Multi-threading and Remote Latency in Software DSMs

Kritchalach Thitikamol and Pete Keleher

University of Maryland
(kritchal | keleher)@cs.umd.edu

Abstract tual machine from the physical machine may allow a better

This paper evaluates the use of per-node multi-threadingapping of the computation on to the thread model. So-called
to hide remote memory and synchronization latencies in f@e-grain programs have several advantages, including archi-
software DSM. As with hardware systems, multi-threading t&cture independence, clarity of expression, implicit load bal-
software systems can be used to reduce the costs of renasteing, and ease of code generation for parallelizing compilers
requests by switching threads when the current thread blocki].

We added multi-threading to the CVM software DSM and Three of the seven applications sped up by at least 17%,
evaluated its impact on performance for a suite of comme@md the others by lesser amounts. However, our performance
shared memory programs. Multi-threading resulted in speetbes not come close to the potential speedup implied by proc-
improvements of at least 17% in three of the seven appligzssor utilizations [5]. We have identified five contributors to
tions in our suite, and lesser improvements in the other applhis shortfall, and present strategies for dealing with them, if
cations. However, we found that i) good performance is napplicable:
always achievable transparently for non-trivial applications. Local contention for resources - The threads on a single
ii) multi-threading can negatively interact with DSM opera- node often contend or block and wait for the same resource.
tions, iii) multi-threading decreases cache and TLB locality, Any instance of multiple local threads waiting on the same
and iv) any multi-threading speedup is dependent on availableresource means that multi-threading potential is being

work. wasted.
There are essentially two strategies for dealing with local
1. Introduction contention. First, one could create a large enough number of

This paper presents an empirical evaluation of the use ofthr.ea.dS that all of Fher_n are nevgr blocked at t.he same tlr_ne.
This is too expensive in our environment, but is practical in

per-node multi-threading to hide remote latencies in CVM [1], systems where threads are very lightweight [6]. The second
a software distributed shared memory (DSM) system. DSMs Y : re very iig gnt [o]. .
approach is source modification. We used this approach in

are software systems that emulate shared memory semantics in

software over hardware that provides support only for mes->onc of our applications.
. . atp Pport only . Reduction operations - As the single-thread-per-node model
sage-passing. Multi-threading for latency-hiding is a well-

; - . S is nearly universal, programmers tend to accumulate results
known technique for hiding cache miss latencies in the hard- Y brog

. . locally before communicating with other threads whenever
ware environment [2, 3]. However, the software environment ; . ; ;
. possible. These operations are essentially reductions. When
presents special challenges.

The paradigm usually assumed in DSM-related literature the single thread is split into multiple threads, each commu-

. Lo . : nicates local results to remote threads, resulting in extra
is that of a distributed system containing a single thread on o ; .
communication and working counter to the programmer’s

each processor. This arrangement is simple, and yet allows . .~ .
: - : optimizations.

reasonably high processor efficiency. The primary drawback L
. . - Reduction operations ideally should be identified in the
is that DSMs usually have high remote communication laten- .
: . source. The result would be better performance in both the
cies, causing the performance of such systems to be largely. - . .

. . >~ single-threaded case and similar performance in the multi-
dependent on the frequency with which remote lock acquires . . . e

. . threaded case. Since the reductions were not identified in

or data requests occur. Although the portion of this latency

: ; - the source of our applications, we modified the source to
contributed by local software overhead is often significant, the . : ;
. : ! . take advantage of CVM-provided local barriers. The contri-
majority results from time on the wire and processing at the | . . .

. T butions of all local threads are then aggregated into a single
remote location. Hence, this time is wasted at the local proces-
sor remote request.

. Caches and TLBs - Context-switching between threads re-

: 3
The primary performance advantage of per-node. mum.' duces the chance that caches and TLBs will retain state for a
threading is that multiple threads can ensure that work is avail- . S . X
given thread by the time it switches back in. The perform-

able when the currently active thread stalls on a remote re- S .
. T ance of even local computation is then degraded by in-
quest. If the level of multi-threading is high-enough, all latency :
Icrea:sed cache and TLB misses.

other than local OS overhead can be overlapped with usefu
. A memory-system aware thread scheduler would use an
local computation. Second, the separation of the system'’s vir-

approach closer to LIFO than FIFO. Our scheduler does rotherwise, locality exploited by the single-threaded system is
make this optimization. potentially not present in the multi-threaded case.
4. Application perturbation - Multi-threading changes the or- The division into multiple threads can be problematic
der that events occur, both within and between nodes. Thigen if contiguous matrix chunkse allocated to all threads
has a non-deterministic effect on performance. on the same node. For example, consider the case where each
5. Thread switch cost - Although not as expensive as remdteead moves linearly through its portion of the matrix, and
accesses, switching between local threads does have a #igre are two threads per node. If data is shared on the bound-
nificant cost. ary between each pair of threads, that data will be accessed at

One of our primary goals was to see if multi-threadinthe beginning of an iteration by the second thread, and at the
could be added without modifying applications. Our applicaeend of the iteration by the first. Between the time of the second
tions are all parameterized by command-line options to handhleead’s access and that by the first, the data may have been
different numbers of nodes. Hence, the system can usually atisplaced from local memory because of consistency actions or
per-node multi-threading transparently to the application wittlack of capacity. The multi-threaded system will then suffer
out affecting correctness. However, as discussed above, muttibre access misses than the single-threaded system, even
threading may not be transparent to application performancethough the same data is allocated to each node in both cases.

The rest of this paper proceeds as follows. Section 2 de- Although the above problem affects performance, it does
scribes the programming model assumed by CVM, and thet affect correctness. However, the most immediate conse-
changes made to support multi-threading. Section 3 descrilspgence of per-node multi-threading is that whether two threads
the implementation of multi-threading in CVM and the implisee the same instances of global program data depends on
cations of various design choices, and Section 4 describes ahether they are co-located on the same processor. We ad-
performance. Finally, we conclude in Section 5. dress this discrepancy by disallowing modifications of global

: data after initialization is complete. Since global data is con-
2. Programming Model sistent across all nodes until startup has finished, we thereby

The majority of DSM-related literature assumes a loc@nsure that global data will be uniform across the views of all
tion-transparent programming model in which the number @fireads.
threads and processors is specified as part of the input. Appli- |n both the single- and multi-threaded cases, threads syn-
cation behavior other than performance is assumed to be inggaronize through global locks and barriers. No process is al-
pendent of the number of system threads. Systems consist @d@ed to proceed past a global barrier before all processes
number of threads that can transparently access one or m@iigve. Global locks can be held by only a single thread at a
shared segments. Synchronization is usually accomplishgfle.
through system calls to the DSM.

While not specified in the programming model, most o?"
these systems locate a single thread on each physical proce@sgr CVM
in the system. The advantage of this scheme is its simplicity.

More than a single thread per node would introduce the fric- The DSM target used in this work is CVM, a software
tional costs implied by thread switching. A single thread p&?SM that supports multiple protocols and consistency models.
node simplifies handling the scope of heap and stack-allocateéie commercially available systems such as TreadMarks [7],
data. This data is usually private to each thread; only desfgVM is written entirely as a user-level library and runs on
nated, shared segments are visible to more than a single pfoest UNIX-like systems. Unlike TreadMarks, CVM was cre-
essor. The single-threaded scheme also has the advantagatest specifically as a platform for protocol experimentation.
making the relationships between threads uniform. Sharing The system is written in C++, and opaque interfaces are
between any pair of threads costs the same as any other Ffictly enforced between different functional units of the sys-
Hence, the programmer or compiler that distributes the dd&m whenever possible. The base system provides a set of
need only to accommodate a single level of sharing. classes that implement a generic protocol, user-level threads,

Multi-threaded nodes add an additional level to the hiera@nd network communication. The latter functionality consists
chy of memory access times, i.e. threads that are co-locatedodgfficient, end-to-end protocols built on top of UDP.

a single node share an affinity that is not present between New shared memory protocols are created by deriving
threads located on different nodes. To understand the probletiasses from the badeage and Protocol classes. Only
consider an example in which a simple matrix application alléhose methods that differ from the base class's methods need to
cates the computation in contiguous chunks of rows to eaef defined in the derived class. The core DSM routines call
thread. With only a single thread per processor, the distribprotocol hooks before and after page faults, synchronization,
tion automatically benefits from any spatial locality in theéind I/O events. Since many of the methods are inlined, the
computation, as all rows on a single node are contiguous. rgsulting system is able to perform within a few percent of a
the multi-threaded case, care must be taken to allocate cé@verely optimized system, TreadMarks, running a similar
secutive chunks of the matrix to threads on the same nogéotocol. However, CVM was designed to take advantage of

Implementation

generalized synchronization interfaces, as well as to use mulibn determine the page's state. If the local copy is read-only,
threading for latency toleration. We therefore expect the paghe handler allocates a page from the pool of free pages and
formance of the fully functional system to improve over theerforms abcopy to create dwin. Finally, the handler up-
existing base. grades the access rights to the original page and returns. If the

Memory Consistency -CVM's primary protocol imple- local page is invalid, the handler requests a copy from the
ments a multiple-writer version of lazy release consistencyage's owner. If write notices are present for the page, the
which is a derivation ofelease consisten[8]. In release con- faulting processor requests the corresponding diffs in parallel.
sistency, a processor delays making modifications to shamthen all necessary diffs have been received, they are applied
data visible to other processors until speai@uireor release to the page in increasing timestamp order.
synchronization accesses occur. The propagation of modifica- Multi-threaded CVM - We extended the original
tions can thus be postponed until the next synchronization dqp¥M to support non-preemptive thread services. Non-
eration takes effect. Programs produce the same results for pih@emptive threads provide all the functionality needed to hide
two memory models, provided that all synchronization opergemote latency. We also modified synchronization and com-
tions use system-supplied primitives, and that all conflictingiunication services to function properly in multi-threaded
shared accesses are ordered by synchronization or progemaironments. Since CVM'’s architecture enforces the separa-
order. In practice, most shared-memory programs require littien of the basic DSM services from protocol-specific func-
or no modifications to meet these requirements. tions, consistency models can usually be implemented without

Lazy release consistency (LRC) [9] allows the propaga&hanging core CVM code. We were therefore able to restrict
tion of modifications to be further postponed until the time abur changes to only a few lines of consistency protocol code.
the next subsequent acquire of a released synchronization vari- The thread services uses a simple policy for scheduling.
able. At this time, the acquiring processor determines whidthread switches always takes place when remote requests are
modifications it needs to see according to the definition &knt, and whemisplacedreplies are received. A reply is mis-
LRC. To do so, the execution of each process is divided inpdaced if it was sent in response to a request from a thread
intervals each denoted by anterval index Potentially each other than the currently active thread. Thread switches can also
synchronization operation causes a new interval to begin aoctur as the result of explicit application requests through a
the interval index to be incremented. Intervals of differen€VM system call.
processes are partially ordered by assigningeetor times- We also modified CVM'’s core synchronization routines in
tampto intervals for each processor. At an acquire, processamder to reduce their communication requirements in multi-
p sends its current vector timestamp to the previous releasettoeaded environments. Barrier operations were modified so
the same synchronization variabip,Processon then piggy- that all but the last local thread will thread switch upon arriv-
backs on the release-acquire messagewdte noticesfor all ing at a barrier. The last thread aggregates all local arrivals
intervals named in's current vector timestamp but not in thento a single per-node arrival message. Barrier release mes-
vector timestamp it received from sages are handled similarly.

False sharing- False sharing occurs when two or more We extended this same idea to the application level in or-
processors access different variables within a page, with ddr to support reduction-like operations that otherwise use
least one of the accesses being a write. False sharing is prglbbal locks. A common pattern in parallel programs is to ac-
lematic for software DSMs because of the large page-size @amulate modifications to shared data structures locally, up-
herence units. CVM’smultiple-writer protocol reduces the dating the shared structure only at the end of the current itera-
effects of false sharing by allowing two or more processors ton. Transparently adding multi-threading to this type of ap-
simultaneously modify local copies of the same shared pageplication causes each local thread to update the shared data

These concurrent modifications are merged usliffg to structure, resulting in additional (and unnecessary) synchroni-
summarize the updates. A diff is created by performing a pagetion and data messages. We addéacal barrier mecha-
length comparison between the current contents of the pagem that allows co-located threads to synchronize with each
and atwin of the page that was created at the first write accesgher. Such a mechanism can be used by the application to
If each concurrent writer summarizes its modifications as accumulate results from all local threads into a single remote
diff, the system can create a copy that reflects all modificationpdate. Unfortunately, this type of mechanism cannot be gen-
by applying the concurrent diffs to the same copy. Concurregtated automatically unless the reduction operations are al-
diffs only overlap if the same location is written by multipleready visible to the underlying DSM. CVM does support sim-
processors without intervening synchronization, which iple reduction types, but none of the applications in our study
probably a data race. take advantage of them.

OS interface -CVM uses the UNIXmprotect system Additionally, the behaviors of both lock acquire and re-
call to control access to shared pages. Any attempt to perfoease operations have been changed. We implemented a local
a restricted access on a shared page generald&SEGV queue for each lock so that multiple local acquires result in
signal. TheSIGSEGVsignal handler examines local informa-only a single remote lock request. Threads that attempt to ac-

quire a lock that has already been requested locally are placed

Input Set Sync Type | Modifications Our application suite consists of seven applications: Bar-
Barnes 10240 particles barrier g _ _
— e — . nes, FFT, Ocean, Wgter Sp, and Wat.er Nsq from the Splash
Ocean 258 x 258 ocean] barmier, Iock o suite [10], SOR, a simple nearest-neighbor application, and
SOR 2048 x 2048 barrier - SWM750 from the SPEC92 benchmark suite.
Water-Sp | 4096 molecules | barrier, lock g, r i i i i i
SWTED 5% P . Table 1 !I5t§ specifics for the gpp'hcatlons in our study.
Water-Nsq | 512 molecdles | Bamer Tock 9T Sync Type indicates the synchronization operations used by
T — the applications. Th#odifications column shows three
Table 1: Application specifics types of code modifications that we made, together with the

on a local per-lock queue. The release code prefers the asons that the modifications were made: ,
habitants of this queue over any remote thread, even if the re- 9 - correctness Global program variables are accessible
mote thread requested the lock before the local threads. The by local threads on each node. Hence, we disallowed

result is neither fair nor guaranteed to make progress, but per- the use of any global variables that are modified after
forms well in practice. the |n|t|allggt|on phase. If a glpbal variable was origi-
Although fine-grained thread systems can improve load- nally modified during execution, we then privatized
balancing by moving work to lightly-loaded nodes, our system that variable for each thread on a local node. _
implements coarse-grained, non-preemptive threads, and does' - Performance- As discussed in Section 2, reduction
not currently support thread migration. operations can become bqt.tlenecks When' multi-
threading is added. We modified the applications to
4. Results use per-node barriers and update remote data only
This section presents the results of running seven applica- once per node.
tions over four and eight processors with multi-threaded CVM. s - performance- Parallel shared memory programs of-
We first describe the environment and the applications, then ten partition work by assigning different ranges of the
proceed to discussions of the communication requirements, same array to each thread. We enhance load-
and the effects of multi-threading on DSM behavior, scalabil- balancing among local threads by allowing all threads
ity, and the memory system. We finish with a case study of to access the entire array. Individual elements are
source modifications that attempt to improve the above inter- protected from simultaneous modification through the
actions and reduce contention for resources. use of local flags. This technique is not applicable to
all the applications in our suite.
4.1 Experimental Environment Barnes is a modified version of the gravitational N-body

We ran our experiments over CVM's laz multi_Writersimulation from Splash-2. FFT is a 3-D Fast Fourier Trans-
rotocol on a cIusteF; of eiaht Aloha 2100 4/27{_) nodes Eaf rm that uses matrix transposition to reduce communication.

XI ha node has four 2759 MHzp Alpha. Drocessors an'd 2g%:ean (contiguous ocean from Splash-2) simulates large scale
p pha p % ean movements based on eddy and boundary curBis.

Mbytes of memory. We used only a single processor per node . : .

. X . . Mmplements successive over-relaxation uses nearest neighbor

in order to avoid contention at the network interface. The A?:'ommunication SWM750 performs a two dimensional stencil

phas run Digital UNIX V4.0, and are connected via Digital's ' b

. . T computation that applies finite-difference methods to solve
Gigaswitch/ATM communications hub. Eactode currently y . . o .
has a 155 MBit/sec ATM interface. shallow-water equations. This application was automatically

. parallelized by the SUIF compiler [4]. Finally, Water-Nsqg and
CVM runs on UDP/IP over the ATM. Simple 2-hop IOCI(Water-Sp are molecular dynamics simulations from Splash-2.

acquires take 93|Zl§ecs, whille 3-hop lock acquireg take 1383\ hile the Water-Nsq use®(N?) algorithms, the Water-Sp
usecs. Lock acquires are |mplemented by sending a requ§sts a more efficient algorithm by imposing a uniform 3-D
message to the lock manager, which then forwards the req 4 of cells on the problem domain.

on to the last requester of the same lock. This requires ofly e single-threaded versions of these applications achieve
tvyo messages if the manager is also the Iast_owner of the IO@f@ht-processor speedups (versus uniprocessor speedup with-
Simple page faults across the network require J1¥s in ¢ cyM calls) of 2.56, 2.29, 8.42, 1.86, 2.77 and 2.22 for
average. Page fault times are highly dependgnt on the COSB%T’nes, FFT, SOR, SWM750, Water-Nsq and Water-Sp and
mprotect calls, 4@secs, and the cost of handling signals at th¢ 33 These relatively low speedups are primarily due to the
user level, 98usecs. Minimal 8-processor barriers cost 247@ombination of very fast processors and an inefficient OS
psecs. Thread switches cost approximatgigécs. communication implementation.

4.2 Application Suite

1.20

user O barrier —
Efault lock

]

V277727777727 1]

]

V7777777 -

V2777777772 1

iy

|
]

2z]

ji
|
7|
I

%
%

V7772777277777 7% 77777
2
2

V2777777777771 V7

%

V7777777222222, 2% P
777 7777775, OO

%

vy,

2
N
4

Water-Sp 8/1 ¢

V2772777277772]

%

U e,

%

= —1
%

%

Uiyt

%

77777777778 —]

U

7

V277zzzza =]

e —

V77777778 &]

%

2
3
4
2
3
4
2
3
4
2
3
4

Barnes 4/1
Barnes 8/1
FFT 4/1
FFT 8/1
Ocean 4/1
Ocean 8/1
SOR 4/1
SOR 8/1 F
SWM750 4/1 [
SWM7508/1 []
Water-Sp 4/1 |
Water-Nsq 4/1 [
Water-Nsq 8/1

Figure 1: Normalized Execution Time on 4 and 8 Processors

FFT is caused by poor alignment of data on pages and conse-
4.3 Overall Results guent load imbalance. More discussion of these effects can be

Figure 1 shows the performance of the applications sfound later in section 4.3._2. The increase in user time in
four and eight processors, and from one to four threads, ngVM750 results from. a}ddltlonal run-time routines that im-
malized to single-threaded execution times. Note that thereP§ment the SUIF fork-join model. _
no three-thread case for Ocean because this application re- Another barrier-only application, SOR, improves by only
quires the number for threads to be a power of two. Oceg? ON €ight processors. Since SOR's speedup is near-linear
Water-Nsq and Water-Sp achieved large multi-thread speéd®" m_thglsmgle-thre?deq case, we d!d not expect it to im-
ups. On eight processors, they sped up more than 17% wRfiQVe S|gn|f|cantly. We ve mclud_ed it prlmarlly.to shovv_ Fhat
two threads, and 20% with four threads. Barnes, FET, afH' multi-threaded implementation imposes little additional
SWM?750 also improve by approximately 5% on eight proceQ_\/erhead, even when there is very little remote latency to hide.
sors and more on four. SOR, however, sped up only 2% on ‘Water-Sp and Water-Nsq sped up by more than 10% on
eight processors. both four and eight processors. On eight processors and four

Figure 1 also breaks this speedup into contributions froffiréads, Water-Sp sped up by 41%, and Water-Nsq by 24%.
user time (which includes all local consistency time), timgOth applications made gains in both fault and lock time.
spent waiting at barriers, non-overlapped time spent waiting 6iPWever. most of Water-Sp's speedup is from faults, while
faults, and non-overlapped time spent waiting for locks. [0St of Water-Nsg's is from locks.
general, multi-threading reduces fault and lock time by allow- ©Ocean performs poorly on CVM due to the large number
ing other threads to run when the current thread blocks orPhfaults. On our single-thread case, it slowed down by ap-
remote request. However, we have found that multi-threadiRgoximately a factor of three. Although the multi-thread exe-
tends to increase load imbalance. This increase is primarAgtions have a similar number of faults, much of the fault la-
caused by the fact that there is a great deal of variation amdfgcy iS hidden by thread switching, and we get a large im-
processors in how successful they are at hiding remote later&Pvement in performance. Ocean was included primarily to
User times vary because we are not currently accounting f510W_the effect of multi-threading on applications that are
the cost of handling remote requests that arrive while applicything but well-tuned for our environment.
tion code is executing. _In general, two t_hreads usually improve performange, but

Barnes achieves about 5% multi-thread speedup in gﬁldnmnql threads increase barrier imbalance and mte_ract
tests on both four- and eight-processor cases, primarily frd#gOry with the underlying DSM. Our system can actually in-
reductions in fault time. This version of Barnes differs fronf'€@Se load imbalance if the system is more effective at over-
the Splash version in that only barrier synchronization is usegPPing computation with communication at some nodes than
Shared updates that were guarded by locks are now either s2Hfers:
alized or partitioned among the processors. o

Neither FFT nor SWM750 sped up significantly on eighf-3-1 Effect on Communication
processors, although on four processors they sped up by ap- Table 2 shows the effect of multi-threading on the com-
proximately 9%. The spike that appears at three threadsnwnication performance of CVM. THgarrier, Lock andDiff

discuss this further in Section 4.3.2, and use Water-Nsqg as a

Total Delay (msec) Total Messages BW. i |

T [Barrier | Lock Diff | Barrier | Lock Diff Total | Kbytes case Study in Section 4.5.
Barnes | 1 33379 0 23221 112 0 17828 17940 56522

2 34510 0 17878 112 0 17866 17978 56593 . .

3| 33798 o| 17015 112 o| 1s0es| 1s177] sessz| 4.3.2 Effect on DSM Consistency Actions

4 34286 0 17152 112 0 18278 18390 57679 H . H
— s o T BT T Table 3 shows .detalls of the effect of mult!—threadlng on

2| 10150 o| 38533 203 of 7013] 7216] esaes3| the low-level behavior of the DSMhread switchis the total

3 15622 of sai77| 203 of 1109 11812 1100927| number of useful thread switches. The four-thread number

4 10740 0 37260 203 0 7024 7227 64704 . . .

Gooan || 2o714| 5338| esorr| oata| zews| dooso| sorar| zaaws| Varies from only 6394 in SQR, to 14.9493 in Water-Sp.

2| 28077 aeeo| 44s67| e286| 2882 47747] s6915| 224946 The rest of the table gives details of remote page and lock

4 36188 3836 32700 6364 2910 56192 65466] 184637 H 3
T T T o5 eduest overlappindRemote FaultsandRemote Lockgst the

2| 12637 of 2400 1211 of 1162| 2373] 3ea0s| total number of faults and lock acquires that require network

3 11305 of 18s0] 1211 of ezl 23731 36498| communication Outstanding Faultsand Outstanding Locks

4 13382 0 1767 1211 0 1162 2373 36498
S 2 0 22| 1533 ol sssl Tosasl 4asss| give measures of how effective the system is at overlapping
750 |2 24 0 37| 1583 of ssos| 10341f 44523 multiple remote accesses. These numbers are counts of how

3 24 0 36 1533 0 8814 10347 44523 . .

d s ol 38| 1s3s of ss07| 10s0| ass2s| MaNy remote requests are currently outstanding each time a
water- | 1| 10051] 4569] 82009 220 723| oeass| eoss7| 1a1756| remote request is initiated. Directly measuring the overlap of
Sp 2 lo373| 4247 50162 217 719] 68445{ 69381| 141820/ communication and computation is difficult to measure be-

3 24902 3501 49108 236 723 79188 80147] 158608 .. .

4| ses2| s7on| sso0s| 216|723 s7e01| smes0] 1o463| CAUSE WE have no way of determining e).(a_-Ctly when replies
water- |1 3e28] 26473] 73e1] 266 22035 s207| 2s598] 19582 arrive in our system. However, these quantities do measure the
Nsq 2 3801 16611 5280 266 22034 3892 26192 19791 5 H H

sl omsal 1302l seor| 2eel 2v001| aessl 2001 20081 f_requency of muItlpI_e requests being outstanding at the same

4] 3141] 12692] 5238 271| 2003a] as32] 26837] 2008s| time. For example, if thread; blocks on a remote page fault

and the system switches 1o, these statistics are not incre-
Table 2 : Communication Performance mented. However, if thread, then blocks on either a remote

lock or remote fault, th®©utstanding Faultswill be incre-
columns show the remote latency that could not be overlapped \iad to reflect the fact tha:

) . . o t has an outstanding fault. In all
with local computation. We. expected lock and (,j'ﬁ Wa't_ tiMeRases except the three-thread FFT, outstanding faults and locks
to reduce because of the direct effect from multi-threading. erf'liformly increase as the multi-threading level increases.
the other hand, total barrier wait time is more difficult to pre-

X Block Same PagandBlock Same Lockre the number of
dict because our scheduler does not control loads that mayhe. ¢ multiple threads blocked on the same page or lock. As
changed dynamically. Furthermore, because our applicatio

X\%ch, they give one measure of local contention for shared
distribute work load by dividing problem size with total num- 9

ber of nodes (total number of threads in this case), we ex-

pected barrier wait times to increase when using three threads fuead | Romote Ouistapding | Plock Same DA
) T | Switches | Faults | Locks | Faults | Locks | Page | Lock |Created| Used
per node. This matches the results from FFT, Water-Sp affighmes | 2 of 7727 0 0 0 o o ao11| 2901
Wate r- qu . 2 28446 7711 0 7472 0 1052 0 4960| 23040
3 37542 7707 0 14045 0 1964 0 5009| 23091
The Messagexolumns reflect the total of each type of ol ae03al 7772 ol 1se13 ol a1 ol sossl 23488
message, and tH8W column shows the total communication |FFT | 1 of 7360 0 0 0 of of seowef 7070
. H . . 2 17206 7268 0 1527 0 5992 0 6016 7070
bandwidth requirement®iff messages are used to satisfy re; 3l omoorl 1omsal o 10ssl o ssesl ol e7sil 12140
mote data requests. Th®ck column shows that there is es- 4| 33310] 7057 of 4532 of 17o76] of e016| 7070
H H ean 1 0] 47290 643 0 0 0 0] 27852| 59835
sentially no _changelln t.he number of. chk messages as the (&= o ermal asicel ema| a7067 of s7al ol 2563l saois
gree of multi-threading increases. This implies that we are abje 4| 137898| 47056] 648| 184565 0| 14032| o] 32759| 61252
to successfully aggregate all local synchronization accesses|tR ; 6392 ggz 8 6482 8 22 8 ﬁgi ﬁgi
a given lock into a single remote access. This conclusion |s a| 7848 a2s4 of 10089 of 44| o 1162] 1162
supported by th@&lock Same Lockolumn in Table 3, which Al o272] 4284 of 14382 of 66| of 1162 1162
. SWM 1 0] 11282 0 0 0 0 0 6050| 16365
shows that we never had multiple threads block on the samg, ol 10484l 10350 ol 9400 ol a2l ol eosil 16372
|0ck_ 3 28635| 10305 0 12752 0 6345 0 6052| 16379
. . . . 4 36787] 10269 0 16300 0 9497 0 6051] 16372
The slight increases in diff messages for Barnes, SORwaer 171 o 72758 36 0 0 O O 25206] 069342
H H p 2 99262| 72466 94 79311 3816 6346 0] 25267| 69349
SWM750, and Water-Sp reflect the small increases in the|P 3| tioassl sarsal oel 176922l 7101l emel ol 2uocel soi0n
bandwidth. FFT’s diff messages rise slowly from one to two tq a| oro10f 61434| 96| 218615] o900l 3365| 0| 28848| 58576
: H H ater- 1 0 3320] 10261 0 0 0 0 1801 1801
four threads_, with a splke.at the three-thre:?\d case. Finally, th‘@-ésq ol 1e716l seoal 1omeol 2200l 12645l asal o as70l 2570
number of diff messages increases dramatically for Ocean and 3| 20027 3949| 10252| 3635 25219 1729] o| 3449| 3449
Water-Nsq, for example, about 20% and 40% with fou 4] s2rsa] sms] 10260] aveef sreiz] 2530] o] szia] s2;

threads for Ocean and Water-Nsqg respectively. Generally, .
increase of diff messages can result from bad page alignment Table 3: DSM Actions
and finer grain created by per-node multithreading. We will

resources. They also give a measure of how ill-suited the ggeblem for Barnes and Water-Sp, as only approximately 10%
plication is for transparent multi-threading. SWM750, for exmore diffs are created in the four-thread case. However, Ocean
ample, generated approximately 11,000 remote faults, awith four threads generates 45% more diff creations. Also,
approximately 3100block same page for each additional Water-Nsq creates 46% more diffs in the two-thread case, and
thread. The obvious implication is that all threads are coB6% more in the four-thread case.
tending for the same resource. Howevebhlak same page Breaking a single diff into multiple diffs can increase the
does not necessarily mean that no overlap was accomplishtedial size of created diffs. For example, if a single-threaded
as this measure gives no notion of how much computation wagplication modifies the same region of shared memory multi-
performed by the second thread before they also blocked. ple times, increasing the level of multi-threading may result in
Nonetheless, large numbers indicate that naively increasach modification being summarized in a separate diff. All
ing the level of multi-threading is not likely to improve perdiffs but the last are pure overhead, as only the final result
formance. As discussed in Section 2, there are basically tweeds to be seen at other nodes. However, both the number of
ways of dealing with local resource contention: source modiif requests and total amount of communicated data go down
fication and using more threads. Using more threads usuallyOcean and Water, so we infer that the bulk of the diffs cre-
improves the probability that at least one thread always hat®d by subdividing single-thread diffs are non-overlapping.
work to perform. However, all threads in some lock-based
applications will block on the same lock, no matter how mar4.3.3 Effect on Memory System
threads are added. In this type of application, only source Thjs section describes the effect of multi-threading on
modification will allow multi-threading to be useful. cache and TLB performance. We ran all of our experiments on
As SOR is a nearest-neighbor computation, there agth the Alphas and an IBM SP-2, but omitted the SP-2 num-
never any pages that are accessed by more than one lgeak pecause of space limitations. However, we only have

threadand a thread on a remote node. Hence, after initializgzche and TLB miss information for the SP-2, so we include
tion, local threads never block on the same remote requestym in the paper.

corollary of this is that fault time is nearly negligible even in Figure 2 shows total number of misses in the data cache
the single-threaded case, so there is very little multi-threadg§l.cache), the data translation look-up table (D-TLB) and
speedup. This is also true for Barnes and SWM750, which Yagtryction translation look-up table (I-TLB). Multi-threading
barriers but have more remote fault latency to hide by mWpeedups on the SP2 were qualitatively similar to those on the
tithreading. Both applications were able to get 5% speeduyfiphas, but lower. The results are not directly comparable, as
compared to only 2% in SOR. . ~ the machines differ in many architectural respects, including
~ One of the performance problems that multi-threading cgf3ocessor, network, and cache configuration. The Alphas and
introduce in a multi-writer system such as CVM is an inme sp-2 also differ in virtual memory page size. We partially
creased number of diffs. Recall that diffs are used to suUMm&mpensated for this by forcing the SP-2 version of CVM to
rize modifications to a given page. Multi-threading may breakse the Alpha’s 8Kbyte page size as the unit of shared coher-
the modification of a given page into modifications by differance. The SP-2 has only 64 Kbytes of cache per processor,
ent threads. If the threads either are on different nodes, \gkile each Alpha processor has 16 Kbytes in the first-level
modify their parts of the data at different times, per-thregthche and 4 Mbytes in the second level cache. Hence the

diffs may be created instead of a single combined diff. Theyche effects in Figure 2 are probably more pronounced than
Diffs Createdand Diffs Usedcolumns of Table 3 show that g the Alpha cluster.

this problem is negligible for FFT and SOR. It is only a minor

280 35
—e@—Barnes

—E—FFT 251.9
240 4|—&—Ocean
X—SOR
—H—SWM750
—@— W ater-Sq
200 A —+—W ater-Nsgq

160 + - - ="~ - - - - - - - - - - -

120 4 - - - - - - - - - - - - - -

million misses

80 5 - - - - - - -mz92 - @813

6.8 X565 56.2
40 3 o T KBE - 1 7o 37.2

St Ot 16.2

1 2 D-cache 3 4 1 2 D-TLB 3 4 1 2 I-TLB 3 4

Figure 2: Effect on Memory System When Increasing Number of Threads

Although there is a great deal of variation among the apumber of processors in the system. Hence, the scalability of
plications, both cache and TLB misses generally increase witte multi-threaded system should be no worse than the scal-
the level of multi-threading. The two outliers are Ocean, whichbility of the uni-threaded system.
shows significant degradation of locality with increasing num-
ber of threads, and Water-Sp, which has fewer TLB missesgt Case Study: Water-Nsq
four threads than at one. Ocean’s poor locality is caused by the
large number of thread switches. Water-Sp’s good locality
probably due to the decreased message traffic and conseq
decrease in operating system calls.

.~ Table 5 shows the effects of two source-level modifica-
{ibns that we made to the Water-Nsq application. Water-Nsq's
Lﬂ)?m]ary data structure is a large array that describes force and
position information for each molecule. Responsibility for
. updating molecules is partitioned among threads in the system,
4.4 Scalability but all threads usually read all molecules at some point during
Table 4 shows statistics on runs for two and four threadsach iteration.
relative to the single-threaded cases, for up to sixteen proces- No Optsrefers to the version that differs from the default
Splash program only in that global variables were promoted to

rot | sw | remote | bt rot | sw | remote | bt shared variables in order to allow multiple threads to co-exist
78 I 7] 7Y R o Ep e e Pl ceadl - on a single node. Multi-threading uniformly hurts the perform-
A1 Ov% Ol 1%L 0% a1 o owl ol okl gnce Of this version of Water-Nsq. The problem is similar to
FFT 8|2 1% 0% -1% 0%|swM750 | 8| 2 0% 0% 0% 0%
P I I L 4] 1| ow| awl ol the example in Section 2. Naively multi-threading the work at
i I I 51 R IO B2 % wl Gl od each node results in multiple local threads acquiring the same
42| 8%l -65%| 579 -62% 412 o[0w owl 0%l Jocks and modifying the same shared data at different times,
4 -18%| -45% -36%) -33% 4 0% 0% -1%) 0% . . .
ocean [B] 2| 1% 1w 7w| 1awm|waersp [8]2] 0% 2| % ow| leading to extra diff creations and messages. The last two col-
4] 16%| -24% 0% 18% 4| -20%| -18%| -20% 4% h hat diff ti d i ith th b f
IS 2 T B R BT oo o%] Umns show that diff creations and uses rise wi e number o
4] 28%| 3%| 19%| 74% 4] 8% 8% a9l 0%l threads. Although messages are not shown in Table 5, the table
42 0% 0% 5% 0% 42 1% 0% 1%| 18% y ! .
al ow| ow| %l ow 4] 3wl 1 ew| 43 shows that the number of remote fault and lock requests uni-
SOR L [BAL el el ol oefreertea B2 e 2l el ol formly rises with multi-threading level. Additionally, tidock
e[2] 0% 0% -18%(0% e[2] o) 4wl 20% - 995% Sgme PagendBlock Same Lockolumns show that the ma-
4 -1% 0% -18% 0% 4 11% 7% 29% 159%

— jority of lock acquires, and roughly half of the page faults,
Table 4: Scalability block more than a single thread at a time. This leads to re-

sors. Barnes will not run with our default input size on sixteefiiced overlapping of communication and computation.

processors. As we have only eight machines, we had to run The second versiom,ocal Barrier, includes optimizations

multiple copies of CVM on each node. Therefore, raw pepj four routines that aggregate local updates to shared data

formance numbers would not be meaningful structures. A CVM-provided local barrier stalls threads until
Instead, we show total messages, bandwidth consumgg have arrived. All threads then cooperate in applying_local
remote misses, and diffs created for each number of threéjc?sdates to the global array. Each thread starts at a d|ffer_ent
and processors. While this information does not give us Cor%gmon of the shared array, wrapping around to sections being
’ handled by other threads if they finish first. This is actually a

plete information on scalability, it does allow us to gauge thcerude form of load-balancing among local threads, and helps

effect OftthItlréle Ithreagssslnd ulcreaI\SIXQ tr;]umberfs of proceé?increase overlapping of remote requests. Table 5 shows that
Sors oh the underlying protocol. As e performance gh; optimization dramatically reduces the number of thread
this protocol is crucial to overall performance, we expect the\t/vitches. It also increases the number of overlapped page

raw performance would be consistent with the numbers that Ye\its and lock acquires, reduces the numbeBlotk Same
present. ’

Numbers in the table reflect multi-threaded cases relative Thread Remote | Outstanding | Block Same Diffs
H R HY kha T| Spdup | Switch | Faults] Locks | Faults| Locks | Page | Lock | Created| Used
to the.s.lngle th.readed'cases, SO positive 'r!umbers mean tha"t the———===t o BT BT —— T
guantities are increasing. All four quantities have a negatiVeyps |2| 23%| 40312| 3704| 10366] 840| 3389| 1576| 0227| 1979| o199
effect on performance. Therefore, quantities that increase with 3| -5.1%| 66016 4006| 10391) 1457) 6793| 3248 18383) 2345(10770
. 4] 0.1%| 90305|] 4052] 10428] 1890] 10691} 5037| 27812 2270] 10664
number of threadfasteron sixteen processors than on four ar n -
quantities that are not scaling well. This is not the case for anyeca 2| 17.6%| 20594| 3706| 10260| 1452| 12645| 1178
3|
4
1
2
3
4

w/ 0.0%) 0] 3352] 10261 0 0 0 0 1801 8075

0 2532 11114

of the applications except Ocean, which has a slowdown gfr ;gij 22;‘2; ;‘32; iggi ggzg giigi jgi; g giﬁi ﬁgzi

. . . .1%)

our multi-processor system. Increasing the number of threadts 0.0% o 3320 0261] 0 o o o 1e01| 8052
actually seems to benefit Water-Sp more at larger numbers ftn 17.8% 19716| 3692| 10260| 2200| 12645 464 0| ~ 2570| 11249
Opts 15.2%| 29027| 3949| 10252 3635| 25219] 1729 0 3449 14820

processors than at Sma”er' 24.6%| 32734| 3713] 10260] 4786] 37812] 2530 0 3271 14085

We therefore conclude that the interaction of multi-

threading with the underlying DSM is not affected by the Table 5: Water-Nsq Optimizations

Pages, and eliminates aBlock Same Lock These gains are bin scheduling threads [12]. The challenge is to build a light-
somewhat mitigated by the dramatically increased number wéight threading system without changing the programming

diffs created and used.

the threads conscious of page alignment when deciding Whig
moleculesownedby other threads to help compute. While thi

model, i.e. without constraining the threads to rbe-to-

We attempted to take this modification further by makingompletion We are continuing our research in this direction.

eliminated mosBlock Same Page it also increased diff crea-

tions to the point where they overwhelmed the gains and "B- Keleher, P

duced multithread speedup.

The final set of rows in Table 5 shows the result of com-

bining the local barrier optimization with a reordering of

molecule accesses performed in another part of the appli%a-
tion. Even though threads in this portion of the program update
disjoint sets of molecules, they essentially read all of them.
This optimization orders the reads so that they start at oppgs-
ing ends of the molecule array. The change delays the occur-
rence of overlapping reads to the same page by multiple

threads as much as possible, at least for two threads. The result
is increased remote request overlap and deciglask Same

4,

Pages, without significantly affecting diff creations or the total

number of remote requests. This is the version discussed in the
rest of the paper.

5.

5. Conclusions and Future Work

This paper has presented the results of our experiments in

latency-hiding via per-node multi-threading. Three of our ap-

plications sped up by at least 17%, and all gained some benefit

from the multi-threading. We identify the following as limiting
factors in multi-thread speedup:

1.

above problems is to combine a lightweight, fine-graine
threading package with adaptive load-balancing [11]. Light-

. Thread switch cost Efficient thread switching is crucial to

Local contention for resourcesTransparently adding per-
node multi-threading to explicitly-parallel applications often7
results in multiple threads blocking on the same resource.
This can prevent or limit the overlapping of remote requests
and local computation.

. Interactions with the underlying DSMSplitting accesses to

a single page among multiple local threads can lead to the

threads accessing the data at different times. This can result

in multiple local diffs or remote page faults where only a
single one sufficed for the single-thread case. Unless the
multi-threading is uniformly good or uniformly bad at hid-
ing remote latencies, the tendency is to increase load imb%i-
ance and barrier wait times.

. Interactions with the memory systenMulti-threading in-

creases the pressure on both caches and TLBs. Withgut
cache and TLB-conscious thread scheduling, the memory
system may be the ultimate bottleneck in multi-threading
performance, especially with software DSMs.

getting good coverage of remote latency. 11
One obvious approach to solving the majority of the

2.

weight thread packages [6] are fine-grained enough that it is
possible to load-balance through thread migration, and to
minimize unhealthy interactions with the underlying DSM by

h
eferences

. “The Relative Importance of Concurrent
Writers and Weak Consistency Models"Rroceedings of
the 16" International Conference on Distributed Com-
puting Systemd996.

Agarwal, e.a. “The MIT Alewife Machine: Architecture
and Performance” irProceedings of the 22th Interna-
tional Conference on Computer Architectukéay 1995.
Mowry, T. and A. Gupta. “Tolerating Latency Through
Software-Controlled Prefetching in Shared-Memory Mul-
tiprocessors” inJournal of Parallel and Distributed Com-
puting June 1991.

Wilson, R.P.gt al, “SUIF: An Infrastructure for research
on parallelizing and optimizing compiléysACM SIG-
PLAN NoticesDecember 199429(12): p. 31-37.

Lim, B.-H. and R. Bianchini. “Limits on the Performance
Benefits of Multithreading and Prefetching” Proceed-
ings of the International Conference on the Measurement
and Modeling of Computer Systerh896.

Freeh, V.W., D.K. Lowenthal, and G.R. Andrews.
“Distributed Filaments: Efficient Fine-Grain Parallelism
on a Cluster of Workstations” Proc. of the First Sym-
posium on Operating Systems Design and Implementa-
tion. November 1994. Monterey, CA: USENIX Assoc.
Weimin Yu Cristiana Amza, A.L.C., Sandhya Dwarkadas,
Pete Keleher, Honghui Lu, Ramakrishnan Rajamony and
W. Zwaenepoel. “TreadMarks: Shared Memory Comput-
ing on Networks of Workstations” ilEEE Computer
February 1996.

Gharachorloo, Ket al. “Memory Consistency and Event
Ordering in Scalable Shared-Memory Multiprocessors”
in Proceedings of the f7Annual International Sympo-
sium on Computer Architecturlay 1990.

Keleher, P., A.L. Cox, and W. Zwaenepoel. “Lazy Re-
lease Consistency for Software Distributed Shared Mem-
ory” in Proceedings of the ¥9Annual International
Symposium on Computer Architectukéay 1992.

B Woo, S.C.get al. “The SPLASH-2 Programs: Characteri-

zation and Methodological Considerations” Pnoceed-
ings of the 2%' Annual International Symposium on
Computer ArchitectureJune 1995.

Itzkovitz, A., A. Schuster, and L. Wolfovich, Thread Mi-
gration and its Applications in Distributed Shared Mem-
ory Systems, . 1997, Technion IIT.

Philbin, J., et al. “Thread Scheduling for Cache Locality”
in Proceedings of the"International Conference on Ar-
chitectural Supports for Programming Languages and
Operating System4996.

