
Lecture Notes in Computer Science 1

Communication-Intensive Parallel Applications and
Non-Dedicated Clusters of Workstations

Kritchalach Thitikamol and Peter Keleher

Department of Computer Science, University of Maryland,
College Park, MD 20742

{kritchal, keleher}@cs.umd.edu

Abstract. Time-sharing operating systems may delay application processing of
incoming messages because other processes are scheduled when the messages
arrive. In this paper, we present a simple adjustment to application polling be-
havior that reduces this effect when the parallel process competes with CPU-
intensive sequential jobs. Our results showed that moderate improvement might
be achieved. However, the effectiveness of the approach is highly application-
dependent.

1. Introduction

Client-server applications often use busy loops to multiplex and retrieve incoming
messages. Such loops might use UNIX select() calls to check for message arrival.
If no message is pending, select() returns immediately and the applications may
execute other work. The use of busy loops is often called message polling, in contrast
to interrupt message delivery. Message polling is very simple to implement. However,
in non-dedicated processors, time-sharing operating systems can inadvertently delay
notification of incoming messages. This delay occurs because polling processes are
inactive at the time their messages arrive. As a result, the message processing is de-
layed on both server and client sides and application performance is degraded.

In Section 2, we discuss such a performance problem in CVM [1], a software dis-
tributed-shared-memory system (DSM), executing on machines that have other active
processes. Software DSMs are software systems that provide shared memory seman-
tics across machines that support only message passing. CVM implements relaxed
consistency models, supports multiple threads per processor, and allows thread migra-
tions during application executions. In Section 3, we pinpoint the cause of the problem
using simple client and server experiments and present our solution to the CVM prob-
lem. In Section 4, we then fully investigated implications from our results and the
technique we used to reduce message delay. Finally, we presented our conclusion for
similar polling structures and execution environments in Section 5.

Previous studies of the message notification delay [2, 3] reduce its effect by apply-
ing special algorithms to re-schedule and synchronize incoming messages with polling

Lecture Notes in Computer Science 2

processes. Many target message-passing parallel programs, in which synchronization
delay is highly important. Significant improvements can be achieved with these ap-
proaches, but they often required modifications to the underlying operating system
kernels. On the other hand, our technique modifies only the CVM application. In the
worst case, our results also show significant performance improvement with our ap-
proach. The method basically allows CVM polling processes to avoid long context
switches during the critical path of handling incoming messages. While the experi-
ments we present here are specific to Linux 2.0.32 running on Pentium II’s, we have
confirmed that the problem exists on other operating systems, and similar approaches
produce improvements.

2. CVM and Load Balancing

CVM maintains memory consistency by pulling shared data modifications from where
they were created in a client-server style. CVM uses I/O signal handlers to notice
incoming requests. However, when waiting for replies, CVM uses message polling to
multiplex possible multiple replies and to schedule local threads.

We ran two applications, successive over-relaxation (SOR) and water molecular
simulation application (Water) from Splash-2 [4], on nodes that had sequential jobs on
them. The intent was to test CVM’s thread reconfiguration mechanism for load bal-
ancing. Imbalance computation time observed in our experiment is a direct result from
sequential jobs that compete for CPU cycles with CVM processes. By moving some of
the computation to even their executions in thread granularity, CVM processes can
avoid increasing global synchronization delay thus improves their overall performance
in non-dedicated environment.

The machines we used are a cluster of Pentium-II 266MHz machines running Li-
nux operating system and connected by Ethernet and Myrinet networks. The experi-
ments basically included several runs of each application with different numbers of
threads on four processors. We also ran one sequential process on the last processor.
Table 1 shows characteristics of our sequential processes and their CPU-busy percent-
age on our Linux platform with no other processes. For each configuration execution,
we measured its elapsed time after a specific sequential process started. Our expecta-
tion was that reconfiguring the mapping of threads to nodes would limit the degrada-
tion caused by the sequential job running on the last node.

Table 2 shows the performance results with 32 threads in total. The third and fourth
columns show elapsed time from two configurations; “8,8,8,8” means 8 threads are

Table 1. Characteristics of Sequential Processes.

Sequential
Apps

Descriptions
Percent busy on an
empty processor

grep GNU grep program 15-20%

gcc GNU gcc program 45-55%

infloop Infinite loop program 100%

Lecture Notes in Computer Science 3

mapped to each processor, and “10,10,10,2” means the first three processors have 10
threads and the last has only two threads. Both used our original busy-wait polling and
are labeled 0-µsec in the table. The smaller number of threads on the last processor
reflect competition for CPU cycles because of the sequential process. The results are
disappointing, to say the least.

We also observed that even though we were balancing application computation, the
results had high variability from run to run with different type of sequential process.
We would expect the “10,10,10,2” to produce similar performance regardless of the
guest processes because we expected that during the execution, barriers would force
two threads on the last processor to wait until all 10-thread processors finished their
computations. Also, the priority of sequential processes and CVM processes were no
difference. In fact, the elapsed time of the last configuration SOR in Table 2 varied
from 8.31, 10.17 to 11.22 seconds. These non-uniform results imply that there must be
some other artifacts that are affecting barrier imbalance besides the application’s
computation.

3. Testing Message Polling with Sequential Processes

SOR’s simplicity made it easy to rule out computation variability as the culprit.
Hence, the load balance must be the result of changing computation costs. In order to
verify that the problem was not an artifact of CVM’s structure, we wrote simple client
and server programs using UDP-sockets. Presumably, if we execute our server with
the sequential processes, it would produce a relative degradation of communication
performance similar to the first performance results in Table 2. More specifically, our
client process continuously sends requests, blocks waiting replies, and then sends
more requests. The server uses a non-blocking call to select() in order to imple-
ment a busy-wait loop. Calls to select() are made non-blocking by specifying a
zero-microsecond (busy) delay as a parameter. During the experiments, we collected

Table 2: Performance of CVM applications using 0-µsec timeout with sequential process on
the last processor.

Elapsed time in second
Appls

Active seq.
processes “8,8,8,8” “10,10,10,2”

none 6.70 8.30
grep 8.14 8.31
gcc 10.66 10.17

SOR

inf-loop 13.20 11.22
none 25.88 30.78
grep 28.58 30.95
gcc 47.98 38.82

Water

inf-loop 51.70 44.97

Lecture Notes in Computer Science 4

average message round trip time of 20,000 messages ping-ponging between client and
server.

In order to explore other options that might affect our communication performance,
we also tested our applications with constant timeouts passed to the select() calls.
We tested 1, 2, 5, 10 and 20 µsec delays, and message sizes of one word and 8192
words.

Fig. 1 shows our client-server results, which we measured on Ethernet and Myrinet
networks. The select() blocking periods are listed on the x-axis. The y-axis shows
the average round trip time for each run. The results using one word messages are on
the left and results using 8192-word messages are on the right. Lines in both charts
represent results from different networks with different sequential processes in use
shown below both charts. The “E” and “M” refer to Ethernet and Myrinet networks
respectively.

The results with 0-µsec with any sequential processes confirmed our hypothesis.
The average round trip time with simple busy loops degraded by a large amount in the
presence of a sequential process. However, there was very little slowdown with
nonzero µsec polling, regardless of the sequential processes. The busy-waiting pro-
duced better performance than non-zero µsec polling only when executing with no
load. The average round trip time tended to get larger with sequential processes that
generated higher percentage of CPU-busy time. The results from Ethernet and Myrinet
networks showed similar patterns, but the Ethernet was faster for small messages and
slower for large ones.

Fig. 1. The results from client-server experiment show changes in average message round trip
time (y-axis) with different select() blocking periods (x-axis). The results using one word
messages (left) and results using 8192-word messages (right) produce similar conclusion. Lines
in both charts represent results from Ethernet (E) and Myrinet (M) networks with different
sequential processes in use (noload, infloop, gcc and grep) shown at the bottom of the figure.

8192 words

0

2000

4000

6000

8000

10000

12000

14000

0 1 2 5 10 20

Blocking in usec

usecs

E noload E w /infloop E w /gcc E w /grep

M noload E w /infloop M w /gcc M w /grep

1 word

0

100

200

300

400

500

600

700

0 1 2 5 10 20

Blocking in usec

usecs

Lecture Notes in Computer Science 5

Based on these results, we re-ran the CVM experiments. Only the CVM process
running on the node with the sequential job used 1-µsec timeouts instead of non-
blocking select(). Table 3 shows their times in the last column. The results show
slight degradation with little or no load, but significant improvements with high load,
in comparison to “10,10,10,2” 0-µsec runs in Table 2.

Although we can conclude that message delay is likely the source of additional
slowdown, we had yet to identify the exact mechanism of the performance problem.
However, we hypothesized that the difference results from OS scheduler behavior.

4. Time Sharing Behaviors

Intuitively, it is easy to understand that message replies may be delayed because poll-
ing processes are suspended when the message arrives. The message cannot be seen
by the application until the underlying operating system re-schedules the polling proc-
ess. In order to verify that this is the case in our experiments, we re-ran the client-
server experiments and recorded individual round trip times to see whether there were
any abnormal message-delays with the infinite loop process. We selected the infinite
loop program because it always uses up its time slice or quantum time and the sched-
uler behavior becomes fairly predictable. The client and server experiments were
again repeated only with 0-µsec and 1-µsec blocking time in the select() call.

In addition, we modified the Linux kernel to report the current time counter of the
server process. The time counter indicates how much time remains in the currently
running process’s time slice. Each time tick in time counter is about 10 milliseconds
worth of execution time. The Linux priority-based scheduler preemptively makes a
context switch when the current process’s time counter becomes zero, or the process
explicitly yields to another process often through UNIX system calls.

Fig. 2 shows individual round trip time of 150 messages listed on x-axis in the top
chart and corresponding values of remaining Linux time counter of the server process
at the bottom chart. The results confirmed that the 0-µsec server was switched out for

Table 3: Performance of CVM applications using 1-µsec timeout with a sequential process on
the last processor and “10,10,10,2” mapping.

Appls
Active seq.
processes

Elapsed time
in second

none 8.31
grep 8.44
gcc 8.45

SOR

inf-loop 8.44
none 30.74
grep 35.72
gcc 35.97

Water

inf-loop 35.78

Lecture Notes in Computer Science 6

full quantum time, approximately 0.2 second by Linux default, (because of the infinite
loop program) more often than 1-µsec server. For example, the time counter of 0-µsec
server went to zero more often than 1-µsec in Fig. 2. Note that the round trip time of
the three spikes in the top chart was between 0.1 and 0.3 seconds, which is much
higher than the normal round trip time of 0.029 second.

Although the numbers help us understand the source of the problem, we still need
to understand exactly how the 1-µsec blocks change the scheduling behavior. It turns
out that the scheduler periodically switches out the 0-µsec server because it exhausts
its ticks. However, the 1-µsec block causes the kernel to temporarily yield the CPU to
another process during the delay time. By watching the Linux scheduler during our 1-
µsec server experiment, we observed 1505 context switches bouncing between server
process and infinite loop process, comparing to only 21 context switches with 0-µsec.
However, the 1-µsec switches are only for approximately the duration of the 1-µsec
timeout. Additionally, the other process is usually the sequential job, which quickly
uses up its ticks. The scheduler then adds new ticks to both the sequential job and all
other jobs. This latter category includes the CVM process. Hence, the CVM process
rarely exhausts its ticks, and rarely is swapped out for an entire time slice, resulting in
better performance. Basically, the one microsecond timeout in our server experiments
improves the chance of no full context switches forced by OS scheduler. The poor
performance of 0-µsec server with a sequential process happened because it was inac-
tive for full quantum time. The delay eventually adds up and creates abnormally large
round trip times, especially in highly communicating processes.

Although this behavior is clearly tied to specific implementations, we obtained
similar results when ran the same experiments on an IBM-SP2 parallel machine run-
ning AIX 4.2. The AIX results also showed less variability in the “10,10,10,2” tests
with 1-µsec blocks and sequential processes. The 1-µsec elapsed times were better

Fig. 2. In the top graph, 0-µsec server (dotted line) intermittently caused huge message round trip
time while 1-µsec server (normal line) did not. The bottom graph showed that the 0-µsec server
(dotted line) was swapped out more often than the 1-µsec server (normal line) as the OS counter
of the 0-µsec server became zero frequently.

0.0020

0.0025

0.0030

0.0035

0.0040

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151ro
un

d
tr

ip
 t

im
e

in

se
co

nd

0.2s 0.1s 0.3s

0

10

20

30

40

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151

re
m

ai
ni

ng
 t

im
e

co
un

te
r

Lecture Notes in Computer Science 7

with the infinite loop sequential program, but not GCC. Note that the sequential proc-
esses produced different CPU-busy percentages between AIX and Linux operating
systems, except only the infinite loop program that maintains 100% busy.

We realized that the 1-µsec block was less effective with less resource-hungry se-
quential processes on both platforms, e.g. with grep program. In Linux, this is because
time counters of lightly busy sequential processes become zero less often. The OS
scheduler adds time counters only after a process exhausts its time, and it is likely that
less intense sequential jobs use all of their quantum less frequently. Therefore, the
blocking technique produces less improvement with less busy jobs. Fortunately, these
jobs also produce less slow down to begin with.

Nonetheless, to avoid degradation with lightly busy processes, we suggest our ap-
proach be used in dynamic fashion. For example, CVM processes should be able to
decide 0-µsec or 1-µsec blocking parameter based on CPU-busy percentage of adver-
sary processes. Although we have not tested our approach with all available operating
systems, our experience suggests that for 50-100% busy guest processes, 1-µsec
blocking be worth trying.

Our further research reveals that modern operating systems, including Linux and
AIX, similarly implement process scheduler with non-fixed priority. The scheduler
basically recalculates running processes’ priority value at each clock interrupt, which
may not be equal to a period of time slice. Therefore, a process may lose its CPU
control because its priority value is inferior to that of another dispatchable process.
Consequently, we believe that the similar results from our technique can be obtained
with other operating systems that use non-fixed priority scheduling. Ultimately, the
idea is to avoid OS scheduler to penalize communication-intensive processes with a
lot of full time-slice message delay, which have been proved to be expensive for par-
allel processing in non-dedicated environments.

5. Conclusions

We have shown that we can reduce the impact of competing sequential jobs by
changing application code, without touching the operating system scheduler. Our
technique consists of using blocking message polls when competing with CPU-
intensive jobs. The result is that we reduce the chance of the parallel job being
switched out for a long period of time. Its effectiveness, however, depends largely on
the level of CPU usage of the local sequential processes. For best results, the tech-
nique should be adjusted dynamically. We confirmed the applicability of our method
with simple client-server and CVM load balancing experiments on both Linux and
AIX operating systems, and the results showed encouraging performance improve-
ment.

Lecture Notes in Computer Science 8

References

1. P. Keleher. The Relative Importance of Concurrent Writers and Weak Con-
sistency Models. in Proceedings of the 16th International Conference on
Distributed Computing Systems. 199691-99. Hong Kong: IEEE.

2. A.C. Dusseau, R.H. Arpaci, and D.E. Culler. Effective Distributed Scheduling
of Parallel Workloads. in Sigmetrics’96 Conference on the Measurement and
Modeling of Computer Systems. 1996.

3. P.G. Sobalvarro, et al. Dynamic coscheduling on workstation clusters. in
Proceedings of the Workshop on Job Scheduling Strategies for Parallel Proc-
essing. March 1998.

4. S.C. Woo, et al. The SPLASH-2 Programs: Characterization and Methodo-
logical Considerations. in Proceedings of the 22nd Annual International
Symposium on Computer Architecture. June 199524--37. Santa Margherita
Ligure, Italy.

