
Active Correlation Tracking
Kritchal Thitikamol Peter J. Keleher

(kritchal|keleher)@cs.umd.edu

Department of Computer Science
University of Maryland
College Park, MD 20742

Abstract
We describe methods of identifying and exploiting sharing pat-
terns in multi-threaded DSM applications. Active correlation
tracking is used to determine the affinity, or amount of sharing, in
pairs of threads. Thread affinities are combined to create corre-
lation maps, which summarize sharing between all pairs of
threads in the application.

Correlation maps can be used in two ways. First, they can be
used as an aid for performance tuning, Second, they can be used
to estimate the impact on communication requirements of recon-
figuring running applications through thread migration. Thread
migration provides a way of tuning applications for which shar-
ing information is not known a priori, and a means of adapting
to dynamic algorithms or environments.

We show that i) accurate thread affinities can be obtained with-
out multiple rounds of migration, ii) thread affinities lead to
good approximations of application communication require-
ments, iii) simple heuristics can use thread affinities to efficiently
approximate optimal mappings of threads to nodes, and iv) good
placement is essential for high performance.

1. Introduction
This paper describes active correlation tracking, a mecha-
nism for tracking data sharing between threads, and its im-
plementation in CVM [1], a software distributed shared
memory (DSM) system. DSMs are software systems that
provide the abstraction of shared memory to threads of a
parallel application running on networks of workstations.
Consistency is maintained by using virtual memory tech-
niques to trap accesses to shared data and ensure consis-
tency. Information on the type and degree of data sharing is
useful to such systems because the majority of network
communication is caused by the underlying consistency
system. When a pair of threads located on distinct ma-
chines (nodes) both access data on the same shared page,
network communication can only be avoided by moving at
least one of the threads so that they are located on the same
node.

In order to minimize communication, therefore, the
system needs to identify the thread pairs that will cause the
most communication if not located on the same node. The
information should be complete, in that we need informa-
tion on all threads in the system, and it must be accurate, in
that small errors in the relative ordering of thread pairs
might cause large differences in communication.

Ideally, sharing behavior would be measured in terms
of access rates. More specifically, we can define a density
function that represents the access rate of thread i to page
p. The correlation of two threads over page p can be de-
fined to be the product of the density function of the two
threads for page p. The overall correlation of two threads is
then just the sum of the correlations of the threads over all
shared pages in the system [3]. However, the notion of an
access rate is difficult to capture in a DSM. Once a page
has been mapped locally, subsequent accesses to the page
proceed transparently. Hence, we can not track the rate of
individual accesses. A rough estimate might be obtained by
tracking the average length of time a given page remains
invalidated before being revalidated. Unfortunately, this
estimate can be greatly affected by intervening events. For
instance, 100 usecs is a long interval if it contains only
local accesses. However, a remote access can take milli-
seconds. Such events make it unlikely that the rate of page
revalidation would accurately reflect the access rate. Sys-
tems that capture shared writes through binary rewriting [4]
rather than page faults could presumably capture accurate
densities. One major drawback of this approach is that a
naïve implementation would add overhead to all writes, not
just those that occur when the tracking mechanism is turned
on. Function cloning could be used to create tracking and
non-tracking versions, but every function that might possi-
bly access shared data would have to be cloned.

Current systems [2, 3], therefore, merely track the set
of pages that each thread accesses. Changes in sharing pat-
terns are usually accommodated through the use of an ag-
ing mechanism.

In any case, word-level access densities are not the
proper abstraction for a page-based system. We therefore
track data sharing between threads by correlating the
threads’ accesses to shared memory. Two threads that fre-
quently access the same shared pages can be presumed to
share data. We define thread correlation as the number of
pages shared in common between a pair of threads. We
define the cut cost to be the aggregate total of thread cor-
relations for thread pairs that must communicate across
node boundaries. Cut costs can then be used to compare
candidate mappings of threads to nodes in the system. Once
the best mapping has been identified, the run-time system
can migrate all threads to their new homes in one round of
communication.

In the sections that follow, we show that thread corre-
lations can be used to predict communication cost (Section
2), and to visualize and model sharing behavior (Section 3).
We then describe an efficient mechanism for deriving
thread correlations (Section 4) and provide examples of its
use (Section 5).

Our experimental environment consists of the CVM
[1] software DSM system, running on a cluster of eight
workstations. Each workstation is equipped with 194
MBytes of RAM and a 266 MHz Pentium II processor. The
workstations run the Linux operating system, version
2.0.32, and are connected by a Myrinet [5] commodity
network. The shared memory applications that we use are
summarized in Table 1. They include Barnes, FFT, LU,
Ocean, Spatial, and Water from the SPLASH-2 benchmark
suite [6], as well as a simple successive-over-relaxation
(SOR) application. Unless otherwise specified, all runs
include sixty-four threads divided equally among eight
nodes.

This paper implicitly assumes that multiple threads are
running on each node. This is desirable for several reasons.
First, it allows the programming model to be decoupled
from the hardware model. The application’s structure can
be independent of any specific hardware environment. Sec-
ond, multiple local threads allow the system to use context
switching to hide remote latencies [7, 8]. Finally, dividing
the work on any single node into multiple units allows the
system more freedom in redistributing or balancing the
work through thread migration.

2. Thread correlations and cut costs
The cut cost of a given mapping of threads to nodes is the
pairwise sum of all thread correlations, i.e. a sum with n2

terms, where n is the number of threads. This sum repre-
sents a count of the pages shared by threads on distinct
machines.

We hypothesize that cut costs are good indicators of
data traffic for running applications. We tested this hy-
pothesis experimentally by measuring the correlation be-
tween cut costs and remote misses of a series of randomly
generated thread configurations. A remote miss occurs any
time a process accesses an invalid shared page. Pages are
invalid either because the page has never been accessed
locally, or because another process is modifying the page1.

1 This is a gross simplification, but captures the essence.

In either case, the fault is handled by retrieving a current
copy of the page from another node. For purposes of this
experiment, we assume that all remote sites are equally
expensive to access; thereby ensuring that the number of
remote faults accurately represents the cost of data traffic.

The first step of this experiment was to collect thread
correlations. We computed thread correlations by running
64-thread versions of each of our applications, tracking the
pages accessed by each thread (more detail on the proce-
dure that we used is presented in Section 4.2), and enumer-
ating the set of pages shared by each thread pair.

Given a complete set of thread correlations, we gener-
ated 300 random thread configurations (placements of
threads on nodes) for each application. Equal numbers of
threads were not necessarily present on each node, although
no node ever ended up with fewer than two threads. Une-
qual numbers of threads might be desirable in the presence
of heterogeneous node capacity, whether due to competing
applications or simply because some machines are faster
than others. We ran the applications with each configura-
tion, recording the number of remote misses that occurred.
The results are summarized in Table 2 and shown graphi-
cally in Figure 1. In all cases except Spatial, correlation
coefficients are at least 0.72. Aside from a single outlier
caused by the garbage collection mechanism, SOR’s cor-
relation coefficient would be 1.0.

There are at least three good reasons why a strictly lin-
ear relationship between cut costs and remote misses might
not hold. First, as noted above, correlation tracking does
not capture fault rates. Differing synchronization patterns
might cause applications to suffer multiple faults on some
shared pages, but only single faults on others. For example,
assume that threads t1 and t2 are on distinct nodes, and that
t1 modifies page x after barriers 1 and 3, and page y after
barrier 3. Further, assume that thread t2 reads from page x
after barriers 2 and 4, and reads from y after barrier 4 as
well. Thread t2 will have two remote faults on page x, but
only one on page y. However, both pages will count
equally in the calculation of thread correlations.

Second, the order that local threads read and write
shared pages is often non-deterministic. This non-
determinacy does not affect correctness of an otherwise
correct program, but it could easily lead to a situation in
which a page is invalidated between two local accesses.
The result would be an extra remote fault.

Application
Names

Types of
Synchronization

Input sizes
Shared
Pages

Barnes barrier, lock 8192 bodies 251
FFT6 barrier 64×64×64 1796
FFT7 barrier 64×64×128 3588
FFT8 barrier 64×64×256 7172
LU1k barrier 1024×1024 1032
LU2k barrier 2048×2048 4105
Ocean barrier, lock 256 oceans 3191
Spatial barrier, lock 4096 mols 569
SOR barrier 2048×2048 4099
Water barrer, lock 512 mols 44

Table 1: Application Characteristics

Apps Slope Y-intercept
Correlation
Coefficient

Barnes 0.227 -14483.4 0.742
FFT7 2.517 -23506.9 0.925
FFT8 2.805 -16275.6 0.911
LU2k 2.694 -76837.3 0.724
Ocean 4.508 -92112.1 0.937
Spatial 0.079 -2760.1 0.458
SOR 4.100 -21.4 0.961
Water 0.402 -3011.4 0.779

Table 2: Remote misses as a function of cut costs

Finally, the DSM protocol used in our experiments re-
quires periodic garbage collections. Garbage collections
consolidate all modifications of a single page at a single
site, often requiring multiple remote fetches to do so. Other
replicas of these “collected” pages are invalidated, rather
than being updated. These invalidations lead to additional
remote faults. We have verified that garbage collection is
not the primary culprit in deviations from an ideal linear
relationship in any of the above applications, but it is a
contributing factor.

3. Correlation maps
This section describes the use of thread correlations in cre-
ating correlation maps. Correlation maps are grids that
summarize correlations between all pairs of threads. We
can represent maps graphically as two-dimensional squares
where the darkness of each point represents the degree of
sharing between the two threads that correspond to the x,y
coordinates of that point. Table 3 shows correlation maps

for each application with 32-thread, 48-thread, and 64-
thread configurations.

Correlation maps are useful for visualizing sharing be-
havior. For example, note the prevalence of dark areas near
the diagonals in most of the applications in Table 3. These
areas represent nearest-neighbor communication patterns.
SOR has no other sharing traffic at all. Water, on the other
hand, has nearest-neighbor traffic that starts high, smoothly
decreases, and then increases with “distance” between the
threads in each pair.

The sharing in LU and FFT, on the other hand, is con-
centrated in discrete blocks of threads, rather than being
continuous. For example, note the 8 by 8 sharing structure
of the 32-thread configuration of the LU2k application in
Table 3. The correlation map shows that the majority of the
sharing occurs in the 8 by 8 blocks. One implication of this
sharing pattern is that an eight-node configuration would
probably have much more communication than a four-node
configuration. A balanced, eight-node configuration would
place 4 of the 32 threads on each node. However, any such
configuration would entail breaking up the large sharing
blocks, implying that an eight-node configuration would
have much more communication than a four-node configu-
ration. We have confirmed that this is the case. In fact, the
communication difference turns out to be enough to make
the eight-node configuration slower than the four-node
configuration on some clusters of machines in our testbed.
Correlation maps by themselves, however, do not provide
enough information to have determined this without run-
ning both configurations.

3.1.1 Variation with number of threads
The columns in Table 3 correspond to 32, 48, and 64
threads, respectively. Somewhat surprisingly, they show
that sharing characteristics can significantly vary with the
number of threads.

The overall structure of the correlation maps for SOR,
Barnes, and Water are little affected by changing the num-
ber of threads. This could have been predicted from a cur-
sory examination of application structure. Threads in SOR,
for example, share only single rows of data between pairs
of adjacent threads. Hence, changing the number of threads
does not affect the structure of the map. Water and Barnes
are more complex, but still easily explained.

However, FFT and Spatial both show distinct irregu-
larities at 48 threads. This reflects applications that expect
the number of threads to be a power of two, and are unable
to properly balance load across other system configuration.

Although FFT’s configurations for 32 and 64 threads
superficially appear similar, they reflect sharing blocks of
four and eight threads, respectively. Nonetheless, the im-
plication is that communication behavior remains static
across four- and eight-node configurations.

S OR
200

400

600

800

1000

1200

1400

100 150 200 250 300

Wat er
5800

5900

6000

6100

6200

6300

6400

6500

6600

22200 22400 22600 22800 23000 23200 23400 23600

F F T -Z 7
8000

9000

10000

11000

12000

13000

14000

13200 13400 13600 13800 14000 14200 14400 14600 14800

B ar nes
13000

13400

13800

14200

14600

15000

15400

123000 124000 125000 126000 127000 128000 129000 130000

F F T - Z 8
10000

11000

12000

13000

14000

15000

16000

9800 10000 10200 10400 10600 10800 11000

L U 2 k
24000

26000

28000

30000

32000

34000

36000

38000 38500 39000 39500 40000 40500

Ocean
44000

46000

48000

50000

52000

54000

56000

58000

60000

30500 31000 31500 32000 32500 33000 33500

S pat i al
18000

18500

19000

19500

20000

20500

21000

275000 280000 285000 290000 295000

Figure 1: Cut costs versus remote misses: Cut costs are
on the x axis, remote misses are on the y.

Ocean and Spatial both change significantly from 32 to
64 threads. With Ocean, discrete blocks of threads have
nearest-neighbor communication. Increasing the number of
threads increases the size of these blocks, but not their
count. Spatial’s behavior is the result of phases with dis-

tinct sharing patterns. One of the phases moved from 8
blocks of 4 threads to 4 blocks of 16, while the other
moved from 8 blocks of 4 to 16 blocks of 4.

3.1.2 Variation with input
Several of the applications’ correlation maps also varied
with input set. Correlation maps for 64-thread versions of
FFT with three different input sets are shown in Table 4.
With an input of 26 x 26 x 26, sharing is organized into eight
eight-thread clusters, with heavy sharing within clusters but
little outside. Doubling the input set size to 26 x 26 x 27

broke the sharing into 32 disjoint four-thread blocks, with
background inter-block sharing significantly reduced from
the smaller input set. Finally, doubling the input set size
again to 26 x 26 x 28 resulted in uniform all-to-all sharing.

Changes in the sharing of other applications are less
striking. The majority varied only in relative intensity
rather than in structure. Note that even this type of change
might affect the choice of optimal thread mapping.

4. Correlation-tracking mechanisms
4.1 Passive correlation tracking
Previous systems obtained page-level access information
by tracking existing remote faults. Remote faults occur
when local threads attempt to access invalid shared pages.
Remote faults are satisfied by fetching the latest version of
the shared page from the last node that modified it. The
underlying DSM can overload this process to inexpensively
track the causes of remote faults, slowly building up a pat-
tern of the pages accessed by each thread.

The problem is that there is often more than a single
thread running on each machine, and these threads share
state. Once the first thread on a node validates a given page
through a remote fault, all other local threads can access
the page without invoking the DSM system.

Hence, the system only gains partial information about
the sharing behavior of local threads. Any migration deci-
sions are made with only partial information, often leading
to bad long-term choices. These bad choices are discovered
only after the threads have been migrated to other nodes.
Once a thread migrates off of a local host, the interactions
between that thread and those left behind become visible in
the form of remote faults (unless masked by the actions of
other threads on the new node). These faults may identify
threads that should be moved back to their original posi-
tions, resulting in ping-ponging of threads across the sys-
tem.

32 threads 48 threads 64 threads

B
ar

ne
s

FF
T

6
L

U
2k

O
ce

an
SO

R
Sp

at
ia

l
W

at
er

Table 3: Correlation Maps – Increasing thread corre-
lation is represented by darker shades. Each map is nxn,
where n is the number of threads. The origin is in the lower
left.

26 x 26 x 26 26 x 26 x 27 26 x 26 x 28

FF
T

Table 4: 64-thread FFT versus input set

Figure 2 shows the percentage of complete sharing in-
formation gathered by the passive tracking approach as a
function of the number of migration rounds. Even at the
end of the migrations, the passive tracking only comes
close to obtaining complete information for SOR, by far the
least complex of our applications. Each round consists of
gathering page fault information for an iteration of the ap-
plication, followed by migrating threads to new locations.

The applications averaged slightly more than six
rounds of migrations before stabilizing, although Figure 2
shows all rounds in which new information is gained. The
term “stabilizing” is used advisedly. Recall that passive
correlation tracking only learns about the first local thread
to access a page during any synchronization interval. This
means that the speed at which information is accumulated
is non-deterministic. A configuration might appear optimal
for several iterations before the non-deterministic schedul-
ing of threads reveals new information. This happened for
Water, where migrations occurred eight times, followed by
three iterations in which no better configurations were
found, followed by five more iterations in which new in-
formation caused additional rounds of migrations to occur.

4.2 Active correlation tracking
Network ping-pongs can be avoided by obtaining addi-
tional information about correlations between local threads
before any thread migration takes place. We obtain this
information through an active correlation-tracking phase,
which iteratively obtains access information for each local
thread. The correlation-tracking phase spans a single itera-
tion of each of the applications. The algorithm uses two
data structures on each node: per-page correlation bits, and
per-thread access bitmaps:

1. At the start of the tracking phase, all pages are
read-protected and the correlation bit of each
page is set. The pages’ previous states are saved in
CVM’s page structures. The thread scheduler is
placed in a special mode that prevents thread-

switching from occurring until the next barrier has
been reached.

2. At each access fault for a page whose correlation
bit is set (a correlation fault), the corresponding
bit in the per-thread access bitmap is set, and the
correlation bit is reset. The page is then returned
to its original state and the fault handler returns. If
the access type would have caused a violation
even outside the correlation-tracking phase, an
additional fault occurs and is handled normally.

3. At the next barrier, the system switches to the next
thread, sets all correlation bits again, and once
again read-protects all pages. This thread is then
allowed to proceed in the same manner as the pre-
vious thread.

4. The tracking phase ends when all threads reach
the next barrier. At the end of the correlation-
tracking phase, all correlation bits are reset and
untouched pages are returned to their previous
protection state.

After the tracking phase has ended, the per-thread access
bitmaps specify exactly which pages each thread accessed
during the tracking phase.

The tracking phase has two primary forms of over-
head. The most obvious is the cost of the correlation faults.
This cost scales with the number of pages accessed locally,
and the degree of sharing between the local threads. Given
a system with n nodes and p pages, the local threads will
usually access at least p/n pages, more if there is a large
amount of data sharing between threads. Local sharing in-
creases the number of faults because each shared page in-
curs more than one page fault. However, the cost of corre-
lation faults on distinct nodes is incurred in parallel.

The second cost results from disabling the thread
scheduler during the tracking phase. The scheduler is dis-
abled so that each thread can be run from one barrier to the
next atomically with respect to the other local threads. This
decreases the overhead of the mechanism because each
thread switch that occurs while tracking is enabled requires
all page protections to be restored to the protections spe-
cific to the new thread. However, turning off the thread
scheduler eliminates the latency toleration advantages of
per-node multi-threading. The performance impact of los-
ing this amount of latency toleration is usually on the order
of 10-15% [7], and is only incurred during the active cor-
relation-tracking phase.

Table 5 shows the cost of performing the active corre-
lation tracking with eight threads per node. The first three
columns show iteration times without and with correlation
tracking, and the percent slowdown from one to the other.
Two of the applications, Ocean and SOR, produced slow-
downs of more than 50%. ‘LU2K’ slowed down by one
third, and the others by less than 12%. This slowdown re-
fers only to the slowdown for the tracked iteration.

While not prohibitively expensive even on these appli-
cations, the tracking process is too costly to perform often.
However, the iterative nature of our applications allows us

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R ounds

B arnes

F F T 6

F F T 7

F F T 8

LU1k

LU2k

Ocean

S patial

S OR

Water

Figure 2: Passive Information-Gathering

to perform the correlation tracking only once, amortizing
the cost over the rest of the computation. For example, the
above overheads might be tolerable if amortized across ten
iterations, and would certainly be tolerable if each applica-
tion performed 100 iterations. In fact, amortized slowdown
was less than 1% for all of our applications except Ocean.

As noted above, all overhead of the tracking phase is
incurred locally, and in parallel across nodes of the system.
This implies that the absolute runtime cost of the tracking
phase should not increase as the number of nodes is in-
creased. This is in contrast to the passive ping-ponging
approach, in which increasing system size would probably
increase the number of thread migrations.

The absolute cost of this tracking phase is sensitive to
the overall amount of sharing in the system. Since sharing
means that multiple threads are accessing the same pages,
such sharing increases the total number of segmentation
violations. Systems with little or no sharing are therefore
insensitive to the number of threads. However, as sharing
increases, the number of threads can become significant.

The last three columns of Table 5 show the total num-
ber of tracking and coherence faults incurred during
tracked iterations, and a measure of how efficient the cor-
relation tracking is at obtaining access information. “Shar-
ing degree” is a count of the total number of distinct shared
pages that were accessed during the tracked iteration, di-
vided by the number of induced tracking faults. The result
gives the average number of local threads that access dis-
tinct shared pages that are touched locally. For example, if
t1 accesses page x, t2 accesses x and y, and t3 accesses y and
z, then the average number of threads accessing each lo-
cally accessed page is 1.7 (average of 1, 2, and 2). SOR’s
sharing degree is 1.08, accurately reflecting the fact that
only boundary rows are shared. Water, on the other hand,
has an average sharing degree of 6.8, meaning that for each
node, an average of 6.8 out of the 8 local threads touched
every shared page that was accessed by any of them. We
explain this high degree of sharing by noting that Water is a
molecular simulation in which force computations for any
given molecule usually reflect the influence of most of the
rest of the molecules.

5. Using correlation maps to direct migration
Sections 2 and 3 showed that thread correlations can be
used to model communication behavior, and Section 4
showed how to efficiently derive this information online.
This section discusses uses of this information.

Thread correlations are primarily useful as a means of
evaluating cut costs (and, indirectly, communication re-
quirements) of candidate mappings of threads to nodes.
Such comparisons are only meaningful if applications can
be configured to match arbitrary thread mappings. Given
that we derive our correlation mappings online, such con-
figurations must be of running applications.

Hence, reconfigurations require thread migrations. We
assume a DSM system that supports per-node multithread-
ing [7] (multiple threads per node) and thread migration.
Per-node multithreading is only problematic when DSMs

only allow dynamically allocated data to be shared, like
CVM. The problem is that it exposes an asymmetry in the
threads’ view of data. Threads on a single node share the
same copy of statically allocated global data, but each node
has distinct copies. This problem is usually handled by
restricting threads from accessing any of these variables.
Instead, threads can access only stack and globally shared
data.

Given the above, thread migration can be accom-
plished through little more than copying thread stacks from
one machine to another. Care must be taken to preserve the
stack’s address before and after a copy so that pointer val-
ues do not become orphaned. Additionally, thread migra-
tion in systems that support relaxed consistency models
must ensure that the thread’s view of shared data at the
destination is not missing any updates that were visible at
the source.

Systems that have a large number of threads per node
might allow nodes to unilaterally export threads to other
nodes. Load balance can only be maintained, however, if
the number of exported threads matches the number im-
ported2. Good decisions about which thread(s) should be
imported usually require global information, and do not
change the number of threads on any node.

Online reconfiguration may be necessary or desirable
for a number of reasons. As an example, consider Figure 3
(a). This correlation map represents a version of FFT with
32 threads distributed equally across four nodes. The points
inside the dark squares represent those thread pairs that are
located on the same nodes, and hence do not figure into cut
costs or require network communication. There are four
squares, since there are four nodes, or regions where shar-
ing is free. Since all of the dark regions are inside the “free
zones” that represent nodes, we can infer that communica-
tion requirements will be relatively minimal.

Now consider instead Figure 3 (b). This picture repre-
sents a configuration of four threads running on each of
eight nodes. The correlation map is the same, but the
smaller “free zones” encompass only half of the dark areas.
Hence, we can infer that this configuration has more com-
munication than the four-node version. Together with in-
formation on the ratio of communication to computation in
the application, a runtime system could potentially make a

2 Assuming that threads have equal work.

Iteration time (secs) Faults
Appls

Off On

Percent
Slowdown Tracking Coherence

Sharing
Degree

Barnes 2.24 2.32 3.62% 8628 8316 6.583
FFT6 0.37 0.40 8.99% 5216 928 2.657
FFT7 0.67 0.75 11.28% 6112 1824 1.734
FFT8 1.41 1.51 7.32% 5600 5920 1.268
LU1K 0.30 0.32 8.11% 9855 232 7.359
LU2K 0.80 1.06 33.33% 36102 344 7.821
Ocean 1.92 3.26 69.92% 62039 12439 2.112
Spatial 13.43 13.60 1.27% 38286 6296 6.030
SOR 0.15 0.26 75.68% 8640 56 1.081
Water 1.07 1.09 2.25% 2983 1427 6.754

Table 5: 64-Thread Tracking Overhead

rough guess at whether the eight-node configuration would
have any performance advantage over the four-node ver-
sion.

Finally, consider Figure 3 (c). This is the same appli-
cation, with unchanged sharing patterns. However, we have
randomly permuted the assignment of threads to nodes.
Doing so results in a configuration with a much higher cut
cost, which is not addressed effectively by either the four-
node or eight-node configurations. Similar situations would
arise with applications in which sharing patterns change
slowly over time.

5.1 Identifying good thread assignments
The combination of finding the optimal mapping of threads
to nodes is a form of the multi-way cut problem, and is NP-
hard. While good approximation schemes have been found
for the general form of the communication minimization
problem [9], our problem is complicated by the fact that we
must also address load balancing and parallelism.

For the purposes of this paper, we restrict the problem
to merely identifying the best mapping of threads to nodes,
given a constant and equal number of threads on each node.
We investigated several ways of identifying good map-
pings. We used integer programming software to identify
optimal mappings. We developed several heuristics based
on cluster analysis [10], and showed that two heuristics
identified thread mappings with cut costs that were within
1% of optimal for all of our applications. We collectively
refer to these heuristics as min-cost.

However, a much simpler heuristic, stretch, appears to
perform almost as well on the applications discussed in this
paper. Stretch consists merely of maintaining the initial
thread ordering and attempting to divide the threads equally
among the nodes. For example, given a 64-thread applica-
tion, we would map the threads on to four nodes by putting
the first 16 on node 0, the second 16 on node 1, etc. The
reason that stretch works well is that the majority of com-
munication in our applications is either nearest-neighbor or
approximately all-to-all. In the former case, stretch is ex-
actly the right approach. In the latter, all configurations are
equivalent. For evidence of nearest-neighbor sharing pat-
terns, look at any of the correlation maps in Table 3. The
all-to-all communication is not as obvious, but can be in-
ferred as well. Consider the correlation maps for Ocean and
LU. Both have uniform dark backgrounds (all-to-all shar-

ing), with even darker boxes near the diagonal (nearest-
neighbor communication). Since stretch and min-cost per-
form so similarly, we only present information for min-cost
below. Note that stretch will often move more threads at
migration points than other approaches.

Table 6 shows communication requirements, counts of
remote misses, and overall performance for each applica-
tion with both min-cost (“m-c”) and a random assignment
(“ran”) of threads to nodes.

6. Related work
Thread migration has also been studied in the Millipede [2]
and PARSEC [3] DSMs. PARSEC implements sequential
consistency [11] rather than one of many high-performance
relaxed consistency models. This makes comparisons diffi-
cult, as sequentially-consistent systems suffer from both
false and true sharing. Relaxed consistency models hide
false sharing effectively without recourse to multi-threading
[12]. Thread-scheduling algorithms on modern systems,
therefore, only address performance problems due to true
sharing. Furthermore, the level of false sharing in both
systems is higher than a typical sequentially-consistent
system, as neither system incorporates a “delta interval”
mechanism. This mechanism freezes newly arrived pages
for a pre-determined period of time before allowing them
to be stolen away. This optimization has long been known
to be crucial to the performance of single-writer DSM
protocols [13].

Both systems implement forms of passive correlation
scheduling, in which remote page faults are used to gain
information about data sharing between threads. As dis-
cussed in Section 4, this technique fails to provide infor-
mation about the affinity between local threads, and can
cause thread thrashing.

In addition to correlation scheduling, PARSEC also
implements a “suspension scheduling” algorithm that tem-
porarily suspends threads involved in page thrashing. Sus-
pension scheduling effectively deals with the same per-
formance problems as the delta mechanism, which is only
needed in single-writer protocols. Hence, suspension
scheduling is unlikely to be of use with more modern un-
derlying consistency mechanism. This is crucial in evalu-

(a) (b) (c)

Figure 3: 32-thread FFT, 26 x 26 x 26 - (a) on four
nodes, squares indicate thread sharing that does not cause
network communication, (b) on eight nodes, as above, (c)
randomized thread assignments for four nodes

Applications
Time
(secs)

Remote
Misses

Total
Mbytes

Diff
Mbytes

Cut Cost

m-c 43.0 120730 218.1 29.3 125518
Barnes

ran 46.5 124030 254.2 29.3 129729

m-c 37.3 22002 172.2 169.2 8960
FFT7

ran 68.9 86850 685.9 193.4 14912

m-c 7.3 11689 121.3 9.6 31696
LU1k

ran 97.1 231117 1136.2 145.2 58576

m-c 21.2 123950 446.3 228.7 26662
Ocean

ran 28.9 171886 605.5 240.4 29037

m-c 240.1 125929 551.8 107.7 273920
Spatial

ran 273.7 249389 870.8 115.8 289280

m-c 3.6 881 5.4 5.0 28
SOR

ran 5.9 8103 47.7 46.0 252

m-c 19.3 20956 49.0 6.9 21451
Water

ran 21.1 33188 72.0 6.9 23635

Table 6: 8-node performance by heuristic

ating the performance results in this paper, as two of the
three applications speed up only through suspension sched-
uling. The performance of the remaining application, wa-
ter-nsquared from SPLASH-2 [6], improves by approxi-
mately 17%. However, the paper gives no absolute per-
formance information for this application, and in fact does
not specify how many nodes are used.

7. Conclusions and future work
This paper has described new methods of obtaining and
using thread correlation information in multithreaded
DSMs. We first showed that thread correlation information
can be used to derive cut costs, which correlate well with
communication costs and can be used to predict overall
performance. Hence, cut costs can be used to predict the
performance of arbitrary mappings of threads to nodes.

We showed that previous approaches to obtaining
thread correlation information may require multiple rounds
of migrations to stabilize, and still fail to acquire all rele-
vant information. We described the active correlation
tracking mechanism, which can be used to acquire com-
plete thread correlation information without migration.

Finally, we described the performance of the CVM for
a variety of applications, with two different approaches to
creating thread mappings. We argued that simple heuristics
can approximate optimal mappings for the applications
discussed in this paper.

We plan to extend our results with dynamic applica-
tions. Several of the applications that we discuss in this
paper are potentially dynamic because they reflect physical
processes in which interacting bodies move relative to each
other. By design, however, these movements are rarely
significant with the default inputs sets of the applications
that we are currently using. For the full version of this pa-
per, we will present results showing the impact of thread
migration on adaptive, irregular codes [14]. Note that the
stretch heuristic is only applicable to applications with
static sharing patterns. We will need to rely on min-cost in
order to obtain good performance for adaptive applications.

8. References
[1] P. Keleher, “The Relative Importance of Concurrent

Writers and Weak Consistency Models,” in Proceed-
ings of the 16th International Conference on Distrib-
uted Computing Systems, 1996.

[2] A. Itzkovitz, A. Schuster, and L. Wolfovich, “Thread
Migration and its Applications in Distributed Shared
Memory Systems,” Technion IIT LPCR #9603, July
1996.

[3] Y. Sudo, S. Suzuki, and S. Shibayama, “Distributed-
Thread Scheduling Methods for Reducing Page-
Thrashing,” in Proceedings of the Sixth IEEE Inter-
national Symposium on High Performance Distrib-
uted Computing, 1997.

[4] D. Scales and K. Gharachorloo, “Shasta: A Low
Overhead, Software-Only Approach for Supporting
Fine-Grain Shared Memory,” in Proceedings of the
7th Symposium on Architectural Support for Pro-

gramming Languages and Operating Systems, Octo-
ber 1996.

[5] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Ku-
lawik, C. L. Seitz, J. N. Seizovi, and W.-K. Su,
“MYRINET: A Gigabit Per Second Local Area Net-
work,” IEEE-Micro, vol. 15, pp. 29-36, 1995.

[6] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A.
Gupta, “The SPLASH-2 Programs: Characterization
and Methodological Considerations,” in Proceedings
of the 22nd Annual International Symposium on Com-
puter Architecture, June 1995.

[7] K. Thitikamol and P. Keleher, “Multi-Threading and
Remote Latency in Software DSMs,” in The 17th In-
ternational Conference on Distributed Computing
Systems, May 1997.

[8] T. C. Mowry, C. Q. C. Chan, and A. K. W. Lo,
“Comparative Evaluation of Latency Tolerance Tech-
niques for Software Distributed Shared Memory,” in
Proceedings of the Fourth International Symposium
on High-Performance Computer Architecture, Febru-
ary 1998.

[9] E. Dahlhaus, D. S. Johnson, C. H. Papdimitriou, P. D.
Seymour, and M. Yannakakis, “The Complexity of
Multiterminal Cuts,” SIAM Journal on Computing,
vol. 23, pp. 864-894, 1994.

[10] R. A. Jarvis and E. A. patrick, “Clustering using a
similarity based on shared near neighbors,” IEEE
Transactions on Computers, vol. C-22, November
1973.

[11] L. Lamport, “How to Make a Multiprocessor Com-
puter that Correctly Executes Multiprocess Pro-
grams,” IEEE Transactions on Computers, vol. C-28,
pp. 690--691, September 1979.

[12] C. Amza, A. L. Cox, K. Rajamani, and W.
Zwaenepoel, “Tradeoffs between False Sharing and
Aggregation in Software Distributed Shared Mem-
ory,” in Proceedings of the Principles and Practice of
Parallel Programming, 1997.

[13] B. Fleisch and G. Popek, “Mirage: A Coherent Dis-
tributed Shared Memory Design,” in Proceedings of
the 12th ACM Symposium on Operating Systems Prin-
ciples, December 1989.

[14] H. Han and C.-W. Tseng, “Improving Compiler and
Run-Time Support for Adaptive Irregular Codes,” in
Proceedings of the International Conference on Par-
allel Architectures and Compilation Techniques
(PACT’98), October 1998.

