the execution of each process is divided into
intervals, each denoted by an interval index. Potentially each
synchronization operation causes a new interval to begin and
the interval index to be incremented. Intervals of different
processes are partially ordered by assigning a vector times-
tamp to intervals for each processor. At an acquire, processor
p sends its current vector timestamp to the previous releaser of
the same synchronization variable, q. Processor q then piggy-
backs on the release-acquire message to p write notices for all
intervals named in q’s current vector timestamp but not in the
vector timestamp it received from p.

False sharing - False sharing occurs when two or more
processors access different variables within a page, with at
least one of the accesses being a write. False sharing is prob-
lematic for software DSMs because of the large page-size co-
herence units. CVM’s multiple-writer protocol reduces the
effects of false sharing by allowing two or more processors to
simultaneously modify local copies of the same shared page.

These concurrent modifications are merged using diffs to
summarize the updates. A diff is created by performing a page-
length comparison between the current contents of the page
and a twin of the page that was created at the first write access.
If each concurrent writer summarizes its modifications as a
diff, the system can create a copy that reflects all modifications
by applying the concurrent diffs to the same copy. Concurrent
diffs only overlap if the same location is written by multiple
processors without intervening synchronization, which is
probably a data race.

OS interface - CVM uses the UNIX mprotect system
call to control access to shared pages. Any attempt to perform
a restricted access on a shared page generates a SIGSEGV
signal. The SIGSEGV signal handler examines local informa-

tion determine the page's state. If the local copy is read-only,
the handler allocates a page from the pool of free pages and
performs a bcopy to create a twin. Finally, the handler up-
grades the access rights to the original page and returns. If the
local page is invalid, the handler requests a copy from the
page's owner. If write notices are present for the page, the
faulting processor requests the corresponding diffs in parallel.
When all necessary diffs have been received, they are applied
to the page in increasing timestamp order.

Multi-threaded CVM - We extended the original
CVM to support non-preemptive thread services. Non-
preemptive threads provide all the functionality needed to hide
remote latency. We also modified synchronization and com-
munication services to function properly in multi-threaded
environments. Since CVM’s architecture enforces the separa-
tion of the basic DSM services from protocol-specific func-
tions, consistency models can usually be implemented without
changing core CVM code. We were therefore able to restrict
our changes to only a few lines of consistency protocol code.

The thread services uses a simple policy for scheduling.
Thread switches always takes place when remote requests are
sent, and when misplaced replies are received. A reply is mis-
placed if it was sent in response to a request from a thread
other than the currently active thread. Thread switches can also
occur as the result of explicit application requests through a
CVM system call.

We also modified CVM’s core synchronization routines in
order to reduce their communication requirements in multi-
threaded environments. Barrier operations were modified so
that all but the last local thread will thread switch upon arriv-
ing at a barrier. The last thread aggregates all local arrivals
into a single per-node arrival message. Barrier release mes-
sages are handled similarly.

We extended this same idea to the application level in or-
der to support reduction-like operations that otherwise use
global locks. A common pattern in parallel programs is to ac-
cumulate modifications to shared data structures locally, up-
dating the shared structure only at the end of the current itera-
tion. Transparently adding multi-threading to this type of ap-
plication causes each local thread to update the shared data
structure, resulting in additional (and unnecessary) synchroni-
zation and data messages. We added a local barrier mecha-
nism that allows co-located threads to synchronize with each
other. Such a mechanism can be used by the application to
accumulate results from all local threads into a single remote
update. Unfortunately, this type of mechanism cannot be gen-
erated automatically unless the reduction operations are al-
ready visible to the underlying DSM. CVM does support sim-
ple reduction types, but none of the applications in our study
take advantage of them.

Additionally, the behaviors of both lock acquire and re-
lease operations have been changed. We implemented a local
queue for each lock so that multiple local acquires result in
only a single remote lock request. Threads that attempt to ac-
quire a lock that has already been requested locally are placed

on a local per-lock queue. The release code prefers the in-
habitants of this queue over any remote thread, even if the re-
mote thread requested the lock before the local threads. The
result is neither fair nor guaranteed to make progress, but per-
forms well in practice.

Although fine-grained thread systems can improve load-
balancing by moving work to lightly-loaded nodes, our system
implements coarse-grained, non-preemptive threads, and does
not currently support thread migration.

4. Results
This section presents the results of running seven applica-

tions over four and eight processors with multi-threaded CVM.
We first describe the environment and the applications, then
proceed to discussions of the communication requirements,
and the effects of multi-threading on DSM behavior, scalabil-
ity, and the memory system. We finish with a case study of
source modifications that attempt to improve the above inter-
actions and reduce contention for resources.

4.1 Experimental Environment
We ran our experiments over CVM’s lazy multi-writer

protocol on a cluster of eight Alpha 2100 4/275 nodes. Each
Alpha node has four 275 MHz Alpha processors and 256
Mbytes of memory. We used only a single processor per node
in order to avoid contention at the network interface. The Al-
phas run Digital UNIX V4.0, and are connected via Digital's
Gigaswitch/ATM communications hub. Each node currently
has a 155 MBit/sec ATM interface.

CVM runs on UDP/IP over the ATM. Simple 2-hop lock
acquires take 937 µsecs, while 3-hop lock acquires take 1382
µsecs. Lock acquires are implemented by sending a request
message to the lock manager, which then forwards the request
on to the last requester of the same lock. This requires only
two messages if the manager is also the last owner of the lock.
Simple page faults across the network require 1100 µsecs in
average. Page fault times are highly dependent on the cost of
mprotect calls, 49 µsecs, and the cost of handling signals at the
user level, 98 µsecs. Minimal 8-processor barriers cost 2470
µsecs. Thread switches cost approximately 8 µsecs.

4.2 Application Suite

Our application suite consists of seven applications: Bar-
nes, FFT, Ocean, Water-Sp, and Water-Nsq from the Splash
suite [10], SOR, a simple nearest-neighbor application, and
SWM750 from the SPEC92 benchmark suite.

Table 1 lists specifics for the applications in our study.
Sync Type indicates the synchronization operations used by
the applications. The Modifications column shows three
types of code modifications that we made, together with the
reasons that the modifications were made:

g - correctness - Global program variables are accessible
by local threads on each node. Hence, we disallowed
the use of any global variables that are modified after
the initialization phase. If a global variable was origi-
nally modified during execution, we then privatized
that variable for each thread on a local node.

r - performance - As discussed in Section 2, reduction
operations can become bottlenecks when multi-
threading is added. We modified the applications to
use per-node barriers and update remote data only
once per node.

s - performance - Parallel shared memory programs of-
ten partition work by assigning different ranges of the
same array to each thread. We enhance load-
balancing among local threads by allowing all threads
to access the entire array. Individual elements are
protected from simultaneous modification through the
use of local flags. This technique is not applicable to
all the applications in our suite.

Barnes is a modified version of the gravitational N-body
simulation from Splash-2. FFT is a 3-D Fast Fourier Trans-
form that uses matrix transposition to reduce communication.
Ocean (contiguous ocean from Splash-2) simulates large scale
ocean movements based on eddy and boundary currents. SOR
implements successive over-relaxation uses nearest neighbor
communication. SWM750 performs a two dimensional stencil
computation that applies finite-difference methods to solve
shallow-water equations. This application was automatically
parallelized by the SUIF compiler [4]. Finally, Water-Nsq and
Water-Sp are molecular dynamics simulations from Splash-2.
While the Water-Nsq uses O(N2) algorithms, the Water-Sp
uses a more efficient algorithm by imposing a uniform 3-D
grid of cells on the problem domain.

The single-threaded versions of these applications achieve
eight-processor speedups (versus uniprocessor speedup with-
out CVM calls) of 2.56, 2.29, 8.42, 1.86, 2.77 and 2.22 for
Barnes, FFT, SOR, SWM750, Water-Nsq and Water-Sp and
0.33. These relatively low speedups are primarily due to the
combination of very fast processors and an inefficient OS
communication implementation.

Input Set Sync Type Modifications
Barnes 10240 particles barrier g
FFT 64 x 64 x 64 barrier -
Ocean 258 x 258 ocean barrier, lock g, r
SOR 2048 x 2048 barrier -
Water-Sp 4096 molecules barrier, lock g, r
SWM750 750 x 750 barrier -
Water-Nsq 512 molecules barrier, lock g, r, s

Table 1: Application specifics

4.3 Overall Results
Figure 1 shows the performance of the applications for

four and eight processors, and from one to four threads, nor-
malized to single-threaded execution times. Note that there is
no three-thread case for Ocean because this application re-
quires the number for threads to be a power of two. Ocean,
Water-Nsq and Water-Sp achieved large multi-thread speed-
ups. On eight processors, they sped up more than 17% with
two threads, and 20% with four threads. Barnes, FFT, and
SWM750 also improve by approximately 5% on eight proces-
sors and more on four. SOR, however, sped up only 2% on
eight processors.

Figure 1 also breaks this speedup into contributions from
user time (which includes all local consistency time), time
spent waiting at barriers, non-overlapped time spent waiting on
faults, and non-overlapped time spent waiting for locks. In
general, multi-threading reduces fault and lock time by allow-
ing other threads to run when the current thread blocks on a
remote request. However, we have found that multi-threading
tends to increase load imbalance. This increase is primarily
caused by the fact that there is a great deal of variation among
processors in how successful they are at hiding remote latency.
User times vary because we are not currently accounting for
the cost of handling remote requests that arrive while applica-
tion code is executing.

Barnes achieves about 5% multi-thread speedup in all
tests on both four- and eight-processor cases, primarily from
reductions in fault time. This version of Barnes differs from
the Splash version in that only barrier synchronization is used.
Shared updates that were guarded by locks are now either seri-
alized or partitioned among the processors.

Neither FFT nor SWM750 sped up significantly on eight
processors, although on four processors they sped up by ap-
proximately 9%. The spike that appears at three threads in

FFT is caused by poor alignment of data on pages and conse-
quent load imbalance. More discussion of these effects can be
found later in section 4.3.2. The increase in user time in
SWM750 results from additional run-time routines that im-
plement the SUIF fork-join model.

Another barrier-only application, SOR, improves by only
2% on eight processors. Since SOR’s speedup is near-linear
even in the single-threaded case, we did not expect it to im-
prove significantly. We’ve included it primarily to show that
our multi-threaded implementation imposes little additional
overhead, even when there is very little remote latency to hide.

Water-Sp and Water-Nsq sped up by more than 10% on
both four and eight processors. On eight processors and four
threads, Water-Sp sped up by 41%, and Water-Nsq by 24%.
Both applications made gains in both fault and lock time.
However, most of Water-Sp’s speedup is from faults, while
most of Water-Nsq’s is from locks.

Ocean performs poorly on CVM due to the large number
of faults. On our single-thread case, it slowed down by ap-
proximately a factor of three. Although the multi-thread exe-
cutions have a similar number of faults, much of the fault la-
tency is hidden by thread switching, and we get a large im-
provement in performance. Ocean was included primarily to
show the effect of multi-threading on applications that are
anything but well-tuned for our environment.

In general, two threads usually improve performance, but
additional threads increase barrier imbalance and interact
poorly with the underlying DSM. Our system can actually in-
crease load imbalance if the system is more effective at over-
lapping computation with communication at some nodes than
others.

4.3.1 Effect on Communication

Table 2 shows the effect of multi-threading on the com-
munication performance of CVM. The Barrier, Lock, and Diff

0.00

0.20

0.40

0.60

0.80

1.00

1.20

B
ar

ne
s

4/
1 2 3 4

B
ar

ne
s

8/
1 2 3 4

F
F

T
 4

/1 2 3 4

F
F

T
 8

/1 2 3 4

O
ce

an
 4

/1 2 4

O
ce

an
 8

/1 2 4

S
O

R
 4

/1 2 3 4

S
O

R
 8

/1 2 3 4

S
W

M
75

0
4/

1 2 3 4

S
W

M
75

0
8/

1 2 3 4

W
at

er
-S

p
4/

1 2 3 4

W
at

er
-S

p
8/

1 2 3 4

W
at

er
-N

sq
 4

/1 2 3 4

W
at

er
-N

sq
 8

/1 2 3 4

user barrier

fault lock

Figure 1: Normalized Execution Time on 4 and 8 Processors

columns show the remote latency that could not be overlapped
with local computation. We expected lock and diff wait times
to reduce because of the direct effect from multi-threading. On
the other hand, total barrier wait time is more difficult to pre-
dict because our scheduler does not control loads that may be
changed dynamically. Furthermore, because our applications
distribute work load by dividing problem size with total num-
ber of nodes (total number of threads in this case), we ex-
pected barrier wait times to increase when using three threads
per node. This matches the results from FFT, Water-Sp and
Water-Nsq.

The Messages columns reflect the total of each type of
message, and the BW column shows the total communication
bandwidth requirements. Diff messages are used to satisfy re-
mote data requests. The Lock column shows that there is es-
sentially no change in the number of lock messages as the de-
gree of multi-threading increases. This implies that we are able
to successfully aggregate all local synchronization accesses to
a given lock into a single remote access. This conclusion is
supported by the Block Same Lock column in Table 3, which
shows that we never had multiple threads block on the same
lock.

The slight increases in diff messages for Barnes, SOR,
SWM750, and Water-Sp reflect the small increases in their
bandwidth. FFT’s diff messages rise slowly from one to two to
four threads, with a spike at the three-thread case. Finally, the
number of diff messages increases dramatically for Ocean and
Water-Nsq, for example, about 20% and 40% with four
threads for Ocean and Water-Nsq respectively. Generally,
increase of diff messages can result from bad page alignment
and finer grain created by per-node multithreading. We will

discuss this further in Section 4.3.2, and use Water-Nsq as a
case study in Section 4.5.

4.3.2 Effect on DSM Consistency Actions

Table 3 shows details of the effect of multi-threading on
the low-level behavior of the DSM. Thread switch is the total
number of useful thread switches. The four-thread number
varies from only 6394 in SOR, to 149493 in Water-Sp.

The rest of the table gives details of remote page and lock
request overlapping. Remote Faults and Remote Locks list the
total number of faults and lock acquires that require network
communication. Outstanding Faults and Outstanding Locks
give measures of how effective the system is at overlapping
multiple remote accesses. These numbers are counts of how
many remote requests are currently outstanding each time a
remote request is initiated. Directly measuring the overlap of
communication and computation is difficult to measure be-
cause we have no way of determining exactly when replies
arrive in our system. However, these quantities do measure the
frequency of multiple requests being outstanding at the same
time. For example, if thread T1 blocks on a remote page fault
and the system switches to T2, these statistics are not incre-
mented. However, if thread T2 then blocks on either a remote
lock or remote fault, the Outstanding Faults will be incre-
mented to reflect the fact that T1 has an outstanding fault. In all
cases except the three-thread FFT, outstanding faults and locks
uniformly increase as the multi-threading level increases.

Block Same Page and Block Same Lock are the number of
times multiple threads blocked on the same page or lock. As
such, they give one measure of local contention for shared

Total Delay (msec) Total Messages BW.
T Barrier Lock Diff Barrier Lock Diff Total Kbytes

Barnes 1 33379 0 23221 112 0 17828 17940 56522

2 34510 0 17878 112 0 17866 17978 56593

3 33798 0 17015 112 0 18065 18177 56683

4 34286 0 17152 112 0 18278 18390 57679

FFT 1 10118 0 39672 203 0 6958 7161 64669

2 10150 0 38533 203 0 7013 7216 64683

3 15622 0 52177 203 0 11609 11812 110927

4 10740 0 37260 203 0 7024 7227 64704

Ocean 1 29714 5338 63617 6314 2883 46950 56147 243205

2 28077 4669 44567 6286 2882 47747 56915 224946

4 36188 3836 32700 6364 2910 56192 65466 184637
SOR 1 13573 0 3868 1211 0 1162 2373 36498

2 12637 0 2400 1211 0 1162 2373 36498

3 11305 0 1850 1211 0 1162 2373 36498

4 13382 0 1767 1211 0 1162 2373 36498
SWM 1 24 0 42 1533 0 8815 10348 44556

750 2 24 0 37 1533 0 8808 10341 44523

3 24 0 36 1533 0 8814 10347 44523

4 25 0 35 1533 0 8807 10340 44523

Water- 1 10951 4569 82009 220 723 68444 69387 141756

Sp 2 10373 4247 50162 217 719 68445 69381 141820

3 24902 3501 49108 236 723 79188 80147 158608

4 8682 3791 35004 216 723 57691 58630 124632

Water- 1 3628 26473 7361 266 22035 3297 25598 19582
Nsq 2 3801 16611 5280 266 22034 3892 26192 19791

3 6284 13502 5691 266 22001 4634 26901 20051

4 3141 12692 5238 271 22034 4532 26837 20086

Table 2 : Communication Performance

Thread Remote Outstanding Block Same Diffs
T Switches Faults Locks Faults Locks Page Lock Created Used

Barnes 1 0 7727 0 0 0 0 0 4911 22991

2 28446 7711 0 7472 0 1052 0 4960 23040

3 37542 7707 0 14045 0 1964 0 5009 23091

4 46034 7772 0 18913 0 3171 0 5058 23488

FFT 1 0 7360 0 0 0 0 0 6016 7070

2 17206 7268 0 1527 0 5992 0 6016 7070

3 28901 12284 0 10832 0 8264 0 6731 12140

4 33312 7257 0 4532 0 17976 0 6016 7070

Ocean 1 0 47290 643 0 0 0 0 27852 59835

2 87382 45196 632 37267 0 3773 0 23632 60914

4 137898 47056 648 184565 0 14032 0 32759 61252

SOR 1 0 4783 0 0 0 0 0 1162 1162

2 6394 4286 0 6483 0 22 0 1162 1162

3 7848 4284 0 10089 0 44 0 1162 1162

4 9272 4284 0 14382 0 66 0 1162 1162

SWM 1 0 11282 0 0 0 0 0 6050 16365
750 2 19484 10350 0 9400 0 3152 0 6051 16372

3 28635 10305 0 12752 0 6345 0 6052 16379
4 36787 10269 0 16300 0 9497 0 6051 16372

Water- 1 0 72758 96 0 0 0 0 25266 69342
Sp 2 99262 72466 94 79311 3816 6346 0 25267 69349

3 149493 83136 95 176222 7191 6329 0 27059 80101
4 97019 61434 96 218615 9900 3365 0 28848 58576

Water- 1 0 3320 10261 0 0 0 0 1801 1801

Nsq 2 19716 3692 10260 2200 12645 464 0 2570 2570

3 29027 3949 10252 3635 25219 1729 0 3449 3449

4 32734 3713 10260 4786 37812 2530 0 3271 3271

Table 3: DSM Actions

resources. They also give a measure of how ill-suited the ap-
plication is for transparent multi-threading. SWM750, for ex-
ample, generated approximately 11,000 remote faults, and
approximately 3100 block same pages for each additional
thread. The obvious implication is that all threads are con-
tending for the same resource. However, a block same page
does not necessarily mean that no overlap was accomplished,
as this measure gives no notion of how much computation was
performed by the second thread before they also blocked.

Nonetheless, large numbers indicate that naively increas-
ing the level of multi-threading is not likely to improve per-
formance. As discussed in Section 2, there are basically two
ways of dealing with local resource contention: source modi-
fication and using more threads. Using more threads usually
improves the probability that at least one thread always has
work to perform. However, all threads in some lock-based
applications will block on the same lock, no matter how many
threads are added. In this type of application, only source
modification will allow multi-threading to be useful.

As SOR is a nearest-neighbor computation, there are
never any pages that are accessed by more than one local
thread and a thread on a remote node. Hence, after initializa-
tion, local threads never block on the same remote request. A
corollary of this is that fault time is nearly negligible even in
the single-threaded case, so there is very little multi-threaded
speedup. This is also true for Barnes and SWM750, which use
barriers but have more remote fault latency to hide by mul-
tithreading. Both applications were able to get 5% speedup,
compared to only 2% in SOR.

One of the performance problems that multi-threading can
introduce in a multi-writer system such as CVM is an in-
creased number of diffs. Recall that diffs are used to summa-
rize modifications to a given page. Multi-threading may break
the modification of a given page into modifications by differ-
ent threads. If the threads either are on different nodes, or
modify their parts of the data at different times, per-thread
diffs may be created instead of a single combined diff. The
Diffs Created and Diffs Used columns of Table 3 show that
this problem is negligible for FFT and SOR. It is only a minor

problem for Barnes and Water-Sp, as only approximately 10%
more diffs are created in the four-thread case. However, Ocean
with four threads generates 45% more diff creations. Also,
Water-Nsq creates 46% more diffs in the two-thread case, and
86% more in the four-thread case.

Breaking a single diff into multiple diffs can increase the
total size of created diffs. For example, if a single-threaded
application modifies the same region of shared memory multi-
ple times, increasing the level of multi-threading may result in
each modification being summarized in a separate diff. All
diffs but the last are pure overhead, as only the final result
needs to be seen at other nodes. However, both the number of
diff requests and total amount of communicated data go down
in Ocean and Water, so we infer that the bulk of the diffs cre-
ated by subdividing single-thread diffs are non-overlapping.

4.3.3 Effect on Memory System

This section describes the effect of multi-threading on
cache and TLB performance. We ran all of our experiments on
both the Alphas and an IBM SP-2, but omitted the SP-2 num-
bers because of space limitations. However, we only have
cache and TLB miss information for the SP-2, so we include
them in the paper.

Figure 2 shows total number of misses in the data cache
(D-cache), the data translation look-up table (D-TLB) and
instruction translation look-up table (I-TLB). Multi-threading
speedups on the SP2 were qualitatively similar to those on the
Alphas, but lower. The results are not directly comparable, as
the machines differ in many architectural respects, including
processor, network, and cache configuration. The Alphas and
the SP-2 also differ in virtual memory page size. We partially
compensated for this by forcing the SP-2 version of CVM to
use the Alpha’s 8Kbyte page size as the unit of shared coher-
ence. The SP-2 has only 64 Kbytes of cache per processor,
while each Alpha processor has 16 Kbytes in the first-level
cache, and 4 Mbytes in the second level cache. Hence the
cache effects in Figure 2 are probably more pronounced than
on the Alpha cluster.

D -c a c h e

1 4 .9 1 5 .8 1 5 .5 1 6 .2

5 4 .9 5 5 .6

7 9 .2

5 6 .2

1 3 5 .7

1 7 0 .3

2 5 1 .9

5 6 .4 5 6 .3

3 1 .6 3 6 .3 3 6 .7 3 7 .2

7 8 .5
8 9 .1

9 6 .4

8 1 .3

5 6 .5 5 6 .7

0

4 0

8 0

1 2 0

1 6 0

2 0 0

2 4 0

2 8 0

1 2 3 4

m
ill

io
n

m
is

se
s

B a rn e s
F F T
O c e a n
S O R
S W M 7 5 0
W a te r-S q
W a te r-N s q

D -T L B

6 .4 7 .1

9 .1
8 .0

1 2 .1 1 2 .0

1 4 .9

1 2 .2

1 8 .7

2 8 .5

3 4 .8

3 .0 2 .9 2 .7 2 .7

4 .8 4 .8 4 .8 5 .0

1 0 .6 1 0 .9

8 .3

1 1 .2

0

5

1 0

1 5

2 0

2 5

3 0

3 5

1 2 3 4 I-T L B

3 .5

4 .0
3 .7 3 .8

1 .9 1 .9

2 .8

1 .9

4 .5

5 .1

5 .8

0 .5 0 .5 0 .5 0 .5

2 .4 2 .3 2 .3 2 .4

5 .3
5 .5 5 .6

4 .3

2 .6 2 .6 2 .7 2 .7

0

1

2

3

4

5

6

7

1 2 3 4

Figure 2: Effect on Memory System When Increasing Number of Threads

Although there is a great deal of variation among the ap-
plications, both cache and TLB misses generally increase with
the level of multi-threading. The two outliers are Ocean, which
shows significant degradation of locality with increasing num-
ber of threads, and Water-Sp, which has fewer TLB misses at
four threads than at one. Ocean’s poor locality is caused by the
large number of thread switches. Water-Sp’s good locality is
probably due to the decreased message traffic and consequent
decrease in operating system calls.

4.4 Scalability
Table 4 shows statistics on runs for two and four threads

relative to the single-threaded cases, for up to sixteen proces-

sors. Barnes will not run with our default input size on sixteen
processors. As we have only eight machines, we had to run
multiple copies of CVM on each node. Therefore, raw per-
formance numbers would not be meaningful.

Instead, we show total messages, bandwidth consumed,
remote misses, and diffs created for each number of threads
and processors. While this information does not give us com-
plete information on scalability, it does allow us to gauge the
effect of multiple threads and increasing numbers of proces-
sors on the underlying DSM protocol. As the performance of
this protocol is crucial to overall performance, we expect that
raw performance would be consistent with the numbers that we
present.

Numbers in the table reflect multi-threaded cases relative
to the single-threaded cases, so positive numbers mean that the
quantities are increasing. All four quantities have a negative
effect on performance. Therefore, quantities that increase with
number of threads faster on sixteen processors than on four are
quantities that are not scaling well. This is not the case for any
of the applications except Ocean, which has a slowdown on
our multi-processor system. Increasing the number of threads
actually seems to benefit Water-Sp more at larger numbers of
processors than at smaller.

We therefore conclude that the interaction of multi-
threading with the underlying DSM is not affected by the

number of processors in the system. Hence, the scalability of
the multi-threaded system should be no worse than the scal-
ability of the uni-threaded system.

4.5 Case Study: Water-Nsq
Table 5 shows the effects of two source-level modifica-

tions that we made to the Water-Nsq application. Water-Nsq’s
primary data structure is a large array that describes force and
position information for each molecule. Responsibility for
updating molecules is partitioned among threads in the system,
but all threads usually read all molecules at some point during
each iteration.

No Opts refers to the version that differs from the default
Splash program only in that global variables were promoted to
shared variables in order to allow multiple threads to co-exist
on a single node. Multi-threading uniformly hurts the perform-
ance of this version of Water-Nsq. The problem is similar to
the example in Section 2. Naively multi-threading the work at
each node results in multiple local threads acquiring the same
locks and modifying the same shared data at different times,
leading to extra diff creations and messages. The last two col-
umns show that diff creations and uses rise with the number of
threads. Although messages are not shown in Table 5, the table
shows that the number of remote fault and lock requests uni-
formly rises with multi-threading level. Additionally, the Block
Same Page and Block Same Lock columns show that the ma-
jority of lock acquires, and roughly half of the page faults,
block more than a single thread at a time. This leads to re-
duced overlapping of communication and computation.

The second version, Local Barrier, includes optimizations
in four routines that aggregate local updates to shared data
structures. A CVM-provided local barrier stalls threads until
all have arrived. All threads then cooperate in applying local
updates to the global array. Each thread starts at a different
portion of the shared array, wrapping around to sections being
handled by other threads if they finish first. This is actually a
crude form of load-balancing among local threads, and helps
to increase overlapping of remote requests. Table 5 shows that
this optimization dramatically reduces the number of thread
switches. It also increases the number of overlapped page
faults and lock acquires, reduces the number of Block Same

P T
Total
Msgs

BW
Kbytes

Remote
Fault

Diffs
Created P T

Total
Msgs

BW
Kbytes

Remote
Fault

Diffs
Created

4 2 0% 0% -1% 0% 4 2 0% 0% 0% 0%
4 0% 0% -1% 0% 4 0% 0% 0% 0%

FFT 8 2 1% 0% -1% 0% SWM750 8 2 0% 0% 0% 0%
4 1% 0% -1% 0% 4 1% 0% -1% 0%

16 2 0% 0% -1% 0% 16 2 0% 0% -1% 0%
4 0% 0% -1% 0% 4 -1% 0% -1% 0%

4 2 -48% -65% -57% -62% 4 2 0% 0% 0% 0%
4 -18% -45% -36% -33% 4 0% 0% -1% 0%

Ocean 8 2 -1% -11% -7% -13% Water-Sp 8 2 0% -2% -1% 0%
4 16% -24% 0% 18% 4 -20% -18% -20% 4%

16 2 2% -21% -3% 18% 16 2 0% -2% -1% 0%
4 28% -3% 19% 74% 4 -18% -18% -19% 0%

4 2 0% 0% -5% 0% 4 2 1% 0% 1% 18%
4 0% 0% -5% 0% 4 3% 1% 6% 43%

SOR 8 2 0% 0% -10% 0% Water-Nsq 8 2 3% 2% 14% 58%
4 0% 0% -10% 0% 4 6% 3% 19% 101%

16 2 0% 0% -18% 0% 16 2 5% 4% 20% 95%
4 -1% 0% -18% 0% 4 11% 7% 29% 159%

Table 4: Scalability

Thread Remote Outstanding Block Same Diffs
T Spdup Switch Faults Locks Faults Locks Page Lock Created Used

No 1 0.0% 0 3454 10320 0 0 0 0 1874 8590
Opts 2 2.3% 40312 3704 10366 840 3389 1576 9227 1979 9199

3 -5.1% 66016 4006 10391 1457 6793 3248 18383 2345 10770
4 0.1% 90305 4052 10428 1890 10691 5037 27812 2270 10664

w/ 1 0.0% 0 3352 10261 0 0 0 0 1801 8075
Local 2 17.6% 20594 3706 10260 1452 12645 1178 0 2532 11114
Barrier 3 14.3% 30407 4031 10276 2796 25265 2991 0 3583 15399

4 20.1% 34645 3753 10254 3565 37794 4249 0 3304 14261
w/ 1 0.0% 0 3320 10261 0 0 0 0 1801 8052
Both 2 17.8% 19716 3692 10260 2200 12645 464 0 2570 11249
Opts 3 15.2% 29027 3949 10252 3635 25219 1729 0 3449 14820

4 24.6% 32734 3713 10260 4786 37812 2530 0 3271 14085

Table 5: Water-Nsq Optimizations

Pages, and eliminates all Block Same Locks. These gains are
somewhat mitigated by the dramatically increased number of
diffs created and used.

We attempted to take this modification further by making
the threads conscious of page alignment when deciding which
molecules owned by other threads to help compute. While this
eliminated most Block Same Pages, it also increased diff crea-
tions to the point where they overwhelmed the gains and re-
duced multithread speedup.

The final set of rows in Table 5 shows the result of com-
bining the local barrier optimization with a reordering of
molecule accesses performed in another part of the applica-
tion. Even though threads in this portion of the program update
disjoint sets of molecules, they essentially read all of them.
This optimization orders the reads so that they start at oppos-
ing ends of the molecule array. The change delays the occur-
rence of overlapping reads to the same page by multiple
threads as much as possible, at least for two threads. The result
is increased remote request overlap and decrease Block Same
Pages, without significantly affecting diff creations or the total
number of remote requests. This is the version discussed in the
rest of the paper.

5. Conclusions and Future Work
This paper has presented the results of our experiments in

latency-hiding via per-node multi-threading. Three of our ap-
plications sped up by at least 17%, and all gained some benefit
from the multi-threading. We identify the following as limiting
factors in multi-thread speedup:
1. Local contention for resources - Transparently adding per-

node multi-threading to explicitly-parallel applications often
results in multiple threads blocking on the same resource.
This can prevent or limit the overlapping of remote requests
and local computation.

2. Interactions with the underlying DSM - Splitting accesses to
a single page among multiple local threads can lead to the
threads accessing the data at different times. This can result
in multiple local diffs or remote page faults where only a
single one sufficed for the single-thread case. Unless the
multi-threading is uniformly good or uniformly bad at hid-
ing remote latencies, the tendency is to increase load imbal-
ance and barrier wait times.

3. Interactions with the memory system - Multi-threading in-
creases the pressure on both caches and TLBs. Without
cache and TLB-conscious thread scheduling, the memory
system may be the ultimate bottleneck in multi-threading
performance, especially with software DSMs.

4. Thread switch cost - Efficient thread switching is crucial to
getting good coverage of remote latency.

One obvious approach to solving the majority of the
above problems is to combine a lightweight, fine-grained
threading package with adaptive load-balancing [11]. Light-
weight thread packages [6] are fine-grained enough that it is
possible to load-balance through thread migration, and to
minimize unhealthy interactions with the underlying DSM by

bin scheduling threads [12]. The challenge is to build a light-
weight threading system without changing the programming
model, i.e. without constraining the threads to be run-to-
completion. We are continuing our research in this direction.

References

1. Keleher, P. “The Relative Importance of Concurrent
Writers and Weak Consistency Models” in Proceedings of
the 16th International Conference on Distributed Com-
puting Systems. 1996.

2. Agarwal, e.a. “The MIT Alewife Machine: Architecture
and Performance” in Proceedings of the 22th Interna-
tional Conference on Computer Architecture. May 1995.

3. Mowry, T. and A. Gupta. “Tolerating Latency Through
Software-Controlled Prefetching in Shared-Memory Mul-
tiprocessors” in Journal of Parallel and Distributed Com-
puting. June 1991.

4. Wilson, R.P., et al., “SUIF: An Infrastructure for research
on parallelizing and optimizing compilers”, ACM SIG-
PLAN Notices, December 1994. 29(12): p. 31-37.

5. Lim, B.-H. and R. Bianchini. “Limits on the Performance
Benefits of Multithreading and Prefetching” in Proceed-
ings of the International Conference on the Measurement
and Modeling of Computer Systems. 1996.

6. Freeh, V.W., D.K. Lowenthal, and G.R. Andrews.
“Distributed Filaments: Efficient Fine-Grain Parallelism
on a Cluster of Workstations” in Proc. of the First Sym-
posium on Operating Systems Design and Implementa-
tion. November 1994. Monterey, CA: USENIX Assoc.

7. Weimin Yu Cristiana Amza, A.L.C., Sandhya Dwarkadas,
Pete Keleher, Honghui Lu, Ramakrishnan Rajamony and
W. Zwaenepoel. “TreadMarks: Shared Memory Comput-
ing on Networks of Workstations” in IEEE Computer.
February 1996.

8. Gharachorloo, K., et al. “Memory Consistency and Event
Ordering in Scalable Shared-Memory Multiprocessors”
in Proceedings of the 17th Annual International Sympo-
sium on Computer Architecture. May 1990.

9. Keleher, P., A.L. Cox, and W. Zwaenepoel. “Lazy Re-
lease Consistency for Software Distributed Shared Mem-
ory” in Proceedings of the 19th Annual International
Symposium on Computer Architecture. May 1992.

10. Woo, S.C., et al. “The SPLASH-2 Programs: Characteri-
zation and Methodological Considerations” in Proceed-
ings of the 22nd Annual International Symposium on
Computer Architecture. June 1995.

11. Itzkovitz, A., A. Schuster, and L. Wolfovich, Thread Mi-
gration and its Applications in Distributed Shared Mem-
ory Systems, . 1997, Technion IIT.

12. Philbin, J., et al. “Thread Scheduling for Cache Locality”
in Proceedings of the 7th International Conference on Ar-
chitectural Supports for Programming Languages and
Operating Systems. 1996.

